
Models of generalized measures representation
based on aggregation functions

Andrey G. Bronevich

JSC "Research, Development and Planning Institute for Railway

Information Technology, Automation and Telecommunication"

Nizhegorodskaya 27, building 1, 109029, Moscow, Russia
brone@mail.ru

– p. 1/52



Monotone (generalized) measures

LetX be a finite set. A set functionµ : 2X → [0, 1] is
called a monotone measure if

1. µ(∅) = 0, µ(X) = 1 (norming);

2. A ⊆ B impliesµ(A) 6 µ(B) (monotonicity).

Notation:

• Mmon(X) is the set of all monotone measures on
2X ;

• µ1 6 µ2 for µ1, µ2 ∈Mmon(X) if µ1(A) 6 µ2(A)

for all A ∈ 2X .
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Basic concepts of imprecise probabilities

• Classical probability theory works with single
probability measures.

• The theory of imprecise probabilities works with
sets of probability measures.

In this lecture we consider probability measures
defined on the powerset2X of a finite set
X = {x1, ..., xn}.

Mpr(X) is the set of all probability measures on2X .
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Credal sets

In this lecture a credal set is understood as a closed
convex set of probability measures with a finite
number of extreme points. IfP is a credal set and
Pk ∈Mpr(X), k = 1, ...,m, are its extreme points
then

P =

{
m∑

k=1

aiPi|ai > 0,
m∑

k=1

ai = 1

}

.
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LetX = {x1, x2, x3}, then any credal set is convex
subset of triangle consisting of points(p1, p2, p3):
pi > 0, p1 + p2 + p3 = 1.
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Lower probabilities

A monotone measureµ is called alower probability if
there is aP ∈Mpr such thatµ 6 P .

Any lower probabilityµ defines a credal set

P(µ) = {P ∈Mpr(X)|P > µ}.
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Let µ be a lower probability on2X , where
X = {x1, x2, x3}, then extreme points ofP(µ) can be
found by solving the following inequalities:







p1 > µ ({x1}) ,
p2 > µ ({x2}) ,
p3 > µ ({x3}) ,

p1 + p2 > µ ({x1, x2}) ,
p1 + p3 > µ ({x1, x3}) ,
p2 + p3 > µ ({x2, x3}) ,
p1 + p2 + p3 = 1.

Clearly lower probabilities are less general than credal
sets.
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Upper probabilities

A monotone measureµ is called anupper probability
if there is aP ∈Mpr such thatµ > P .

Any upper probability generate a credal set
{P ∈Mpr(X)|P 6 µ}.

It is possible to consider only lower probabilities. Let
µ be an upper probability. Introduce into
consideration a measureµd(A) = 1− µ(Ac). The
measureµd is called dual ofµ. Clearlyµd andµ
generate the same credal set

– p. 8/52



Coherent lower probabilities

A lower probabilityµ is called acoherent lower
probability if for anyA ∈ 2X there is aP ∈Mpr such
thatµ 6 P andµ(A) = P (A).

Any coherent lower probability can be generated as
follows: if P is a credal set then

µ(A) = min
P∈P

P (A), A ∈ 2X ,

is a coherent lower probability.
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Coherent upper probabilities

An upper probabilityµ is called acoherent upper
probability if for anyA ∈ 2X there is aP ∈Mpr such
thatµ > P andµ(A) = P (A).

Any coherent upper probability can be generated as
follows: if P is a credal set then

µ(A) = max
P∈P

P (A), A ∈ 2X ,

is a coherent upper probability.
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Generalized coherent lower probabilities

A monotone measureµ is ageneralized coherent
lower probability if for anyB (µ(B) > 0) a monotone
measureµB defined byµB(A) = µ(A ∩B)/µ(B) is a
lower probability.

Proposition. µ is a generalized coherent lower
probability iff for anyB ∈ 2X there is an additive
measureP (P (X) 6= 1 in general) such thatµ 6 P
andµ(B) = P (B).

– p. 11/52



2-monotone measures

A monotone measure is called2-monotone if the
following inequality holds:

µ(A) + µ(B) 6 µ(A ∩ B) + µ(A ∪B).

for the dual measure the following inequality holds:

µd(A) + µd(B) > µd(A ∩ B) + µd(A ∪ B).

This measure is called2-alternative. It is known that
any 2-monotone measure is a coherent lower
probability, and any 2-alternative measure is a
coherent upper probability.
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Example. Let µ is a lower envelope of probability
measuresP1 andP2 with values
P1 ({x1}) = 1/4, P1 ({x2}) = 0, P1 ({x3}) = 3/4,

P1 ({x4}) = 0,
P2 ({x1}) = 0, P2 ({x2}) = 1/2, P2 ({x3}) = 0,

P2 ({x4}) = 1/2,
i.e. µ(A) = min

i=1,2
Pi(A). Then

µ ({x1, x4})
︸ ︷︷ ︸

1/4

+µ ({x3, x4})
︸ ︷︷ ︸

1/2

> µ ({x4})
︸ ︷︷ ︸

0

+µ ({x1, x3, x4})
︸ ︷︷ ︸

1/2

.

Therefore,µ is a coherent lower probability, but it is
not 2-monotone.
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k-monotone measures

A monotone measure isk-monotone iff for any
system of setsC1, ..., Cm ∈ 2X ,m ≤ k:

µ (
⋃m

i=1Ci) +
∑

B⊆{1,...,m}, B 6=∅
(−1)|B|µ

(⋂

i∈B Ci

)
≥ 0.

The partial cases of the last inequality are

µ(C1 ∪ C2)− µ(C1)− µ(C2) + µ(C1 ∩ C2) > 0
(2-monotonicity,m = 2);

µ(C1 ∪ C2 ∪ C3)− µ(C1)− µ(C2) + µ(C1 ∩ C2)+

µ(C1 ∩ C3) + µ(C2 ∩ C3)− µ(C1 ∩ C2 ∩ C2) > 0.
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Belief and plausibility measures

Belief and plausibility measures are defined by means
of a basic probability assignment. A basic probability
assignmentm is a non-negative set function on2X

such that

1. m(∅) = 0;

2.
∑

A∈2X
m(A) = 1 (norming).

Then
Bel(A) =

∑

B⊆A

m(B) andPl(B) =
∑

B∩A6=∅
m(A).

The setA is called focal ifm(A) > 0.
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Some times, it is useful to represent belief functions
using{0, 1}-valued measures:

η〈B〉(A) =

{
1, B ⊆ A,

0, otherwise.

Then
Bel(A) =

∑

B∈2X
m(B)η〈B〉(A).

The sense ofη〈B〉 is the following. It describes the
situation when we know that the random variable
definitely takes values from the setB, but we don’t
know any additional information.
Clearly,Pl = Beld.
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Möbius transform

The set of all set functions on2X is a linear space and
the system of set functions

{
η〈B〉

}

B∈2X is the basis of
it. We can find the representation

µ =
∑

B∈2X
m(B)η〈B〉

of anyµ : 2X → R using the Möbius transform:

m(B) =
∑

A⊆B

(−1)|B\A|µ(A).
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Notation:
Mmon is the set of all monotone measures on2X ;
Mgcoh is the set of all generalized coherent lower
probabilities on2X ;
Mcoh is the set of all generalized coherent lower
probabilities on2X ;
Mk−mon, k = 2, 3, ..., is the set of allk-monotone
measures on2X ;
Mbel is the set of all belief measures on2X ;
Mpr is the set of all probability measures on2X .

Embeddings:
Mmon ⊃Mgcoh ⊃Mcoh

⊃M2−mon ⊃ ... ⊃Mbel ⊃Mpr.
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Aggregation of probability measures

Let us consider the following construction. Given a
finite probability spaceX with a probability measure
P on algebra2X and{B1, B2, ..., Bm} is a partition of
X. ThenP can be represented as

P (A) =
m∑

i=1

P (A|Bi)P (Bi).

Let us introduce into consideration probability
measures:

Pi(A) = P (A|Bi), i = 1, ..., n,
and a linear function:
ϕ(x1, ..., xm) = P (B1)x1+P (B2)x2+ ...+P (Bm)xm.
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ThenP can be represented as

P (A) = ϕ(P1(A), ..., Pm(A)). (1)

In this lecture we investigate representation (1) in the
theory of generalized measures.

Aggregation of monotone measures

Let ϕ : [0, 1]n → [0, 1] be an aggregation function. i.e.

1. ϕ (0, ..., 0) = 0, ϕ (1, ..., 1) = 1;

2. x 6 y impliesϕ(x) 6 ϕ(y).
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Let µ1, ..., µn be monotone measures on2X . Then a
monotone measureµ defined by

µ(A) = ϕ (µ1(A), ..., µn(A)), A ∈ 2X .

is called the aggregation ofµ1, ..., µn by ϕ.

Example 1.Consider a belief measure

Bel =
k∑

i=1

m(Bi)η〈Bi〉, whereB1, ..., Bk are focal

elements ofBel. ThenBel = ϕ(η〈B1〉, ..., η〈Bk〉),
where

ϕ(x1, ..., xk) =
k∑

i=1

m(Bi)xi.
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Eachη〈Bi〉 can be represented as

η〈Bi〉 =
∏

x∈Bi

η〈{x}〉.

Therefore, any belief measure can be generated with
the help of a linear aggregation function and product
from Dirac measuresη〈{x}〉.

Example 2.Let µ be a coherent lower probability and
let P1, ..., Pk ∈Mpr be extreme points ofP(µ). Then

µ = min{P1, ..., Pk},
wheremin is an aggregation function.
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The problem of monotone measures representation

To define any monotone measureµ on2X we need to
assign its2|X | − 2 values. Therefore, space
complexity grows exponentially w.r.t. cardinality of
X. With the help of aggregation functions we can try
to representµ as

µ = ϕ(µ1, ..., µk),
whereµi is a monotone measure on2Bi and
{B1, ..., Bk} is a partition ofX.
Assuming that for assigningϕ, we need2k − 2
variables, we can find that the space complexity is

2k +
k∑

i=1

2|Bi| − 2(k + 1). (1)
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In particular, if|Bi| = k, i = 1, ..., k, then (1) is
transformed to

(√

|X|+ 1
)(

2
√

|X | − 2
)

.
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Consensus requirement

When we construct a measureµ with an aggregation
function, we need to guarantee some of its properties.
For example, if we work with lower probabilities,
thenµ should be also a lower probability. This can be
provided if the consensus requirement is fulfilled.

An aggregation functionϕ : [0, 1]n → [0, 1] obeysthe
consensus requirement for lower probabilities if
µ = ϕ(µ1, ..., µn) is inMlow for any tuple
(µ0, ..., µn) ∈Mn

low.

This definition is extended for coherent lower
probabilities, 2-monotone measures, etc.
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Aggregation functions for probability measures

Notation: M̃mon is the set of all aggregation
functions.
Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for probability measures iff

ϕ(x1, ..., xn) =
n∑

i=1

aixi,

where
n∑

i=1

ai = 1 andai > 0, i = 1, ..., n.

Notation: M̃pr is the set of all aggregation functions
for probability measures.
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Aggregation functions for lower probabilities

Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for lower probabilities iff there isα ∈ M̃pr such that
ϕ(x) 6 α(x) for all x ∈ [0, 1]n.

Notation: M̃low is the set of all aggregation functions
for lower probabilities.
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Aggregation functions for generalized coherent
lower probabilities

Notation: z = xy for x = (x1, x2, ..., xn),
y = (y1, y2, ..., yn), z = (z1, z2, ..., zn) if zi = xiyi,
i = 1, ..., n.

Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for generalized coherent lower probabilities iff for any
y ∈ [0, 1]n there isα ∈ M̃pr such that
ϕ(x) 6 α(x)ϕ(y) for all x ∈ [0, 1]n.

Notation: M̃gcoh is the set of all aggregation functions
for generalized coherent lower probabilities.
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Aggregation functions for coherent lower
probabilities

Notation: 1 = (1, 1, ..., 1).
Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for coherent lower probabilities iff for anyy ∈ [0, 1]n

there areα, β ∈ M̃pr such that

ϕ(xy + z(1− y)) 6 α(x)ϕ(y) + β(z)(1− ϕ(y))

for all x, z ∈ [0, 1]n.

Notation: M̃coh is the set of all aggregation functions
for coherent lower probabilities.
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Aggregation functions for 2-monotone measures
Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for 2-monotone measures iff

ϕ(x+∆y+∆z) > ϕ(x+∆y) + ϕ(x+∆z)− ϕ(x)

for anyx,∆y,∆z,x +∆y +∆z ∈ [0, 1]n.
Corollary. If ϕ : [0, 1]n → [0, 1] is 2 times

differentiable on[0, 1]n and∂ϕ(x)
∂xi

> 0, ∂2ϕ(x)
∂xi∂xj

> 0,

i, j ∈ {1, ..., n} for any pointx ∈ [0, 1]n. Thenϕ
obeys the consensus requirement for 2-monotone
measures.
Notation: M̃2−mon is the set of all aggregation
functions for2-monotone measures.
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Aggregation functions for k-monotone measures

Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for k-monotone measures iff

∑

A⊆{1,...,m}
(−1)m−|A|ϕ

(
x+

∑

i∈A∆xi

)
> 0

for anyx,∆x1, ...,∆xm,x+∆x1 + ...
+∆xm ∈ [0, 1]n,m ∈ {1, ..., k}.
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Corollary. If an aggregation function

1. ϕ : [0, 1]n → [0, 1] is k times differentiable on
[0, 1]n;

2. ∂mϕ(x)
∂xi1∂xi2...∂xim

> 0 for any pointx ∈ [0, 1]n and

for anyi1, i2, ..., im ∈ {1, 2, ..., n}, m 6 k.

Thenϕ obeys the consensus requirement for
k-monotone measures.

Notation: M̃k−mon is the set of all aggregation
functions fork-monotone measures.
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Aggregation functions for belief measures

Proposition. An aggregation function
ϕ : [0, 1]n → [0, 1] obeys the consensus requirement
for belief measures iff

∑

A⊆{1,...,m}
(−1)m−|A|ϕ

(
x+

∑

i∈A∆xi

)
> 0

for anyx,∆x1, ...,∆xm,x+∆x1 + ...
+∆xm ∈ [0, 1]n,m = 1, 2, ....
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Corollary. If an aggregation function

1. ϕ : [0, 1]n → [0, 1] is infinitely differentiable on
[0, 1]n;

2. ∂mϕ(x)
∂xi1∂xi2...∂xim

> 0 for any pointx ∈ [0, 1]n and

for anyi1, i2, ..., im ∈ {1, 2, ..., n}, m = 1, 2, ....

Thenϕ obeys the consensus requirement for belief
measures.

Notation: M̃bel is the set of all aggregation functions
for k-monotone measures.
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Composition of aggregation functions

Let ϕi : [0, 1]
n → [0, 1], i = 1, ...,m,

ϕ : [0, 1]m → [0, 1].
Then theircomposition ψ : [0, 1]n → [0, 1] is defined
by

ψ(x1, ..., xn) = ϕ(ϕ1(x1, ..., xn), ..., ϕm(x1, ..., xn)).
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Proposition. Let ψ = ϕ(ϕ1, ..., ϕm) be a
composition of aggregation functionsϕ, ϕ1, ..., ϕm.
Then

1. ϕ, ϕ1, ..., ϕm ∈ M̃low impliesψ ∈ M̃low;

2. ϕ, ϕ1, ..., ϕm ∈ M̃gcoh impliesψ ∈ M̃gcoh;

3. ϕ, ϕ1, ..., ϕm ∈ M̃coh impliesψ ∈ M̃coh;

4. ϕ, ϕ1, ..., ϕm ∈ M̃k−mon, k = 2, 3, ... implies
ψ ∈ M̃k−mon;

5. ϕ, ϕ1, ..., ϕm ∈ M̃bel impliesψ ∈ M̃bel;

6. ϕ, ϕ1, ..., ϕm ∈ M̃pr impliesψ ∈ M̃pr.
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Monotone measures of fuzzy sets

Any aggregation functionϕ : [0, 1]n → [0, 1] can be
interpreted as a monotone measure of a fuzzy subset
of {1, ..., n}.

For this purpose, any fuzzy subset
A : {1, ..., n} → [0, 1], we consider as a vector
xA = (A(1), ..., A(n)).

Clearly, introduced families of aggregation functions
M̃low, M̃gcoh, M̃coh, M̃k−mon, M̃bel, M̃pr are
generalizations of corresponding families of usual
monotone measures.
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Operations on fuzzy sets

We can interpret properties of monotone measures of
fuzzy sets through the following operations:

1. Ā is the complement ofA if Ā(i) = 1− A(i),
i = 1, .., n;

2. C = A ∩ B if C(i) = A(i)B(i), i = 1, .., n;

3. C = A ∪ B for setsA ∩B = ∅ if
C(i) = A(i) + B(i), i = 1, .., n.
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Proposition. Let ϕ be an aggregation function,
A ⊆ {1, ..., n}, andxA = (x1, ..., xn) is such that
xi = 1 if i ∈ A, andxi = 0 otherwise. Consider a
monotone measureµ defined byµ(A) = ϕ(xA). Then

1. ϕ ∈ M̃low impliesµ ∈Mlow;

2. ϕ ∈ M̃gcoh impliesµ ∈Mgcoh;

3. ϕ ∈ M̃coh impliesµ ∈Mcoh;

4. ϕ ∈ M̃k−mon, k = 2, 3, ... impliesµ ∈Mk−mon;

5. ϕ ∈ M̃bel impliesµ ∈Mbel;

6. ϕ ∈ M̃pr impliesµ ∈Mpr.
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Problem of aggregation functions construction
using monotone measures

Given a monotone measureµ on2X , where
X = {1, ..., n}.

Is it possible to construct an aggregation function
ϕ : [0, 1]n → [0, 1] such thatϕ(xA) = µ(A) for all
A ∈ 2X under the consensus requirement?

The straightforward way is to look at non-additive
integrals w.r.t. a monotone measureµ.
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It is easy to check that for Choquet integral the
consensus requirement is fulfilled for lower
probabilities, probability measures, but it is not for
other families of monotone measures.

For example, letϕ(f) = (Choquet)
∫
fdµ and

µ ∈M2−mon.

Thenϕ ∈ M̃coh, butϕ /∈ M̃2−mon in general.

the solution of this problem is to use the multilinear
extension that has remarkable properties.
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Multilinear extension

Let µ a monotone measureµ on2X , where
X = {1, ..., n}, and letm be its Möbius transform.
Thenthe multilinear extension ϕ of µ is defined by

ϕ(x) =
∑

B∈2X
m(B)

∏

i∈B
xi.

Proposition. Let ϕ be a multilinear extension ofµ.
Thenϕ is an aggregation function andϕ(xA) = µ(A),
A ⊆ {1, ..., n}.
Remark. The multilinear extension can be defined as

ϕ(x) =
∑

B∈2X
µ(B)

∏

i∈B
xi

∏

i/∈B
(1− xi).
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Proposition. Let µ a monotone measureµ on2X ,
whereX = {1, ..., n}, andϕ : [0, 1]n → [0, 1] its
multilinear extension. Then

1. µ ∈Mlow impliesϕ ∈ M̃low;

2. µ ∈Mgcoh impliesϕ ∈ M̃gcoh;

3. µ ∈Mcoh impliesϕ ∈ M̃coh;

4. µ ∈Mk−mon, k = 2, 3, ... impliesϕ ∈ M̃k−mon;

5. µ ∈Mbel impliesϕ ∈ M̃bel;

6. µ ∈Mpr impliesϕ ∈ M̃pr.
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Example

Let µ on2Z , whereZ = {1, 2, 3}, defined by
µ ({1, 2, 3}) = 1, µ ({1, 2}) = 2/3, µ ({2, 3}) = 2/3;
µ is equal to zero on other sets.
µ is a generalyzed coherent lower probability.
Let us compute also the natural extensionµ̃ of µ:

µ̃(A) = inf
P∈P(µ)

P (A), A ∈ 2X .

µ̃ ({2}) = 1/3 and it has the same values asµ on
other sets.
µ̃ is a belief measure.
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• The Möbius transformmµ of µ:
mµ ({1, 2, 3}) = −1/3,mµ ({1, 2}) = 2/3,

mµ ({2, 3}) = 2/3;
mµ is equal to zero on other sets.

• The Choquet integral ofµ:

ϕ1(x) =
2
3 (x1 ∧ x2)+2

3 (x2 ∧ x3)−(x1 ∧ x2 ∧ x3)
• The multilinear extension ofµ:

ϕ2(x) =
2
3x1x2 +

2
3x2x3 − x1x2x3

• ϕ1 ∈ M̃low, ϕ2 ∈ M̃gcoh.
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• The Möbius transformmµ̃ of µ̃:

mµ̃ ({2}) = 1/3,mµ̃ ({1, 2}) = 1/3,
mµ̃ ({2, 3}) = 1/3;
mµ̃ is equal to zero on other sets.

• The Choquet integral of̃µ:

ϕ3(x) =
1
3x2 +

1
3 (x1 ∧ x2) + 1

3 (x2 ∧ x3)
• The multilinear extension of̃µ:

ϕ4(x) =
1
3x2 +

1
3x1x2 +

1
3x2x3

• ϕ3 ∈ M̃coh, ϕ4 ∈ M̃bel.
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Consensus for probability measures

(∀x ∈ [0, 1])ϕ(x) = x.
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Consensus for lower probabilities

(∀x ∈ [0, 1])ϕ(x) 6 x.
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Consensus for generalized coherent lower
probabilities

(∀x, y ∈ [0, 1])ϕ(xy) 6 xϕ(y).
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Consensus for coherent lower probabilities

1. (∀x, y ∈ [0, 1])ϕ(xy) 6 xϕ(y);

2. (∀x, y ∈ [0, 1])ϕ(xy + x(1− y)) 6
xϕ(y) + x(1− ϕ(y)).
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Consensus for2-monotone measures

ϕ is convex.
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Consensus for belief measures

1. ϕ is convex;

2. ∀x ∈ [0, 1)
dkϕ(x)

dxk
> 0, k = 1, 2, ....
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