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GENERALIZED INFORMATION THEORY (GIT)  

•! GIT is a research program whose objective is to develop 
a formal treatment of the interrelated concepts of 
uncertainty and information in all their varieties. 

•! GIT was introduced in (Klir,1991).  

•! In GIT, as in the two classical information theories, 
uncertainty (predictive, retrodictive, diagnostic, 
prescriptive, etc.) is the primary concept and information 
is defined via reduction of uncertainty. 

•! That is, GIT deals with a special type of information, 
which is usually referred to as uncertainty-based 
information. 

•! Principal reference: (Klir 2006). 
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UNCERTAINTY THEORIES:     
General Scenario  

•! A set of mutually exclusive alternatives is 
considered (predictions, diagnoses, etc.). 

•! Only one of the alternatives is true (prediction, 
diagnosis, etc.), but we are not certain which 
one it is. 

•! Uncertainty about the true alternative is 
expressed differently in each theory. 
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CLASSICAL UNCERTAINTY THEORIES 

•! POSSIBILISTIC: Uncertainty results from more 
possible alternatives than one. Information is obtained 
by any evidence that some of the considered 
alternatives are not possible. 

•! PROBABILISTIC: Uncertainty results from a 
distribution of degrees of evidential claims from a 
fixed value among all considered alternatives. 
Information is obtained by any evidence that makes 
the distribution more discriminatory. 
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CLASSICAL POSSIBILISTIC 
UNCERTAINTY THEORY 

•! Given a finite set X of considered alternatives, 
possibilistic uncertainty is expressed by a possibility 
function r: X ! {0,1}. 

•! r(x) = 1 means that x is possible and r(x) = 0 means that, 
under given evidence, x is not possible, x!X. 

•! Function r partitions set X into two subsets: X0 and X1.  

•! Information is obtained  by any evidence that reduces the 
subset X1 of possible alternatives. 

•! Possibility set function (nonadditive measure):  

Pos(A) = max
x!A
{r(x)},"A # X
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CLASSICAL PROBABILISTIC 
UNCERTAINTY THEORY 

•! Given a finite set X of considered alternatives, uncertainty is 
expressed by a probability function p: X ! [0,1] such that 

 

•! Function p distributes the value 1 to alternatives in X 
according to their relative strength of support by given 
evidence. 

•! Information is obtained by any evidence that makes the 
distribution more discriminatory. 

•! Probability set function (classical additive measure): 

Pro(A) = p(x),!A " X.
x#A

$

p(x) = 1
x!X

" .
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TWO-DIMENSIONAL EXPANSION OF 
CLASSICAL UNCERTAINTY 

THEORIES 

1.! By generalizing classical possibility and 
probability measures via various useful types 
of monotone measures. 

 

2.! By generalizing classical sets via various 
useful types of fuzzy sets. 
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DIVERSITY AND COMMONALITY 
OF UNCERTAINTY THEORIES 

•! The large diversity of uncertainty theories in GIT is 
balanced by some common features they share. 

•! All recognizable uncertainty theories in GIT can be 
classified in a useful way so that some properties of 
the theories in each class are invariant. 

•! The commonality of uncertainty theories within the 
individual classes makes it meaningful to work with 
each class as a whole. 

•! A significant class of uncertainty theories with some 
common properties consists of the various theories of 
imprecise probabilities. 



10 

UNCERTAINTY THEORIES:                
Levels of Development 

1.! Formulating axioms of a conceived class of functions 
u that represent uncertainty in a given theory T (e.g. 
Kolmogorov"s axioms in probability theory). 

2.! Developing calculus for manipulating functions u 
(e.g. probability calculus). 

3.! Establishing justifiable functional U on the class of 
functions u for measuring the amount of uncertainty 
captured by each function u (e.g. Shannon entropy). 

4.! Developing methodological aspects of theory T (e.g. 
maximum and minimum entropy principles). 
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UNCERTAINTY-BASED INFORMATION 

The amount of information obtained by an action  
is equal to  

the amount of uncertainty reduced by the action.  

 
 

 



12 



13 

FUNCTIONAL U for Measuring Uncertainty :  
Key Requirements — Part 1 

1.! Subadditivity: The amount of uncertainty in a joint representation of 
evidence must be smaller than or equal to the sum of the amounts of 
uncertainty in the associated marginal representations of uncertainty. 

2.! Additivity: The equality between the two amounts of uncertainty compared 
in subadditivity is obtained if and only if the marginal uncertainty functions 
are independent according to the rules of the uncertainty calculus involved. 

3.! Range: The range of the amount of uncertainty must be [0, M], where 0 is 
obtained only for the unique uncertainty function in a given uncertainty 
theory that represent full certainty in the theory and M depends on the 
universal set and on the chosen measurement unit. 

4.! Continuity: U must be a continuous functional.  
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FUNCTIONAL U for Measuring Uncertainty :  
Key Requirements — Part 2 

7.! Expansibility: Expanding the universal set by alternatives that are not 
supported by evidence must not affect the amount of uncertainty. 

6.! Branching/Consistency: When uncertainty can be computed in several 
distinct ways, each conforming to the calculus of the given  theory, the 
amount of uncertainty must be the same (consistent). 

7.! Monotonicity: When evidence can be ordered in the given theory, the 
amount of uncertainty must preserve this order. 

8.! Coordinate Invariance: When evidence is expressed within the Euclidean 
space, the amount of uncertainty must be invariant under isometric 
transformation of coordinates. 

9.! Normalization:  A measurement unit for the amount of uncertainty must be 
chosen by assigning a positive real number to a particular uncertainty 
function u in the given theory.  
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UNIQUENESS OF FUNCTIONAL U 

•! For any given uncertainty theory T, functional U is 
required to be unique under all the requirements 
formulated in the calculus of theory T. 

•! The normalization requirement may be formulated in 
different ways in each theory T. Each possible 
formulation defines a particular measurement unit of 
uncertainty when uncertainty is measured by 
functional U in theory T.  

•! U is an abstract measuring instrument: a particular 
function u in theory T is an input, a real number 
measuring the amount of uncertainty captured by u is 
the corresponding output. 
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Basic Equations and Inequalities of 
Uncertainty Measures U on X ! Y 

•! U(X |Y) = U(X "Y) # U(Y) 

•! U(Y |X) = U(X "Y) # U(X) 

•! TU(X,Y) = U(X) + U(Y) # U(X "Y)  

•! U(X "Y) $ U(X) + U(Y)  

•! U(X |Y) $ U(X)  and  U(Y |X) $ U(Y)  

•! These equations and inequalities are valid in 
all theories of uncertainty. 
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IMPRECISSION IN PROBABILITIES:  
Why we need it ? 

•! It allows us to account for the amount of statistical information 
upon which probabilities are based. 

•! It allows us to properly represent total ignorance. 

•! It makes it easier to assess or elicit probabilities. 

•! It allows us to account for inconsistencies among several sources 
of information. 

•! It allows us to determine probabilities approximately under time 
or computational constraints. 

•! It allows us to properly represent probabilities outside a given 
class for which precise probabilities are known. 
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LIMITATIONS OF PROBABILITY THEORY 

I think it wiser to avoid the use of a probability model 
when we do not have the necessary data than to fill the 
gaps arbitrarily; arbitrary assumptions yield arbitrary 
conclusions. 

                           (Terrence L. Fine, Theories of 

                                Probability, 1973, p. 177)                   
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MONOTONE MEASURES - 1 

Given a universal set X and a nonempty class C of 
subsets of X, a monotone measure is a set function 

µ: C ! [0, %]  

      that satisfies the following requirements 1 & 2 (for 
finite X) or requirements 1-4 (for infinite X): 

1.! Boundary requirements: µ(!) = 0 and, for    
normalized measures, also µ(X) = 1. 

2.! Monotonicity: For all A,B ! C, if A # B, then 

 µ(A) $ µ(B). 
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MONOTONE MEASURES  - 2 

3.! Continuity from below: For any increasing  
sequence A1, A2, &&& of sets in C 

  

 

4.!   Continuity from above: For any decreasing 

      sequence A1, A2, &&& of sets in C, 
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CHOQUET CAPACITIES OF ORDER 
k ( k-monotone measures) 

•! 2-monotone measures: for all A,B # X, 
µ*(A$B) ' µ*(A) + µ*(B) # µ*(A(B). 

 
•! 3-monotone measures: for all A,B,C # X, 

µ*(A$B$C) ' µ*(A) + µ*(B) +   

  # µ*(A(B) # µ*(A(C) # µ*(B(C) + 
µ*(A(B(C).  

µ
!
(C)
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k-MONOTONE MEASURES  

•! k-monotone measures (k '2) are defined for all families 
of k subsets of X by the inequality 

 

•! 1-monotone measures: a convenient name for measures 
that satisfy for all pairs of sets A,B # X the inequality 
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ALTERNATING CHOQUET CAPACITIES 
OF ORDER k 

Defined by the inequality: 
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IMPRECISE PROBABILITIES: 
Canonical Representations 

1.! Lower probability functions: µ* 

2.! Upper probability functions: µ* 

3.! Möbius representations: m 

4.! Convex sets of probability distributions 
(also called credal sets): P 
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LOWER PROBABILITY FUNCTIONS 

•! These functions are always monotone measures that are 
also superadditive: "*(A"B) # "*(A) + "*(B) whenever 
A, B, A"B $C and A%B = !. 

 

•! For singletons of X, these functions always satisfy the 
inequality 

 

µ
!
({x}) " 1

x#X

$ .
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UPPER PROBABILITY FUNCTIONS 

•! These functions are always monotone measures that   
are subadditive: !%(A"B) &  !%(A) + !%(B) whenever A, 
B, A$B !C. 

 

•! For singletons of X, these functions also satisfy the 
inequality 

µ!

x"X

# ({x}) $ 1.
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MÖBIUS REPRESENTATIONS 

•! Möbius representations are set functions, m, that 
satisfy the following two requirements: 

 

M(!) = 0; and  

 m(A) = 1
A!X

" .
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CONVEX SETS OF PROBABILITY 
DISTRIBUTION (CREDAL SETS) 

•! Each credal set P is  expressed in terms of a convex 
polytope with a finite number, r, of extreme points:    
{pi = (pi1, pi2, … , pin): i! Nr}. 

•! P is the convex hull of the extreme points: 

   
P = pik!i : k "Nni=1

r

#( ) :!i "[0,1],i "Nr , !i = 1i=1

r

#{ }.
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CONVERSIONS - 1 

•! From P to µ* (many-to-one functions): 

 

 

•! From P to µ* (many-to-one functions): 

 

 

•! From µ* to µ* and vice versa by their duality: 
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CONVERSIONS - 2 

µ
*
(A) = m(B)

B!A" ,#A

m(A) = (!1)
B"A#

A!B

µ
*
(B),$A

•! From µ* to m via Möbius transform: 

•! From m to µ* via inverse Möbius transform:  



34 

CONVERSIONS - 3 

•! From µ* to P: 

 

•! From µ* to P: 

 

P(µ
!
) = p :µ

!
A( ) " p(x),#A

x$A%{ }.

P(µ!
) = p :µ!

A( ) " p(x),#A
x$A%{ }.
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CONVERSIONS - 4 

•! Let X = {x1, x2, … , xn} and let (#(x1), #(x2), … , #(xn)) 
denote a permutation by which elements of X are 
reordered. 

•! Given any lower probability measure µ* on the power 
set of X that is at least 2-monotone, the convex polytope 
of all probability distributions that dominate µ* , P(µ*), 
is determined by its vertices (extreme points), which are 
probability distributions p# computed as follows: 
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CONVERSIONS - 5 

•! Probability distribution for permutation #: 
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THEORY OF REACHABLE PROBABILITY 
DISTRIBUTION INTERVALS 

•! Lower and upper probability functions are determined 
by intervals                     of probabilities on singletons. 

•! Given a set of reachable (nonredundant) probability 
intervals for all x!X, I, the associated  convex set P of 
probability distribution functions p on X is given by: 

•! P(I) are (n#1)-dimensional polytopes, where n = |X|, 
whose number c of extreme points is bounded: 

n $  c $  n(n#1) 
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Hartley functional for measuring classical 
possibilistic uncertainty, which is usually 
referred to as nonspecificity, and the 
associated uncertainty-based information: 

H (A) = log2 A

I
H
A( ) = log2 X ! log2 A
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HARTLEY-LIKE MEASURE IN  
n-DIMENSIONAL EUCLIDEAN SPACE 

•! A is a convex subset of Rn. 

•! µ denotes  the Lebesgue measure. 

•! T denotes the set of all isometric transformations 
from one orhogonal coordinate system to another. 

•! The i-th projection of A within the coordinate system 
t is denoted by 

HL A( ) = min
t!T

c log2 1+ µ A
i
t
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#
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% + µ A( ) & µ A
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Shannon functional for measuring classical 
probabilistic uncertainty (conflict) and the associated 
uncertainty-based information: 

S(p(x) : x !X) = " p(x)log2x!X# p(x)

S(p(x) : x !X) = " p(x)log2 1" p(y)
y# x$%

&
'
(x!X$

IS (p(X) : x !X) = log2 X " S(p(x) : x !X)
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GENERALIZED UNCERTAINTY MEASURES: 
A Historical Overview 

•! Generalization of the Hartley measure to graded 
possibilities (Higashi and Klir, 1983): 

•! Uniqueness proof in (Klir and Mariano, 1987). 

GH (r(x) : x !X) = log2 A"

0

1

# d",  where

A" = {x !X : r(x) $ "},  r(x) ![0,1],  max
x!X

r(x) = 1.
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From H to GH in Dempster-Shafer Theory 

•! Further generalization to the Dempster-Shafer theory 
on finite sets (Dubois and Prade, 1985): 

•! Uniqueness proof in (Ramer, 1987). 

GH (m) = m(A)log2

A!X

" A ,  where

m(A) #[0,1] for all A ! X,

m($) = 0 and m(A) = 1.
A!X

"
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The issue of generalizing the Shannon entropy  

•! Recognizing that the Shannon entropy measures the 
conflict among evidential claims in a probability 
distribution, at least six functionals were proposed in 
1982-1990 as generalized Shannon entropies in the 
Dempster-Shafer theory. 

•! Each of the proposed functionals was eventually found 
to violate the essential property of subadditivity. 

•! The unsuccessful attempts to generalize the Shannon 
entropy are outlined in (Klir, 2006).  
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Total Aggregated Uncertainty Measure in DST 

•! A total measure of uncertainty in DST that aggregates 
nonspecificity and conflict and satisfies all essential 
requirements was found in the early 1990s by several 
groups (Harmanec and Klir, 1994): 

AU(Bel) = max
p(x )!PBel

" p(x)log2 p(x)
x!X
#

$
%
&

'
(
)

,

where PBel  is the set of  distributions p that dominate Bel:

Bel(A) * p(x)
x!A
#  for all A + X.
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Aggregate Measure of Total Uncertainty 
for all Types of Imprecise Probabilities 

S (P) = max
p!P
{S(p)}
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Disaggregated Measure of Total 
Uncertainty for All Types of 

Imprecise Probabilities 

TU(P) = S(P),S (P) ! S(P)

S P( ) = min
p!P
{S(p)}
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PRINCIPLES OF UNCERTAINTY 
BASED ON RELEVANT 

UNCERTAINTY MEASURE U 

•! Principle of minimum uncertainty 

•! Principle of maximum uncertainty 

•! Principle of uncertainty invariance 

•! Principle of requisite generalization 
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UNCERTAINTY PRINCIPLES 

!
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PRINCIPLE OF REQUISITE GENERALIZATION 

  p11! [max{0, p(x1) + p(y1) # 1}, min{p(x1), p(y1)}] 

 

  p12 = p(x1) # p11 

  p21 = p(y1) # p11 

  p22 = 1 # p(x1) # p(y1) + p11 
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VIEWING UNCERTAINY PRINCIPLES AS 
OPERATIONALIZED WISDOM PRINCIPLES: 

Some Relevant Quotations  

Knowing ignorance is strength. 

Ignoring knowledge is sickness. 
(Lao Tsu, Tao Te Ching, 6th century B.C. 

There is nothing better to know that you don"t know. 

Not knowing yet thinking you know -- this is sickness. 
(An alternative translation) 

Ignorance is preferable to the illusion of knowledge. 

                                   (Thomas Sowell) 
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UNCERTAINTY IN DAILY LIFE 

Whenever you find yourself getting angry 
about a difference in opinion, be on your 
guard; you will probably find, on 
examination, that your belief is getting 
beyond what the evidence warrants. 

                            (Bertrand Russell 

                            Unpopular Essays) 
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UNCERTAINTY IN SCIENCE 

    At a fundamental level, scientific        
uncertainty begins when we make 
measurements. … The very term 
&experiment" implies uncertainty. 

              (Henry N. Pollack, Uncertain Science …  

                       Uncertain World, 2003, p. 63)                        
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SOME OPEN PROBLEMS 

•! To develop uncertainty theories that are based on 
decomposable measures. 

•! To fuzzify those uncertainty theories that have not 
been fuzzified as yet.  

•! Is the functional GH subadditive for imprecise 
probabilities based on two-monotone measures? 

•! How can negative values of m be interpreted? 

•! What are meaningful and useful disaggregations of 
the total aggregated uncertainty S*? 

•! Unresolved problem in (Bronevich and Klir, 2010). 


