Residuated multilattices

Between pocrims and residuated lattices

I. P. Cabrera, P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego

Dept. Applied Mathematics, University of Málaga, Spain

SSIU & WIUI 2012

Outline

Motivation

2 Multilattices

3 Residuated multilattices

④ Filters, homomorphisms and congruences in residuated multilattices

5 Future work

Generalized fuzzy sets

• Fuzzy sets [Zadeh'65]:

$$A\colon \mathcal{U} \to [0,1]$$

• *L*-fuzzy sets [Goguen'67]:

 $A: \mathcal{U} \to L$, where L is a complete lattice

• *M*-fuzzy sets:

 $A \colon \mathcal{U} \to M$, where M is a complete multilattice

• Applications [Ojeda-Aciego et al'07]:

Fuzzy Logic Programming based on Multilattices

Outline

1 Motivation

2 Multilattices

3 Residuated multilattices

Filters, homomorphisms and congruences in residuated multilattices

5 Future work

Multilattices: ordering-based definition

- Ordered multilattice and multisemilattice. [Benado'54].
- Multisupremum (*Multisup*): minimal element of the set of upper bounds.

Definition

A poset, (M,\leq) , is a **join-multisemilattice** if, for all $a,b,x\in M$,

 $a \leq x$ and $b \leq x$ implies that there exists $z \in Multisup(\{a, b\})$ such that $z \leq x$

Dual property defines the concept of meet-multisemilatice.

Definition

A multilattice is a poset (M, \leq) which is a meet and a join-multisemilattice.

Multilattices: ordering-based definition

- Ordered multilattice and multisemilattice. [Benado'54].
- Multisupremum (*Multisup*): minimal element of the set of upper bounds.

Definition

A poset, (M, \leq) , is a **join-multisemilattice** if, for all $a, b, x \in M$,

 $a \leq x \text{ and } b \leq x \text{ implies that there exists } z \in Multisup(\{a,b\}) \text{ such that } z \leq x$

Dual property defines the concept of meet-multisemilatice.

Definition

A **multilattice** is a poset (M, \leq) which is a meet and a join-multisemilattice.

Multilattices: ordering-based definition

- Ordered multilattice and multisemilattice. [Benado'54].
- Multisupremum (*Multisup*): minimal element of the set of upper bounds.

Definition

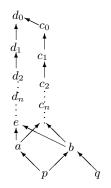
A poset, (M, \leq) , is a **join-multisemilattice** if, for all $a, b, x \in M$,

 $a \leq x$ and $b \leq x$ implies that there exists $z \in Multisup(\{a,b\})$ such that $z \leq x$

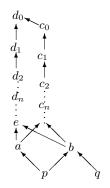
Dual property defines the concept of meet-multisemilatice.

Definition

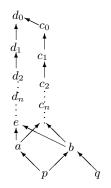
A multilattice is a poset (M, \leq) which is a meet and a join-multisemilattice.



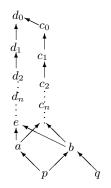
- The poset in the figure is a meet-multisemilattice but not a join-multisemilattice.
- Any finite poset is a multilattice.
- The set of chains with the substring relation is a multilattice.
- The set of circles in the euclidean plane is a multilattice.



- The poset in the figure is a meet-multisemilattice but not a join-multisemilattice.
- Any finite poset is a multilattice.
- The set of chains with the substring relation is a multilattice.
- The set of circles in the euclidean plane is a multilattice.



- The poset in the figure is a meet-multisemilattice but not a join-multisemilattice.
- Any finite poset is a multilattice.
- The set of chains with the substring relation is a multilattice.
- The set of circles in the euclidean plane is a multilattice.



- The poset in the figure is a meet-multisemilattice but not a join-multisemilattice.
- Any finite poset is a multilattice.
- The set of chains with the substring relation is a multilattice.
- The set of circles in the euclidean plane is a multilattice.

- M. Benado. Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier. I, Čehoslovack. Mat. Ž., 4(79):105–129, 1954.
- D.J. Hansen. An axiomatic characterization of multilattices. Discrete Mathematics, 33(1): 99–101, 1981.
- I.J. Johnston. *Some results involving multilattice ideals and distributivity*, Discrete Mathematics, 83(1):27–35, 1990.
- J. Martínez, G. Gutiérrez, I. P. de Guzmán, P. Cordero. *Generalizations of lattices via non-deterministic operators*, Discrete Mathematics, 295(1-3): 107–141, 2005.

- M. Benado. Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier. I, Čehoslovack. Mat. Ž., 4(79):105–129, 1954.
- D.J. Hansen. An axiomatic characterization of multilattices. Discrete Mathematics, 33(1): 99–101, 1981.
- I.J. Johnston. *Some results involving multilattice ideals and distributivity*, Discrete Mathematics, 83(1):27–35, 1990.
- J. Martínez, G. Gutiérrez, I. P. de Guzmán, P. Cordero. *Generalizations of lattices via non-deterministic operators*, Discrete Mathematics, 295(1-3): 107–141, 2005.

Hypergroupoid and nd-groupoid

- Hyperstructure theory [Marty, 1934]: It considers hyperoperations that are mappings ★: A × A → 2^A \ {Ø}.
- Hypergroups, join-spaces, hyperrings
- nd-operations [Cordero et al, 2001]: $\star: A \times A \rightarrow 2^A$.
- We named this kind of operations *non-deterministic operations* (briefly, nd-operations) due to its relationship with the notion of non-deterministic automata.
- As usually, if $X \subseteq A$ and $a \in A$ then

$$a \star X = \bigcup_{x \in X} a \star x$$
 $X \star a = \bigcup_{x \in X} x \star a$

and particularly $a \star \emptyset = \emptyset \star a = \emptyset$.

Hypergroupoid and nd-groupoid

- Hyperstructure theory [Marty, 1934]: It considers hyperoperations that are mappings ★: A × A → 2^A \ {Ø}.
- Hypergroups, join-spaces, hyperrings
- nd-operations [Cordero et al, 2001]: $\star: A \times A \rightarrow 2^A$.
- We named this kind of operations *non-deterministic operations* (briefly, nd-operations) due to its relationship with the notion of non-deterministic automata.

• As usually, if $X \subseteq A$ and $a \in A$ then

$$a \star X = \bigcup_{x \in X} a \star x$$
 $X \star a = \bigcup_{x \in X} x \star a$

and particularly $a \star \emptyset = \emptyset \star a = \emptyset$.

Hypergroupoid and nd-groupoid

- Hyperstructure theory [Marty, 1934]: It considers hyperoperations that are mappings ★: A × A → 2^A \ {Ø}.
- Hypergroups, join-spaces, hyperrings
- nd-operations [Cordero et al, 2001]: \star : $A \times A \rightarrow 2^A$.
- We named this kind of operations *non-deterministic operations* (briefly, nd-operations) due to its relationship with the notion of non-deterministic automata.
- As usually, if $X \subseteq A$ and $a \in A$ then

$$a \star X = \bigcup_{x \in X} a \star x$$
 $X \star a = \bigcup_{x \in X} x \star a$

and particularly $a \star \varnothing = \varnothing \star a = \varnothing$.

Properties on nd-groupoids I

Assume that (A, \cdot) is an nd-groupoid:

- Idempotency: for all $a \in A$, aa = a.
- **Commutativity**: for all $a, b \in A$, ab = ba.
- Associativity: for all $a, b, c \in A$, (ab)c = a(bc).
- Left m-associativity: for all $a, b, c \in A$, if ab = b, then $(ab)c \subseteq a(bc)$.
- Right m-associativity: for all $a, b, c \in A$, if bc = c, then $a(bc) \subseteq (ab)c$.
- m-associativity: if it is left and right m-associative.

Properties on nd-groupoids II

- A join multisemilattice M satisfies idempotency, commutativity and m-associativity laws with the nd-operation given by $a \sqcup b = Multisup\{a, b\}$
- \bullet Conversely, for an nd-groupoid (M,\cdot) the so-called natural ordering

 $a \leq b$ if and only if ab = b

is indeed an ordering relation on M if (M,\cdot) is idempotent, commutative and m-associative.

Moreover, if $a \leq x$ and $b \leq x$ then there exists $z \in ab$ with $z \leq x$.

Properties on nd-groupoids II

- A join multisemilattice M satisfies idempotency, commutativity and m-associativity laws with the nd-operation given by $a \sqcup b = Multisup\{a, b\}$
- $\bullet\,$ Conversely, for an nd-groupoid (M,\cdot) the so-called natural ordering

 $a \leq b$ if and only if ab = b

is indeed an ordering relation on M if (M,\cdot) is idempotent, commutative and m-associative.

Moreover, if $a \leq x$ and $b \leq x$ then there exists $z \in ab$ with $z \leq x$.

Properties on nd-groupoids II

- A join multisemilattice M satisfies idempotency, commutativity and m-associativity laws with the nd-operation given by $a \sqcup b = Multisup\{a, b\}$
- $\bullet\,$ Conversely, for an nd-groupoid (M,\cdot) the so-called natural ordering

 $a \leq b$ if and only if ab = b

is indeed an ordering relation on M if (M,\cdot) is idempotent, commutative and m-associative.

Moreover, if $a \leq x$ and $b \leq x$ then there exists $z \in ab$ with $z \leq x$.

Multisemilattices: algebraic definition

An nd-groupoid (A, \cdot) satisfies the **comparability laws** if, for all $a, b, c, d \in A$: (C₁) $c \in ab$ implies that ac = c and bc = c. (C₂) $c, d \in ab$ and cd = d imply that c = d.

Definition

An **algebraic multisemilattice** is an nd-groupoid that satisfies idempotency, commutativity, m-associativity and comparability laws.

Ordered and algebraic definitions of multisemilattice are equivalent.

 $a \sqcup b = Multisup\{a, b\}$ and \leq being the natural ordering

Multisemilattices: algebraic definition

An nd-groupoid (A, \cdot) satisfies the **comparability laws** if, for all $a, b, c, d \in A$: (C₁) $c \in ab$ implies that ac = c and bc = c. (C₂) $c, d \in ab$ and cd = d imply that c = d.

Definition

An **algebraic multisemilattice** is an nd-groupoid that satisfies idempotency, commutativity, m-associativity and comparability laws.

Ordered and algebraic definitions of multisemilattice are equivalent.

 $a \sqcup b = Multisup\{a, b\}$ and \leq being the natural ordering

Multilattices: algebraic definition

Definition

Let \sqcup and \sqcap be nd-operations in M, the pair (\sqcup, \sqcap) is said to have the property of **absorption** if for all $a, b \in M$ the following conditions hold:

(i) $a \sqcap c = a$ for all $c \in a \sqcup b$ (Therefore, $a \sqcap (a \sqcup b) = a$ (*ii*) $a \sqcup c = a$ for all $c \in a \sqcap b$

and $a \sqcup (a \sqcap b) = a$)

Multilattices: algebraic definition

Definition

Let \sqcup and \sqcap be nd-operations in M, the pair (\sqcup, \sqcap) is said to have the property of **absorption** if for all $a, b \in M$ the following conditions hold:

(i) $a \sqcap c = a$ for all $c \in a \sqcup b$ (Therefore, $a \sqcap (a \sqcup b) = a$ (ii) $a \sqcup c = a$ for all $c \in a \sqcap b$ and $a \sqcup (a \sqcap b) = a$)

Definition

An algebraic multilattice (M, \sqcup, \sqcap) , is a set M with two nd-operations \sqcup and \sqcap satisfying the absorption property and such that (M, \sqcup) and (M, \sqcap) are multisemilattices.

Full multisemilattices and multilattices

Definition

A multisemilattice (M, \sqcup) is **full** if, for all $a, b \in M$, $a \sqcup b \neq \varnothing$. A multilattice is full if both multisemilattices are full.

In this case, they are hyperalgebras.

Proposition

Any bounded multilattice is full.

Full multisemilattices and multilattices

Definition

A multisemilattice (M, \sqcup) is **full** if, for all $a, b \in M$, $a \sqcup b \neq \varnothing$. A multilattice is full if both multisemilattices are full.

In this case, they are hyperalgebras.

Proposition

Any bounded multilattice is full.

Full and associatives multilattices

Proposition

Let (M, \sqcup) be a multisemilattice.

If \sqcup is associative then, for all $a, b \in M$, $|a \sqcup b| \leq 1$.

Proposition

Let (M, \sqcup, \sqcap) be a full multilattice. The following conditions are equivalent:

- $(i) \sqcup$ is associative.
- $(ii) \ \sqcap$ is associative.
- (iii) (M,\sqcup,\sqcap) is a lattice.

Full and associatives multilattices

Proposition

```
Let (M, \sqcup) be a multisemilattice.
```

If \sqcup is associative then, for all $a, b \in M$, $|a \sqcup b| \leq 1$.

Proposition

Let (M, \sqcup, \sqcap) be a full multilattice. The following conditions are equivalent:

- $(i) \sqcup$ is associative.
- $(ii) \sqcap$ is associative.
- (iii) (M,\sqcup,\sqcap) is a lattice.

Related works

- Congruence relations on multilattices [FLINS, 2008]
- On congruences, ideals and homomorphisms over multilattices [EUROFUSE, 2009]
- Congruence relations on some hyperstructures [Ann. Math. Artif. Intell. 2009]
- Fuzzy congruence relations on nd-groupoids [Int. J. Computer Mathematics, 2009]
- A coalgebraic approach to non-determinism: applications to multilattices [Information Science, 2010]
- Finitary coalgebraic multisemilattices and multilattices. [Applied Mathematics and Computation, 2012]

Outline

1 Motivation

2 Multilattices

8 Residuated multilattices

④ Filters, homomorphisms and congruences in residuated multilattices

5 Future work

POCRIMS

Definition

A tuple $(A, *, \rightarrow, 1, \leq)$ is said to be a *partially ordered commutative residuated integral* monoid, briefly a **pocrim**, if the following properties hold:

- (A, *, 1) is a commutative monoid.
- $\bullet \ (A,\leq)$ is a partially ordered set in which 1 is the maximum.
- The residuum property holds. That is, for every $a, b, c \in A$,

 $a * b \le c$ if and only if $a \le b \to c$

POCRIMS

Definition

A tuple $(A, *, \rightarrow, 1, \leq)$ is said to be a *partially ordered commutative residuated integral* monoid, briefly a **pocrim**, if the following properties hold:

- (A, *, 1) is a commutative monoid.
- (A, \leq) is a partially ordered set in which 1 is the maximum.
- The residuum property holds. That is, for every $a, b, c \in A$,

 $a * b \leq c$ if and only if $a \leq b \rightarrow c$

POCRIMS

Definition

A tuple $(A, *, \rightarrow, 1, \leq)$ is said to be a *partially ordered commutative residuated integral* monoid, briefly a **pocrim**, if the following properties hold:

- (A, *, 1) is a commutative monoid.
- (A, \leq) is a partially ordered set in which 1 is the maximum.
- The residuum property holds. That is, for every $a, b, c \in A$,

 $a * b \leq c$ if and only if $a \leq b \rightarrow c$

Residuated lattices and Heyting algebras

A pocrim is said to be a residuated lattice if the poset is a lattice.

Residuated lattice

A tuple $(A, \lor, \land, *, \rightarrow, 1)$ is said to be a **residuated lattice** if the following properties hold:

- (A, *, 1) is a commutative monoid.
- (A, \lor, \land) is a lattice in which 1 is the maximum.
- The residuum property holds.

Heyting algebra

A residuated lattice in which * coincides with the meet operation is said to be a **Heyting** algebra.

Residuated lattices and Heyting algebras

A pocrim is said to be a residuated lattice if the poset is a lattice.

Residuated lattice

A tuple $(A, \lor, \land, *, \rightarrow, 1)$ is said to be a **residuated lattice** if the following properties hold:

- (A, *, 1) is a commutative monoid.
- (A, \lor, \land) is a lattice in which 1 is the maximum.
- The residuum property holds.

Heyting algebra

A residuated lattice in which * coincides with the meet operation is said to be a **Heyting algebra**.

Residuated multilattices

A pocrim is said to be a residuated multilattice if the underlying poset is a bounded multilattice.

Residuated multilattice

A tuple $(A, \sqcup, \sqcap, *, \rightarrow, 1)$ is said to be a **residuated multilattice** if the following properties hold:

- (A, *, 1) is a commutative monoid.
- (A, \sqcup, \sqcap) is a multilattice in which 1 is the maximum.
- The residuum property holds.

Example

Let
$$A = \{a_i \mid 0 \le i \le 5\}, B = \{b_i \mid 0 \le i \le 5\}$$
 and $C = \{b_i \mid 2 \le i \le 5\}$

Contextualizing

Heyting algebras \subsetneq Residuated lattices \subseteq Residuated multilattices

 \subsetneq Pocrims

Remark

- Any finite pocrim is a residuated multilattice.
- Any pocrim is *m*-associative iff it is a residuated multilattice.
- Any residuated multilattice is associative iff it is a residuated lattice.
- Any residuated lattice is idempotent iff it is a Heyting algebra.

Contextualizing

$\mathsf{Heyting \ algebras} \ \subsetneq \ \mathsf{Residuated \ lattices}$

 \subsetneq Residuated multilattices

 \subsetneq Pocrims

Remark

- Any finite pocrim is a residuated multilattice.
- Any pocrim is *m*-associative iff it is a residuated multilattice.
- Any residuated multilattice is associative iff it is a residuated lattice.
- Any residuated lattice is idempotent iff it is a Heyting algebra.

From residuated multilattices to Heyting algebras

Lemma

Let $(A, \sqcup, \sqcap, *, \rightarrow, 1)$ be a residuated multilattice and $a, b \in A$.

- The underlying multilattice is full.
- a * b is a lower bound of a and b.
- If $a * b \in a \sqcap b$ then a * b is the infimum of a and b.
- If * is idempotent then $a * b \in a \sqcap b$, for all $a, b \in A$.

Theorem

A residuated multilattice has idempotent product if and only if it is a Heyting algebra.

Contextualizing

- Heyting algebras $\ \subsetneq$ Residuated lattices
 - ⊊ Residuated multilattices

⊊ Pocrims

Remark

- Any finite pocrim is a residuated multilattice.
- Any pocrim is *m*-associative iff it is a residuated multilattice.
- Any residuated multilattice is associative iff it is a residuated lattice.
- Any residuated lattice is idempotent iff it is a Heyting algebra.
- Any residuated multilattice is idempotent iff it is a Heyting algebra.

However, a pocrim with idempotent product is not necessarily a Heyting algebra.

Outline

1 Motivation

2 Multilattices

3 Residuated multilattices

Iters, homomorphisms and congruences in residuated multilattices

5 Future work

Homomorphisms between residuated multilattices

Definition

Let $h: M \to M'$ be a map between residuated multilattices, h is said to be a **homomorphism** if, for all $a, b \in M$,

•
$$h(a * b) = h(a) * h(b)$$
, $h(a \rightarrow b) = h(a) \rightarrow h(b)$,

• $h(a \sqcup b) \subseteq h(a) \sqcup h(b)$, and $h(a \sqcap b) \subseteq h(a) \sqcap h(b)$,

As a consequence the following conditions hold:

•
$$h(1) = 1$$
,

• $h(a \sqcup b) = (h(a) \sqcup h(b)) \cap h(M)$ and $h(a \sqcap b) = (h(a) \sqcap h(b)) \cap h(M)$.

Congruences on residuated multilattices

Definition

Let M be a residuated multilattice, a **congruence** on M is any equivalence relation \equiv such that, for all $a, b, c \in M$, if $a \equiv b$, then

- $a * c \equiv b * c$, $a \to c \equiv b \to c$, $c \to a \equiv c \to b$,
- $a \sqcup c \cong b \sqcup c$, and $a \sqcap c \cong b \sqcap c$,

Theorem

Let $h: M \to M'$ be a homomorphism between residuated multilattices. The kernel relation, defined as $a \equiv b$ if and only if h(a) = h(b), is a congruence.

Theorem

Let M be a residuated multilattice and \equiv a congruence relation on M. The mapping $p: M \to M/_{\equiv}$ such that p(x) = [x] is a surjective homomorphism of residuated multilattices.

Filters in pocrims

Definition

```
Given \mathcal{A} = (A, \leq, *, \rightarrow, 1) a pocrim, \emptyset \neq F \subseteq A is said to be a filter if the following conditions hold:

i) if a, b \in F, then a * b \in F

ii) if a \leq b and a \in F, then b \in F.

On the other hand, F is said to be a deductive system if

i) 1 \in F and

ii) a \rightarrow b \in F and a \in F imply b \in F.
```

It is not difficult to see that both definitions are equivalent.

In [Halaš et al, 09] congruence relations and several kinds of filters in pocrims have been introduced.

Filters in multilattices

Definition

Let (M, \sqcup, \sqcap) be a multilattice. A non-empty set $F \subseteq M$ is said to be a **filter** if the following conditions hold:

- $\ \, {\bf 0} \ \, i,j\in F \ \, {\rm implies} \ \, \varnothing\neq i\sqcap j\subseteq F.$
- 2 $i \in F$ implies $i \sqcup a \subseteq F$ for all $a \in M$.
- **③** For all $a, b \in M$, if $(a \sqcup b) \cap F \neq \emptyset$ then $a \sqcup b \subseteq F$.

Hereinafter, a non-empty set in a residuated multilattice is going to be named

- deductive system if it is a filter in the underlying pocrim and
- m-filter if it is a filter in the underlying multilattice.

Example

$$\text{Let } A = \{a_i \mid 0 \le i \le 5\}, \ B = \{b_i \mid 0 \le i \le 5\} \text{ and } C = \{b_i \mid 2 \le i \le 5\}$$

• $C \cup \{\top\}$ is a deductive system but it is not an *m*-filter because $b_3 \sqcap b_4 = \{b_1, b_2\} \not\subseteq C$.

- $\{b_5, \top\}$ is an *m*-filter that is not a deductive system because $b_5 * b_5 = b_2 \notin \{b_5, \top\}$.
- $B \cup \{\top\}$ is both a deductive system and an *m*-filter.

Does a filter define a congruence?

Proposition

Let M be a residuated multilattice, 1 its maximum element and \equiv a congruence. The equivalence class [1] is a deductive system and an m-filter.

It is well known that a filter (deductive system) F in a **pocrim** defines a congruence that can be characterized as follows

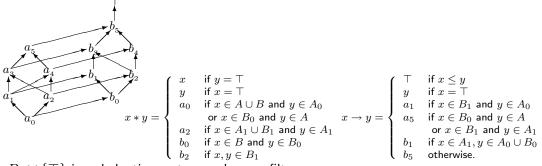
$$a \equiv b$$
 if and only if $a \to b, b \to a \in F$

It is also true that, in a **residuated lattice**, given a filter F the relation defined as follows is a congruence

$$a \equiv b$$
 iff $a \to b, \ b \to a \in F$ iff $(a \to b) \land (b \to a) \in F$

Example

Let $A_0 = \{a_0, a_1\}, A_1 = \{a_i \mid 2 \le i \le 5\}, B_0 = \{b_0, b_1\}, B_1 = \{b_i \mid 2 \le i \le 5\}$ such that $A = A_0 \cup A_1$ and $B = B_0 \cup B_1$.



 $B_1 \cup \{\top\}$ is a deductive system and an *m*-filter. But there not exists a congruence such that $[\top] = B_1 \cup \{\top\}$.

Filters in residuated multilattices

Definition

Let M be a residuated multilattice. $F\subseteq M$ is said to be a **filter** if the following conditions hold:

- $\bullet \ F$ is a deductive system and
- $a \to b \in F$ implies $a \sqcup b \to b \subseteq F$ and $a \to a \sqcap b \subseteq F$.

Theorem

Let M be a residuated multilattice and F a deductive system. F is a filter if and only if the following conditions hold:

• F is an m-filter,

(a) for all $x, y \in a \sqcup b$, if $x \to y \in F$ then $y \to x \in F$.

③ for all $x, y \in a \sqcap b$, if $x \to y \in F$ then $y \to x \in F$.

Filters in residuated multilattices

Definition

Let M be a residuated multilattice. $F\subseteq M$ is said to be a **filter** if the following conditions hold:

- $\bullet~F$ is a deductive system and
- $a \to b \in F$ implies $a \sqcup b \to b \subseteq F$ and $a \to a \sqcap b \subseteq F$.

Theorem

Let M be a residuated multilattice and F a deductive system. F is a filter if and only if the following conditions hold:

Is an m-filter,

- **2** for all $x, y \in a \sqcup b$, if $x \to y \in F$ then $y \to x \in F$.
- **(a)** for all $x, y \in a \sqcap b$, if $x \to y \in F$ then $y \to x \in F$.

Filters in residuated multilattices

Theorem

Let $h: M \to M'$ be a homomorphism between residuated multilattices. • $h^{-1}(1) = \{x \in M \mid h(x) = 1\}$ is a filter of M, the kernel filter.

Theorem

Let M be a residuated multilattice and F be a filter. Then, the relation

$$a \equiv_F b$$
 iff $a \to b, b \to a \in F$ iff $(a \to b) \sqcap (b \to a) \subseteq F$

defines a congruence.

Fine filters in residuated multilattices

Definition

Let M be a residuated multilattice. A deductive system F is said to be **fine** if for all $a, b, c \in M$ the following conditions hold:

- $\bullet \ \ \text{If} \ a \to c, b \to c \in F \text{, then } (a \sqcup b) \to c \subseteq F \\$
- 2 If $c \to a, c \to b \in F$, then $c \to (a \sqcap b) \subseteq F$

Proposition

Every fine deductive system is a filter.

Theorem

Let $h \colon M \to M'$ be a homomorphism between residuated multilattices. Then,

h(M) is a lattice if and only if $h^{-1}(1)$ is a fine filter.

1967

Outline

1 Motivation

2 Multilattices

3 Residuated multilattices

4 Filters, homomorphisms and congruences in residuated multilattices

5 Future work

- Studying applications of this residuated structure.
- Extending this structure by replacing the operations \ast and \rightarrow by hyperoperations.
- Looking for an adequate definition of distributivity on multilattices and deepening in the relationship between boolean multilattices and hyperings.

Residuated multilattices

Between pocrims and residuated lattices

I. P. Cabrera, P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego

Dept. Applied Mathematics, University of Málaga, Spain

SSIU & WIUI 2012

