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Why to fuzzify?
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Classical formal concept analysis

• Ganter & Wille

• an object-attribute model

• columns – attributes – the set A
• rows – objects – the set B
• values – a relation R ⊆ A× B

• a Galois connection (↑, ↓)
• if X ⊆ B then ↑(X ) = {a ∈ A : (∀b ∈ X )〈a, b〉 ∈ R}
• if Y ⊆ A then ↓(Y ) = {b ∈ B : (∀a ∈ Y )〈a, b〉 ∈ R}

• a concept – such (X ,Y ) that ↑(X ) = Y and ↓(Y ) = X

• (X1,Y1) ≤ (X2,Y2) iff X1 ⊆ X2 iff Y1 ⊇ Y2

• the set of concepts order by ≤ is a complete lattice
called the concept lattice
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Non-binary data

• what to do with these data?

a b c d e
α 1.0 0.8 0.2 0.3 0.5
β 0.8 1.0 0.2 0.6 0.9
γ 0.2 0.3 0.2 0.3 0.4
δ 0.4 0.7 0.1 0.2 0.3
ε 1.0 0.9 0.3 0.2 0.4

• R is not a relation anymore
but fuzzy relation, i. e. R : A× B → [0, 1]

• R(a, b) – the degree
to which the object b carries the attribute a

• how to modify this approach
so we could use the concept lattice construction?

• e. g. how to (re)define mappings ↑ and ↓?
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Possible answers

• Ganter & Wille
– scaling

• Burusco & Fuentes-Gonzalez
– but losing of Galois-connection-ess

• Bělohlávek and Pollandt (independently)
– the first real fuzzification with nice properties

• Ďuráková, SK, Snášel, Vojtáš
– defuzzification by cuts

• . . .
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1
One-sided fuzzy approach
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Two important mappings

• ↑ : P(B)→ A[0, 1]:(
↑(X )

)
(a) = inf{R(a, b) : b ∈ X}

i. e. ↑(X ) is a fuzzy set of attributes,
the value in a column a ∈ A of which is
the minimum from values of this column in rows from X

• ↓ : A[0, 1]→ P(B):

↓(f ) = {b ∈ B : (∀a ∈ A)R(a, b) ≥ f (a)}

i. e. ↓(f ) is the set of objects
rows of which dominate over f

• these definitions are non-symmetric!
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Example

•

a b c d e
α 1.0 0.8 0.2 0.3 0.5
β 0.8 1.0 0.2 0.6 0.9
γ 0.2 0.3 0.2 0.3 0.4
δ 0.4 0.7 0.1 0.2 0.3
ε 1.0 0.9 0.3 0.2 0.4

• {γ, δ}↑ = {〈a, 0.2〉, 〈b, 0.3〉, 〈c, 0.1〉, 〈d, 0.2〉, 〈e, 0.3〉}

• {〈a, 0.3〉, 〈b, 0.3〉, 〈c, 0.2〉, 〈d, 0.3〉, 〈e, 0.5〉}↓ = {α, β}
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Galois connection

• 〈↑, ↓,⊆,≤〉 is a Galois connection:

• if X1 ⊆ X2 then ↑(X1) ≥ ↑(X2)
• if f1 ≤ f2 then ↓(f1) ⊇ ↓(f2)
• X ⊆ ↓(↑(X ))
• f ≤ ↑(↓(f ))

• or equivalently
f ≤ ↑(X ) iff X ⊆ ↓(f )
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Closure operator

• define a mapping cl : P(B)→ P(B)

cl(X ) = ↓(↑(X ))

• cl is a closure operator:

• X ⊆ cl(X )
• if X1 ⊆ X2 then cl(X1) ⊆ cl(X2)
• cl(X ) = cl(cl(X ))
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One-sided fuzzy concept lattice

• if X = cl(X )
then the pair 〈X , ↑(X )〉 is called an one-sided fuzzy concept

• one-sided fuzzy because:

• (the extent) X is a crisp set of objects
• (the intent) ↑(X ) is a fuzzy set of attributes

• both coordinates of a concept are reciprocal derivable;
it is enough to consider the first one

• 〈{X ∈ P(B) : X = cl(X )},⊆〉 is a (complete) lattice
operation of which are:

• X1 ∧X2 = X1 ∩ X2

• X1 ∨X2 = cl(X1 ∪ X2)

• this lattice is called the one-sided fuzzy concept lattice
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Equivalent and independent one-sided approaches

• Ben-Yahia & Jaoua

• roles of attributes and object were interchanged
• they used their approach for looking for attribute dependencies

• Bělohlávek, Sklená̌r, & Zacpal

• crisply generated concepts
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• crisply generated concepts
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2
Generalized fuzzy approach
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Motivation

• three different (types of) approaches:

• classical/binary/crisp approach
• L-fuzzification
• one-sided fuzzification

• the second two are incompatible
but they have some very similar features

• a natural question arise – how to unify these approaches?

• hence we try to find a common platform for them all
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Types of fuzziness of subsets

•

approach object subsets attribute subsets

classical crisp crisp
L-fuzzy L-fuzzy L-fuzzy
one-sided fuzzy crisp [0, 1]-fuzzy

generalized D-fuzzy C -fuzzy
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Generalized fuzzy context

• A, B – non-empty sets

• C , D – complete lattices

• P – partially ordered set

• R : A× B → P

• ⊗ : C × D → P

• ⊗ – isotone and left-continuous in both arguments:

1a) if c1, c2 ∈ C , d ∈ D, and c1 ≤ c2 then c1 ⊗ d ≤ c2 ⊗ d
1b) if d1, d2 ∈ D, d ∈ D, and d1 ≤ d2 then c ⊗ d1 ≤ c ⊗ d2

2a) if d ∈ D, p ∈ P, X ⊆ C and (∀c ∈ X )c ⊗ d ≤ p
then supX ⊗ d ≤ p

2b) if c ∈ C , p ∈ P, Y ⊆ D and (∀d ∈ Y )c ⊗ d ≤ p
then c ⊗ supY ≤ p

• note that ⊗ need not be commutative!
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Stano Krajči Olomouc – May 3, 2012



Generalized fuzzy context

• A, B – non-empty sets

• C , D – complete lattices

• P – partially ordered set

• R : A× B → P

• ⊗ : C × D → P

• ⊗ – isotone and left-continuous in both arguments:

1a) if c1, c2 ∈ C , d ∈ D, and c1 ≤ c2 then c1 ⊗ d ≤ c2 ⊗ d
1b) if d1, d2 ∈ D, d ∈ D, and d1 ≤ d2 then c ⊗ d1 ≤ c ⊗ d2

2a) if d ∈ D, p ∈ P, X ⊆ C and (∀c ∈ X )c ⊗ d ≤ p
then supX ⊗ d ≤ p

2b) if c ∈ C , p ∈ P, Y ⊆ D and (∀d ∈ Y )c ⊗ d ≤ p
then c ⊗ supY ≤ p

• note that ⊗ need not be commutative!
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Galois connection

• ↑ : BD → AC :

↑(g)(a) = sup{c ∈ C : (∀b ∈ B)c ⊗ g(b) ≤ R(a, b)}

• ↓ : AC → BD:

↓(f )(b) = sup{d ∈ D : (∀a ∈ A)f (a)⊗ d ≤ R(a, b)}

• ↑ and ↓ form a Galois connection:

• if f1, f2 ∈ BD and f1 ≤ f2 then ↓(f1) ≥ ↓(f2)
• if g1, g2 ∈ AC and g1 ≤ g2 then ↑(g1) ≥ ↑(g2)
• if f ∈ BD then f ≤ ↑(↓(f ))
• if g ∈ AC then g ≤ ↓(↑(g))
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The basic theorem (a part)

• let P have the least element 0P s. t.
0C ⊗ d = c ⊗ 0D = 0P

• then the complete lattice L is isomorphic to GCL(. . . ) iff
there are α : A× C → L, β : B × D → L s. t.:

1a) α is non-increasing in the second argument
1b) β is non-decreasing in the second argument
2a) α[A× C ] is infimum-dense
2b) β[B × D] is supremum-dense

3) α(a, c) ≥ β(b, d) iff c ⊗ d ≤ R(a, b)
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This is a generalization

• this approach is really generalization of the previous ones

• of course, in the classical and one-sided cases
we have to use the canonical equivalency
of subsets and their characteristic functions
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3
Hedge approach

R. Bělohlávek, V. Vychodil (et al.)
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Hedge

• a (complete) residuated lattice 〈L,∨,∧,⊗,→, 0, 1〉:
• x ⊗ y ≤ z iff x ≤ y → z
• ⊗ – isotone in both their arguments
• → – antitone in the first argument, isotone in the second one
• ⊗ – commutative
• x ⊗ 1 = 1⊗ x = x

• a hedge [Hájek] – a function ∗ on L s. t.:

• 1∗L = 1L

• a∗ ≤ a
• (a→ b)∗ ≤ a∗ → b∗

• a∗∗ = a∗ (or equivalently ∗ ◦ ∗ = ∗)
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A concept lattice with hedges (1/3)

• A, B – sets, R : A× B → L – an incidence relation

• ∗A, ∗B – hedges on L

• operations:

• ↑ : BL→ AL:

↑(g)(a) = sup{c ∈ L : (∀b ∈ B)c ⊗ (g(b))∗B ≤ R(a, b)}

• ↓ : AL→ BL:

↓(f )(b) = sup{d ∈ L : (∀a ∈ A)(f (a))∗A ⊗ d ≤ R(a, b)}
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A concept lattice with hedges (2/3)

• for arbitrary h : U → L define

bhc = {〈u, a〉 ∈ U × L : a ≤ h(u)}

• for arbitrary H ⊆ U × L define

dHe(u) =
∨
{a ∈ L : 〈u, a〉 ∈ H}

• for arbitrary h : U → L and ∗ : L→ L define

h∗(u) = (h(u))∗

• for arbitrary H ⊆ U × L and ∗ : L→ L define

H∗ = {〈x , a∗〉 : 〈x , a〉 ∈ H}
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A concept lattice with hedges (3/3)

• Yg = bdY e↑c∗A

• Xf = bdX e↓c∗B

• 〈〈a, c〉, 〈b, d〉〉 ∈ R〈f,g〉 iff c ⊗ d ≤ R(a, b)

• R〈f,g〉 is a classical set

• CLH(. . . ) is isomorphic to the ordinary concept lattice
CL(A× ∗A[L],B × ∗B [L],f,g,R〈f,g〉)
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Relationship between these generalizations

• the lattices
GCL(A,B, ∗A[L], ∗B [L], L,R,⊗)

and
CL(A× ∗A[L],B × ∗B [L],f,g,R〈f,g〉)

are (canonically) isomorphic

and the isomorphisms are:

• if g : B → ∗B [L], f : A→ ∗A[L] then

φ(〈g , f 〉) = 〈bgc, bf c〉

• if S ⊆ B × ∗B [L], T ⊆ A× ∗A[L] then

ψ(〈S ,T 〉) = 〈dSe, dT e〉

• GCL(. . . ) and CLH(. . . ) are (canonically) isomorphic
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3
Heterogeneous approach

joined work with my colleague Ondrej Kŕıdlo
and my students L’. Antoni, B. Macek, and L. Pisková

Stano Krajči Olomouc – May 3, 2012



Motivation

• J. Medina and M. Ojeda-Aciego use the multi-adjoint approach
in logic-programming

• they bring this original idea into formal concept analysis and take
one ⊗ for each object

• this idea is not (straightforwardly) covered by the previous
approach, so we try to implant this to it

• moreover we diversify all what can be diversified
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Heterogeneous formal context

• A and B are non-empty sets

• for each a ∈ A,
Ca is a complete lattice

• for each b ∈ B,
Db is a complete lattice

• for each a ∈ A and b ∈ B,
Pa,b is a partially ordered set

• for each b ∈ B,
⊗a,b : Ca × Db → Pa,b

which is isotone and left-continuous in both arguments

• R is a function from A× B s. t.
for each a ∈ A and b ∈ B,
R(a, b) ∈ Pa,b

Stano Krajči Olomouc – May 3, 2012



Heterogeneous formal context

• A and B are non-empty sets

• for each a ∈ A,
Ca is a complete lattice

• for each b ∈ B,
Db is a complete lattice

• for each a ∈ A and b ∈ B,
Pa,b is a partially ordered set

• for each b ∈ B,
⊗a,b : Ca × Db → Pa,b

which is isotone and left-continuous in both arguments

• R is a function from A× B s. t.
for each a ∈ A and b ∈ B,
R(a, b) ∈ Pa,b
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Two mappings

• F = Πa∈ACa

(i. e. the set of all functions f with the domain A s. t.
f (a) ∈ Ca, for all a ∈ A)

• G = Πb∈BDb

(i. e. the set of all functions g with the domain B s. t.
g(b) ∈ Db, for all b ∈ B)

• ↑ : G → F :

(↑(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c ⊗a,b g(b) ≤ R(a, b)}

• ↓ : F → G :

(↓(f ))(b) = sup{d ∈ Db : (∀a ∈ A)f (a)⊗a,b d ≤ R(a, b)}
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Galois connection

• let f ∈ F , g ∈ G ;
then TFAE:

1) f ≤ ↑(g)
2) g ≤ ↓(f )
3) (∀a ∈ A)(∀b ∈ B) f (a)⊗a,b g(b) ≤ R(a, b)

• ↑ and ↓ form a Galois connection

• 1a) g1 ≤ g2 implies ↑(g1) ≥ ↑(g2)
1b) f1 ≤ f2 implies ↓(f1) ≥ ↓(2)
2a) g ≤ ↓(↑(g))
2b) f ≤ ↑(↓(f ))
3a) ↑(g) = ↑(↓(↑(g)))
3b) ↓(f ) = ↓(↑(↓(f )))
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Stano Krajči Olomouc – May 3, 2012



Heterogeneous concept lattice

• a concept – a pair 〈g , f 〉 from G × F s. t.
↑(g) = f and ↓(f ) = g

• if 〈g1, f1〉 and 〈g2, f2〉 are concepts
then g1 ≤ g2 iff f1 ≥ f2

• define 〈g1, f1〉 ≤ 〈g2, f2〉 iff g1 ≤ g2 iff f1 ≥ f2

• a heterogeneous concept lattice HCL(A,B,P,R, C,D, ↓, ↑,≤)
– the poset of all such concepts ordered by ≤
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The basic theorem on heterogeneous concept lattices (1/2)

• HCL(. . . ) is a complete lattice:

a) ∧
i∈I

〈gi , fi 〉 =

〈∧
i∈I

gi , ↑

(
↓

(∨
i∈I

fi

))〉

b) ∨
i∈I

〈gi , fi 〉 =

〈
↓

(
↑

(∨
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gi

))
,
∧
i∈I

fi

〉
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The basic theorem on heterogeneous concept lattices (2/2)

• for each a ∈ A, b ∈ B,
let Pa,b have the least element 0Pa,b

s. t.
0Ca •a,b d = c •a,b 0Db

= 0Pa,b
,

for all c ∈ Ca, d ∈ Db.

• a complete lattice L is isomorphic to HCL(. . . ) iff
there are α :

⋃
a∈A({a} × Ca)→ L, β :

⋃
b∈B({b} × Db)→ L s. t.:

1a) α does not increase in the second argument
1b) β does not decrease in the second argument
2a) Rng(α) is infimum-dense in L
2b) Rng(β) is supremum-dense in L

3) for every a ∈ A, b ∈ B and c ∈ Ca, d ∈ Db

α(a, c) ≥ β(b, d) iff c •a,b d ≤ R(a, b)

Stano Krajči Olomouc – May 3, 2012



The basic theorem on heterogeneous concept lattices (2/2)

• for each a ∈ A, b ∈ B,
let Pa,b have the least element 0Pa,b

s. t.
0Ca •a,b d = c •a,b 0Db

= 0Pa,b
,

for all c ∈ Ca, d ∈ Db.

• a complete lattice L is isomorphic to HCL(. . . ) iff
there are α :

⋃
a∈A({a} × Ca)→ L, β :

⋃
b∈B({b} × Db)→ L s. t.:

1a) α does not increase in the second argument
1b) β does not decrease in the second argument
2a) Rng(α) is infimum-dense in L
2b) Rng(β) is supremum-dense in L

3) for every a ∈ A, b ∈ B and c ∈ Ca, d ∈ Db

α(a, c) ≥ β(b, d) iff c •a,b d ≤ R(a, b)
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Stano Krajči Olomouc – May 3, 2012



The plan of the proof (1/5)

• for the first part:

a) if {gi : i ∈ I} ⊆ G then

↑

(∨
i∈I

gi

)
=
∧
i∈I

↑(gi )

b) if {fi : i ∈ I} ⊆ F then

↓

(∨
i∈I

fi

)
=
∧
i∈I

↓(fi )
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The plan of the proof (2/5)

• for one implication of the second part,
define singleton functions:

a) Sc
a ∈ F , for each a ∈ A and c ∈ Ca:

Sc
a (x) =

{
c if x = a

0Ca elsewhere

b) T d
b ∈ G , for each b ∈ B and d ∈ Db:

T d
b (y) =

{
d if y = b

0Db
elsewhere

• a) (↓(Sc
a ))(b) = sup{d ∈ Db : c •a,b d ≤ R(a, b)}

b) (↑(T d
b ))(a) = sup{c ∈ Ca : c •a,b d ≤ R(a, b)}
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The plan of the proof (3/5)

• at first, for H = HCL(. . . ), define:

a) αH(a, c) = 〈↓(Sc
a ), ↑(↓(Sc

a ))〉
b) βH(b, d) = 〈↓(↑(T d

b )), ↑(T d
b )〉

• then, for an arbitrary L isomorphic to H through φ, define:

a) α(a, c) = φ(αH(a, c))
b) β(b, d) = φ(βH(b, d))
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The plan of the proof (4/5)

• for the opposite implication,
let L be an arbitrary complete lattice
and α and β assumed mappings

• define
ξ(〈g , f 〉) = inf{α(a, f (a)) : a ∈ A}

or, equivalently

ξ(〈g , f 〉) = sup{β(b, g(b)) : b ∈ B}

• for ` ∈ L, define:

a) f`(a) = sup{c ∈ Ca : α(a, c) ≥ `}
b) g`(b) = sup{d ∈ Db : β(b, d) ≤ `}

and then
ψ(`) = 〈g`, f`〉
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The plan of the proof (5/5)

• claims:

• ψ(`) is really concept:

a) ↑(g`) = f`
b) ↓(f`) = g`

• ξ preserves the ordering
• ψ preserves the ordering
• ξ(ψ(`)) = `
• ψ(ξ(〈g , f 〉)) = 〈g , f 〉

• all these follow that ξ is a wanted isomorphism
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4
Galois-connection approach

J. Pócs (MÚ SAV, Košice)
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Galois-connection formal context

• A and B are non-empty sets

• for each a ∈ A,
Ca is a complete lattice

• for each b ∈ B,
Db is a complete lattice

• for each b ∈ B,
φa,b, ψa,b are mappings s. t.
φa,b and ψa,b form a Galois connection between Ca and Db
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Two mappings

• ↑ : G → F :

(↑(g))(a) =
∧

b∈B φa,b(g(b))

• ↓ : F → G :

(↓(f ))(b) =
∧

a∈A ψa,b(f (a))

• (↑, ↓) form a Galois connection
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The heterogeneous approach generalizes this one

• for each a ∈ A, b ∈ B, take:

• Pa,b = {0, 1}
• ⊗a,b s. t.

for each c ∈ Ca, d ∈ Db

c ⊗a,b d =

{
0 if φa,b(c) ≥ d

1 elsewhere

• R(a, b) = 0 (!)
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G-ideal

• if C and D are complete lattices
then J ⊆ C × D is called G-ideal if:

• if (c1, d1) ≤ (c2, d2) and (c2, d2) ∈ J
then (c1, d1) ∈ J

• if {(ci , di ) : i ∈ I} ⊆ J
then (∨

i∈I

ci ,
∧
i∈I

di

)
∈ J

and (∧
i∈I

ci ,
∨
i∈I

di

)
∈ J
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G-ideals and Galois connections

• if (φ, ψ) is a Galois connection between C and D
then

{(c , d) ∈ C × D : φ(c) ≥ d}

is a G-ideal on C × D

• if J is a G-ideal on C × D
then (ΦJ ,ΨJ) is a Galois connection between C and D
where

ΦJ(c) = sup{d ∈ D : (c , d) ∈ J}

and
ΨJ(d) = sup{c ∈ C : (c , d) ∈ J}

• this relationship is reciprocal
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This approach generalizes the heterogeneous one

• if ⊗ : C × D → P and p ∈ P define

GI⊗,p = {(c , d) ∈ C × D : c ⊗ d ≤ p}

• GI⊗,p is a G-ideal

• in our case, for a ∈ A, b ∈ B, it is enough to take

Ja,b = GI⊗a,b,R(a,b)

and then

• φa,b = ΦJa,b

• ψa,b = ΨJa,b
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Stano Krajči Olomouc – May 3, 2012



5
Future work
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Future work with heterogeneous approach

• theoretical

• to find the relationship of this approach
to new heterogeneous version of hedge approach
(Bělohlávek & Vychodil)

• to generalize some existing results to this approach

• practical

• to find an example where this approach has added value
• to look for interpretation of result fuzzy concepts

(not only in this approach!)
• to present the result concepts in a form

acceptable for a client:

• to reduce their number
• to order them by some (well-defined) measure
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Thank you for your attention

stanislav.krajci@upjs.sk
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