Recent Results on Commutative and Non-Commutative Effect Algebras
 Anatolij DVUREČENSKIJ

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia E-mail: dvurecen@mat.savba.sk

The talk given at the WIUI 2012: Inter. Workshop "Information, Uncertainty, and
Imprecision, Palacky Univ. Olomoue, May-5-7, 2012.

Quantum Mechanics

- new physics, beginning 20th century

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

x-momentum, y position of elementary particle, s state -probability measure

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

x-momentum, y position of elementary particle, s state -probability measure

- for classical mechanics

$$
\inf _{s}\left(\sigma_{s}(x) \sigma_{s}(y)\right)=0
$$

- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933, 79 years !!!
- Hilbert, 1900, inspired by the axiomatical system of geometry by Euclideus, formulated his Sixth Problem as follows:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933, 79 years !!!
- G. Birkhoff and J. von Neumann, 1936 quantum logic

Quantum structures

- Boolean algebras

Quantum structures

- Boolean algebras
- Orthomodular lattices

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, L(H)$ the system of all closed subspaces of H

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, L(H)$ the system of all closed subspaces of H
- Orthomodular posets

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, L(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kopka and Chovanec 1992

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, L(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kopka and Chovanec 1992
- effect algebras

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, L(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kopka and Chovanec 1992
- effect algebras
- MV-algebras - compatibility

MV-algebras

- MV-algebras were introduced in 1958 by Chang

MV-algebras

- MV-algebras were introduced in 1958 by Chang
- more than half century !!!

MV-algebras

- MV-algebras were introduced in 1958 by Chang
- more than half century !!!
- Aim: to give an algebraic proof of the completeness of the Łukasiewicz infinite-valued sentential calculus.
- MV-algebra $\left(M ; \oplus,{ }^{*}, 0\right)$ of type $\langle 2,1,0\rangle$ such that
- MV-algebra $\left(M ; \oplus,{ }^{*}, 0\right)$ of type $\langle 2,1,0\rangle$ such that

1. $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
2. $x \oplus y=y \oplus x$
3. $x \oplus 0=x$
4. $x^{* *}=x$
5. $x \oplus 0^{*}=0^{*}$
6. $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$.

- unital Abelian ℓ-group $(G, u), u$ strong unit.
- unital Abelian ℓ-group $(G, u), u$ strong unit.
- $\Gamma(G, u):=[0, u]$
- unital Abelian ℓ-group $(G, u), u$ strong unit.
- $\Gamma(G, u):=[0, u]$

$$
\begin{gathered}
x \oplus y=(x+y) \wedge u \\
x^{*}=u-x
\end{gathered}
$$

- unital Abelian ℓ-group $(G, u), u$ strong unit.
- $\Gamma(G, u):=[0, u]$

$$
\begin{gathered}
x \oplus y=(x+y) \wedge u \\
x^{*}=u-x
\end{gathered}
$$

($\left.\Gamma(G, u), \oplus,{ }^{*}, 0\right)$ - prototypical example of MV-algebras

- Mundici, 1986: there is a categorical equivalence between the variety of MV-algebras and the category of unital Abelian ℓ-groups
- Mundici, 1986: there is a categorical equivalence between the variety of MV-algebras and the category of unital Abelian ℓ-groups
- New look at the category of unital Abelian l-groups
- Mundici, 1986: there is a categorical equivalence between the variety of MV-algebras and the category of unital Abelian ℓ-groups
- New look at the category of unital Abelian l-groups
- Komori 1981: Every proper variety of GMV-algebras is generated by finitely many $\Gamma(\mathbb{Z}, n)$ or $\Gamma(\mathbb{Z} \overrightarrow{\times} \mathbb{Z},(n, 0))$
- Mundici, 1986: there is a categorical equivalence between the variety of MV-algebras and the category of unital Abelian ℓ-groups
- New look at the category of unital Abelian l-groups
- Komori 1981: Every proper variety of GMV-algebras is generated by finitely many $\Gamma(\mathbb{Z}, n)$ or $\Gamma(\mathbb{Z} \overrightarrow{\times} \mathbb{Z},(n, 0))$
- Only countably many of subvarieties

GMV-algebras

GMV-algebras

- Georgescu and lorgulescu [Gelo] (pseudo MV-algebras), Rachunek [Rac] (generalized MV-algebras) - 1999

GMV-algebras

- Georgescu and lorgulescu [Gelo] (pseudo MV-algebras), Rachunek [Rac] (generalized MV-algebras) - 1999
- GMV-algebra is an algebra ($M ; \oplus,,^{-}, 0,1$) of type (2, 1, 1, 0, 0) with an additional binary operation \odot defined via

$$
y \odot x=\left(x^{-} \oplus y^{-}\right)^{\sim}
$$

(A1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
(A2) $x \oplus 0=0 \oplus x=x$;
(A3) $x \oplus 1=1 \oplus x=1$;
(A4) $1^{\sim}=0 ; 1^{-}=0$;
(A5) $\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-}$;
(A6) $x \oplus\left(x^{\sim} \odot y\right)=y \oplus\left(y^{\sim} \odot x\right)=\left(x \odot y^{-}\right) \oplus y=$ $\left(y \odot x^{-}\right) \oplus x$
(A7) $x \odot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \odot y$;
(A8) $\left(x^{-}\right)^{\sim}=x$.

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice
- $x \vee y=x \oplus\left(x^{\sim} \odot y\right)$ and $x \wedge y=x \odot\left(x^{-} \oplus y\right)$.

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice
- $x \vee y=x \oplus\left(x^{\sim} \odot y\right)$ and $x \wedge y=x \odot\left(x^{-} \oplus y\right)$.
- GMV-algebra M is an MV-algebra iff $x \oplus y=y \oplus x$ for all $x, y \in M$.

$$
x \leq y \quad \text { iff } \quad x^{-} \oplus y=1
$$

- M - distributive lattice
- $x \vee y=x \oplus\left(x^{\sim} \odot y\right)$ and $x \wedge y=x \odot\left(x^{-} \oplus y\right)$.
- GMV-algebra M is an MV-algebra iff $x \oplus y=y \oplus x$ for all $x, y \in M$.
- a partial operation + on $M: a+b=a \oplus b$ iff $a \odot b=0$ iff $a \leq b^{-}$iff $b \leq a^{\sim}$.

(G, u) unital ℓ-group, u strong unit

(G, u) unital ℓ-group, u strong unit

$$
\Gamma(G, u):=[0, u]
$$

(G, u) unital ℓ-group, u strong unit

$$
\begin{aligned}
& \Gamma(G, u):=[0, u] \\
& x \oplus y:=(x+y) \wedge u, \\
& x^{-}:=u-x, \\
& x^{\sim}:=-x+u, \\
& x \odot y:=(x-u+y) \vee 0,
\end{aligned}
$$

(G, u) unital ℓ-group, u strong unit

$$
\begin{aligned}
& \Gamma(G, u):=[0, u] \\
& x \oplus y:=(x+y) \wedge u, \\
& x^{-}:=u-x, \\
& x^{\sim}:=-x+u, \\
& x \odot y:=(x-u+y) \vee 0,
\end{aligned}
$$

$\left(\Gamma(G, u) ; \oplus,^{-}, \sim, 0, u\right)$ is a GMV-algebra.

Theorem 0.1 [Dvu 2002] For any GMV-algebra M, there exists a unique (up to isomorphism) unital l-group G with a strong unit u such that $M \cong \Gamma(G, u)$.
The functor Γ defines a categorical equivalence between the category of GMV-algebras and the category of unital l-groups.

Effect Algebras

- Foulis Bennet, EA is a partial algebra ($M ;+, 0,1$) (i) + is associative and commutative

Effect Algebras

- Foulis Bennet, EA is a partial algebra ($M ;+, 0,1$) (i) + is associative and commutative
- for $\forall a \in M \exists!a^{\prime} \in M$ s.t. $a+a^{\prime}=1$,

Effect Algebras

- Foulis Bennet, EA is a partial algebra ($M ;+, 0,1$) (i) + is associative and commutative
- for $\forall a \in M \exists!a^{\prime} \in M$ s.t. $a+a^{\prime}=1$,
- and $a+1$ implies $a=0$.

Effect Algebras

- Foulis Bennet, EA is a partial algebra ($M ;+, 0,1$) (i) + is associative and commutative
- for $\forall a \in M \exists!a^{\prime} \in M$ s.t. $a+a^{\prime}=1$,
- and $a+1$ implies $a=0$.
- Kôpka-Chovanec D-posets

Effect Algebras

- Foulis Bennet, EA is a partial algebra ($M ;+, 0,1$) (i) + is associative and commutative
- for $\forall a \in M \exists!a^{\prime} \in M$ s.t. $a+a^{\prime}=1$,
- and $a+1$ implies $a=0$.
- Kôpka-Chovanec D-posets
- the same structures + vs -

Effect Algebras

- Foulis Bennet, EA is a partial algebra ($M ;+, 0,1$) (i) + is associative and commutative
- for $\forall a \in M \exists!a^{\prime} \in M$ s.t. $a+a^{\prime}=1$,
- and $a+1$ implies $a=0$.
- Kôpka-Chovanec D-posets
- the same structures + vs -
- Boolean algebra, OML: $a+b \exists$ iff $a \leq b^{\prime}$, $a+b:=a \vee b$

Examples

- $\mathcal{E}(H)$ quantum mechanics

Examples

- $\mathcal{E}(H)$ quantum mechanics
- clan: $\mathcal{C} \subseteq[0,1]^{\Omega} ;$ (i), $0,1 \in \mathcal{C}$, (ii) $f \in \mathcal{C}$ $\Rightarrow 1-f \in \mathcal{C}, f \leq 1-g \Rightarrow f+g \in \mathcal{C}$

Examples

- $\mathcal{E}(H)$ quantum mechanics
- clan: $\mathcal{C} \subseteq[0,1]^{\Omega} ;$ (i), $0,1 \in \mathcal{C}$, (ii) $f \in \mathcal{C}$ $\Rightarrow 1-f \in \mathcal{C}, f \leq 1-g \Rightarrow f+g \in \mathcal{C}$
- G - po-group, $u \in G^{+}, \Gamma(G, u):=[0, u]$, ($\Gamma(G, u),+, 0, u)-$ EA (interval EA)

Examples

- $\mathcal{E}(H)$ quantum mechanics
- clan: $\mathcal{C} \subseteq[0,1]^{\Omega} ;$ (i), $0,1 \in \mathcal{C}$, (ii) $f \in \mathcal{C}$ $\Rightarrow 1-f \in \mathcal{C}, f \leq 1-g \Rightarrow f+g \in \mathcal{C}$
- G - po-group, $u \in G^{+}, \Gamma(G, u):=[0, u]$, $(\Gamma(G, u),+, 0, u)-E A($ interval EA)
- (RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.

Examples

- $\mathcal{E}(H)$ quantum mechanics
- clan: $\mathcal{C} \subseteq[0,1]^{\Omega} ;$ (i), $0,1 \in \mathcal{C}$, (ii) $f \in \mathcal{C}$ $\Rightarrow 1-f \in \mathcal{C}, f \leq 1-g \Rightarrow f+g \in \mathcal{C}$
- G - po-group, $u \in G^{+}, \Gamma(G, u):=[0, u]$, ($\Gamma(G, u),+, 0, u)$ - EA (interval EA)
- (RDP): If $c \leq a+b \exists a_{1}, b_{1} \in M$ such that $a_{1} \leq a, b_{1} \leq b$ and $c=a_{1}+b_{1}$.
- $a_{1}+a_{2}=b_{1}+b_{2}, \exists c_{11}, c_{12}, c_{21}, c_{22} \in M$ s.t. $a_{1}=c_{11}+c_{12}, a_{2}=c_{21}+c_{22}, b_{1}=c_{11}+c_{21}$, and $b_{2}=c_{21}+c_{22}$.
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- The category of EA with RDP is categorically equivalent with the category of unital interpolation po-groups
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- The category of EA with RDP is categorically equivalent with the category of unital interpolation po-groups
- $\mathcal{E}(H)$ no RDP, but $\mathcal{E}(H)=\Gamma(\mathcal{B}(H), I)$
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- The category of EA with RDP is categorically equivalent with the category of unital interpolation po-groups
- $\mathcal{E}(H)$ no RDP, but $\mathcal{E}(H)=\Gamma(\mathcal{B}(H), I)$
- $\Gamma(G, u), u$ strong unit has a state
- Ravindran: if EA M satisfies RDP, then there is a unique unital interpolation po-group (G, u) s.t. $M=\Gamma(G, u)$,
- The category of EA with RDP is categorically equivalent with the category of unital interpolation po-groups
- $\mathcal{E}(H)$ no RDP, but $\mathcal{E}(H)=\Gamma(\mathcal{B}(H), I)$
- $\Gamma(G, u), u$ strong unit has a state
- s state on $(G, u): s(u)=1, s\left(G^{+}\right) \subseteq \mathbb{R}^{+}$, $s(g+h)=s(g)+(h) \cdot \mathcal{S}(\Gamma(G, u)) \cong \mathcal{S}(G, u)$
- M- MV-algebra part. oper. + on M via $a+b$ is defined iff $a \odot b=0$ (equivalently, $a \leq b^{*}$); we set $a+b=a \oplus b$.
- M- MV-algebra part. oper. + on M via $a+b$ is defined iff $a \odot b=0$ (equivalently, $a \leq b^{*}$); we set $a+b=a \oplus b$.
- $(M ;+, 0,1)$ is an effect algebra with RDP
- M- MV-algebra part. oper. + on M via $a+b$ is defined iff $a \odot b=0$ (equivalently, $a \leq b^{*}$); we set $a+b=a \oplus b$.
- $(M ;+, 0,1)$ is an effect algebra with RDP
- perfect MV-algebras, $\Gamma(\mathbb{Z} \overrightarrow{\times} G,(1,0))$
- M- MV-algebra part. oper. + on M via $a+b$ is defined iff $a \odot b=0$ (equivalently, $a \leq b^{*}$); we set $a+b=a \oplus b$.
- $(M ;+, 0,1)$ is an effect algebra with RDP
- perfect MV-algebras, $\Gamma(\mathbb{Z} \overrightarrow{\times} G,(1,0))$
- Di Nola-Lettieri: the variety of perfect MV-algebras is categorically equivalent with the category of Abelian ℓ-groups

Pseudo Effect Algebras

- $(E ;+, 0,1)$ pseudo effect algebra, + associative

Pseudo Effect Algebras

- $(E ;+, 0,1)$ pseudo effect algebra, + associative
- $\exists!d \in E$ and $\exists!e \in E$ s.t. $a+d=e+a=1$

Pseudo Effect Algebras

- $(E ;+, 0,1)$ pseudo effect algebra, + associative
- $\exists!d \in E$ and $\exists!e \in E$ s.t. $a+d=e+a=1$
- if $a+b$ exists, $\exists d, e \in E$ s.t.
$a+b=d+a=b+e$;

Pseudo Effect Algebras

- $(E ;+, 0,1)$ pseudo effect algebra, + associative
- $\exists!d \in E$ and $\exists!e \in E$ s.t. $a+d=e+a=1$
- if $a+b$ exists, $\exists d, e \in E$ s.t.
$a+b=d+a=b+e ;$
- if $1+a$ or $a+1$ exists, then $a=0$.

Pseudo Effect Algebras

- $(E ;+, 0,1)$ pseudo effect algebra, + associative
- $\exists!d \in E$ and $\exists!e \in E$ s.t. $a+d=e+a=1$
- if $a+b$ exists, $\exists d, e \in E$ s.t.
$a+b=d+a=b+e ;$
- if $1+a$ or $a+1$ exists, then $a=0$.
- RDP if $a_{1}+a_{2}=b_{1}+b_{2} \exists d_{1}, d_{2}, d_{3}, d_{4} \in E$ s.t. $d_{1}+d_{2}=a_{1}, d_{3}+d_{4}=a_{2}, d_{1}+d_{3}=b_{1}$, $d_{2}+d_{4}=b_{2}$.
- RDP ${ }_{1}: \mathrm{RDP}+d_{2}$ com d_{3} interval
- $\mathrm{RDP}_{1}: \mathrm{RDP}+d_{2}$ com d_{3} interval
- $\mathrm{RDP}_{2}: \mathrm{RDP}+d_{2} \wedge d_{3}=0-$ pseudo MV-algebra
- $\mathrm{RDP}_{1}: \mathrm{RDP}+d_{2}$ com d_{3} interval
- $\mathrm{RDP}_{2}: \mathrm{RDP}+d_{2} \wedge d_{3}=0-$ pseudo MV-algebra
Theorem 0.4 If E is a pseudo effect algebra with $(\mathrm{RDP})_{1}, E=\Gamma(G, u)$ for some unital po-group with $\left(R D P_{1}\right)$.
If E satisfies $\left(R D P_{2}\right), E$ is a $G M V$-algebra.

Atomic Effect Algebras

- a atom: $[0, a]=\{0, a\}, A(E)$

Atomic Effect Algebras

- a atom: $[0, a]=\{0, a\}, A(E)$
- atomic $\forall x \neq 0 \exists$ atom a, s.t. $a \leq x$

Atomic Effect Algebras

- a atom: $[0, a]=\{0, a\}, A(E)$
- atomic $\forall x \neq 0 \exists$ atom a, s.t. $a \leq x$
- Abelian po group (RDP): G : $a, b_{1}, b_{2} \in G^{+}$,
$a \leq b_{1}+b_{2} \exists a_{1}, a_{2} \in G^{+} a=a_{1}+a_{a}$

Atomic Effect Algebras

- a atom: $[0, a]=\{0, a\}, A(E)$
- atomic $\forall x \neq 0 \exists$ atom a, s.t. $a \leq x$
- Abelian po group (RDP): G : $a, b_{1}, b_{2} \in G^{+}$,
$a \leq b_{1}+b_{2} \exists a_{1}, a_{2} \in G^{+} a=a_{1}+a_{a}$
- $\Leftrightarrow a_{1}, a_{2} \leq b_{1}, b_{2} \exists c$ s.t $a_{1}, a_{2} \leq c \leq b_{1}, b_{2}$ interpolation

Atomic Effect Algebras

- a atom: $[0, a]=\{0, a\}, A(E)$
- atomic $\forall x \neq 0 \exists$ atom a, s.t. $a \leq x$
- Abelian po group (RDP): G : $a, b_{1}, b_{2} \in G^{+}$,
$a \leq b_{1}+b_{2} \exists a_{1}, a_{2} \in G^{+} a=a_{1}+a_{a}$
- $\Leftrightarrow a_{1}, a_{2} \leq b_{1}, b_{2} \exists c$ s.t $a_{1}, a_{2} \leq c \leq b_{1}, b_{2}$ interpolation
- two sequences of atoms $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$, similar \exists permutation s.t. $a_{i}=b_{p_{i}}$
- unique atom representation property (UARP):
- unique atom representation property (UARP):
- $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ such that $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, then $m=n$ and the sequences $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are similar.
- unique atom representation property (UARP):
- $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ such that $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$, then $m=n$ and the sequences $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are similar.
- Theorem 0.7 Let G be an Abelian po-group G with a generative unit u fulfilling UARP and let for any $x \in G^{+}[0, u]$, there exist a finite sequence of atoms a_{1}, \ldots, a_{n} in $G^{+}[0, u]$ such that $x=a_{1}+\cdots+a_{n}$. Then the following statements hold:
(i) $G^{+}[0, u]$ satisfies RDP.
(ii) For any natural $n \geqslant 1$, the effect algebra $G^{+}[0, n u]$ satisfies RDP.
(iii) $G^{+}[0, n u]=\underbrace{G^{+}[0, u]+\cdots+G^{+}[0, u]}_{n-\text { times }}$.
(iv) The po-group G satisfies RDP.
- (i) $G^{+}[0, u]$ satisfies RDP.
(ii) For any natural $n \geqslant 1$, the effect algebra $G^{+}[0, n u]$ satisfies RDP.
(iii) $G^{+}[0, n u]=\underbrace{G^{+}[0, u]+\cdots+G^{+}[0, u]}_{n-\text { times }}$.
(iv) The po-group G satisfies RDP.
- ATTENTION: The equation
$G^{+}=\operatorname{ssg}\left(G^{+}[0, u]\right)$ does not hold in general
- (i) $G^{+}[0, u]$ satisfies RDP.
(ii) For any natural $n \geqslant 1$, the effect algebra $G^{+}[0, n u]$ satisfies RDP.
(iii) $G^{+}[0, n u]=\underbrace{G^{+}[0, u]+\cdots+G^{+}[0, u]}_{n-\text { times }}$.
n-times

- ATTENTION: The equation
$G^{+}=s s g\left(G^{+}[0, u]\right)$ does not hold in general
- The equation
$G^{+}[0, n u]=\underbrace{G^{+}[0, u]+\cdots+G^{+}[0, u]}_{n-\text { times }}$ does not
hold, in general.

Can happen $G^{+}[0, u]$ satisfies RDP, but EA
$G^{+}[0,2 u]$ not

- Can happen $G^{+}[0, u]$ satisfies RDP, but EA $G^{+}[0,2 u]$ not
- EA is orthocomplete if an arbitrary orthogonal family has a sum.
- Can happen $G^{+}[0, u]$ satisfies RDP, but EA $G^{+}[0,2 u]$ not
- EA is orthocomplete if an arbitrary orthogonal family has a sum.
- EA is σ-orthocomplete if every countable orthogonal system has a sum.
- Can happen $G^{+}[0, u]$ satisfies RDP, but EA $G^{+}[0,2 u]$ not
- EA is orthocomplete if an arbitrary orthogonal family has a sum.
- EA is σ-orthocomplete if every countable orthogonal system has a sum.
- E satisfies the chain finite condition, if every chain in E is a finite set

Theorem 0.8 If an effect algebra E with RDP satisfies the chain finite condition, then
(i) E is a finite set.
(ii) E is an $M V$-effect algebra.

- Theorem 0.10 If an effect algebra E with RDP satisfies the chain finite condition, then
(i) E is a finite set.
(ii) E is an $M V$-effect algebra.
- Theorem 0.11 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Then the following statements hold:
(i) If $a_{i}, a_{j} \in A(E)$ with $a_{i} \neq a_{j}$, then $a_{i}+a_{j}$ and $a_{i} \vee a_{j}$ exist and $a_{i}+a_{j}=a_{i} \vee a_{j}$.
(ii) For any natural number $n \geqslant 2$, the finite set of mutually different-atoms .
- $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A(E)$ is orthogonal in E and
$\sum_{i=1}^{n} a_{i}=\bigvee_{i=1}^{n} a_{i}$.
- $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A(E)$ is orthogonal in E and $\sum_{i=1}^{n} a_{i}=\bigvee_{i=1}^{n} a_{i}$.
(iii) The set $A(E)$ is an orthogonal family, and $\sum A(E)=\bigvee A(E)$.
- $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A(E)$ is orthogonal in E and $\sum_{i=1}^{n} a_{i}=\bigvee_{i=1}^{n} a_{i}$.
(iii) The set $A(E)$ is an orthogonal family, and $\sum A(E)=\bigvee A(E)$.
- Theorem 0.14 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let \imath_{i} be the isotropic index of $a_{i} \in A(E)$. The following statements hold.
- $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A(E)$ is orthogonal in E and $\sum_{i=1}^{n} a_{i}=\bigvee_{i=1}^{n} a_{i}$.
(iii) The set $A(E)$ is an orthogonal family, and $\sum A(E)=\bigvee A(E)$.
- Theorem 0.15 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let \imath_{i} be the isotropic index of $a_{i} \in A(E)$. The following statements hold.
(i) For any $a_{i} \in A(E)$, the isotropic index \imath_{i} is finite, $i \in I$.
(ii) For any $a_{i} \in A(E)$, the interval $E\left[0, \iota_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant v_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, \imath_{i} a_{i}\right\}$.
(i) For any $a_{i} \in A(E)$, the interval
$E\left[0, a_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant \imath_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, r_{i} a_{i}\right\}$.
(iii) For any distinct elements $a_{i}, a_{j} \in A(E)$, $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)$, and $\left(\imath_{i} a_{i}\right) \vee\left(\imath_{j} a_{j}\right)$ exist, and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=0$ and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=\left(\imath_{i} a_{i}\right)+\left(\imath_{j} a_{j}\right)$.
(ii) For any $a_{i} \in A(E)$, the interval $E\left[0, \imath_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant \imath_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, c_{i} a_{i}\right\}$.
(iii) For any distinct elements $a_{i}, a_{j} \in A(E)$, $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)$, and $\left(\imath_{i} a_{i}\right) \vee\left(\imath_{j} a_{j}\right)$ exist, and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=0$ and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=\left(\imath_{i} a_{i}\right)+\left(\imath_{j} a_{j}\right)$.
(iv) For any finite set of mutually distinct elements $a_{1}, \ldots, a_{n} \in A(E), n \geq 1,\left(\imath_{1} a_{1}\right)+\cdots+\left(\imath_{n} a_{n}\right)$ exists and

$$
\left(\imath_{1} a_{1}\right)+\cdots+\left(\imath_{n} a_{n}\right)_{0}=\left(\imath_{1} a_{1}\right) \vee \cdots \vee\left(\imath_{n} a_{n}\right)_{0} .
$$

(iii) The set $\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{\imath_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.
(iii) The set $\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{\imath_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.

- Theorem 0.17 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let \imath_{i} be the isotropic index of $a_{i} \in A(E)$. The following statements hold.
(iii) The set $\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{u_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.
- Theorem 0.18 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let \imath_{i} be the isotropic index of $a_{i} \in A(E)$. The following statements hold.
(i) For any $a_{i} \in A(E)$, the isotropic index \imath_{i} is finite, $i \in I$.
(ii) For any $a_{i} \in A(E)$, the interval $E\left[0, \iota_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant v_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, \imath_{i} a_{i}\right\}$.
(i) For any $a_{i} \in A(E)$, the interval
$E\left[0, a_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant \imath_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, r_{i} a_{i}\right\}$.
(iii) For any distinct elements $a_{i}, a_{j} \in A(E)$, $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)$, and $\left(\imath_{i} a_{i}\right) \vee\left(\imath_{j} a_{j}\right)$ exist, and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=0$ and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=\left(\imath_{i} a_{i}\right)+\left(\imath_{j} a_{j}\right)$.
(ii) For any $a_{i} \in A(E)$, the interval $E\left[0, \imath_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant \imath_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, c_{i} a_{i}\right\}$.
(iii) For any distinct elements $a_{i}, a_{j} \in A(E)$, $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)$, and $\left(\imath_{i} a_{i}\right) \vee\left(\imath_{j} a_{j}\right)$ exist, and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=0$ and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=\left(\imath_{i} a_{i}\right)+\left(\imath_{j} a_{j}\right)$.
(iv) For any finite set of mutually distinct elements $a_{1}, \ldots, a_{n} \in A(E), n \geq 1,\left(\imath_{1} a_{1}\right)+\cdots+\left(\imath_{n} a_{n}\right)$ exists and

$$
\left(\imath_{1} a_{1}\right)+\cdots+\left(\imath_{n} a_{n}\right)_{0}=\left(\imath_{1} a_{1}\right) \vee \cdots \vee\left(\imath_{n} a_{n}\right)_{0} .
$$

(v) The set $\left\{u_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{\imath_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.
(v) The set $\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{u_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.

- Theorem 0.20 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let r_{i} be the isotropic index of $a_{i} \in A(E)$. The following statements hold.
(v) The set $\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{\imath_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.
- Theorem 0.21 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let \imath_{i} be the isotropic index of $a_{i} \in A(E)$. The following statements hold.
(i) For any $a_{i} \in A(E)$, the isotropic index \imath_{i} is finite, $i \in I$.
(ii) For any $a_{i} \in A(E)$, the interval $E\left[0, \iota_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant v_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, \imath_{i} a_{i}\right\}$.
(i) For any $a_{i} \in A(E)$, the interval
$E\left[0, a_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant \imath_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, r_{i} a_{i}\right\}$.
(iii) For any distinct elements $a_{i}, a_{j} \in A(E)$, $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)$, and $\left(\imath_{i} a_{i}\right) \vee\left(\imath_{j} a_{j}\right)$ exist, and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=0$ and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=\left(\imath_{i} a_{i}\right)+\left(\imath_{j} a_{j}\right)$.
(ii) For any $a_{i} \in A(E)$, the interval $E\left[0, \imath_{i} a_{i}\right]=\left\{x \in E \mid 0 \leqslant x \leqslant \imath_{i} a_{i}\right\}$ equals $\left\{0, a_{i}, \ldots, c_{i} a_{i}\right\}$.
(iii) For any distinct elements $a_{i}, a_{j} \in A(E)$, $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)$, and $\left(\imath_{i} a_{i}\right) \vee\left(\imath_{j} a_{j}\right)$ exist, and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=0$ and $\left(\imath_{i} a_{i}\right) \wedge\left(\imath_{j} a_{j}\right)=\left(\imath_{i} a_{i}\right)+\left(\imath_{j} a_{j}\right)$.
(iv) For any finite set of mutually distinct elements $a_{1}, \ldots, a_{n} \in A(E), n \geq 1,\left(\imath_{1} a_{1}\right)+\cdots+\left(\imath_{n} a_{n}\right)$ exists and

$$
\left(\imath_{1} a_{1}\right)+\cdots+\left(\imath_{n} a_{n}\right)_{0}=\left(\imath_{1} a_{1}\right) \vee \cdots \vee\left(\imath_{n} a_{n}\right) .
$$

(v) The set $\left\{u_{i} a_{i} \mid a_{i} \in A(E)\right\}$ is an orthogonal system, and $\sum\left\{\imath_{i} a_{i} \mid a_{i} \in A(E)\right\}=\bigvee\left\{\imath_{i} a_{i} \mid\right.$ $\left.a_{i} \in A(E)\right\}=1$.

Applications

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.

Applications

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.
- Theorem 0.23 Let E be a monotone σ-complete atomic pseudo-effect algebra with RDP and let $A(E)$ be at most countable. Then E is a commutative PEA, i.e., E is an effect algebra.

Applications

- PEA E is monotone σ-complete provided that every ascending sequence $x_{1} \leqslant x_{2} \leqslant \cdots$ of elements in E has a supremum $x=\bigvee_{n} x_{n}$.
- Theorem 0.24 Let E be a monotone σ-complete atomic pseudo-effect algebra with $R D P$ and let $A(E)$ be at most countable. Then E is a commutative PEA, i.e., E is an effect algebra.
- A state s is σ-additive if, for any monotone sequence $\left\{a_{i}\right\}$ s.t. $\bigvee_{i} a_{i}=a$, we have $s(a)=\lim _{i} s\left(a_{i}\right)$. Or, if $a=\sum_{n_{0}} a_{n}$, then $s(a)=\sum_{m} s\left(a_{n}\right)$.

Theorem 0.25 Let E be a σ-orthocomplete atomic effect algebra with RDP and let $A(E)$ be at most countable. Let \imath_{i} be the isotropic index of $a_{i} \in A(E)$. For any $i \in I$, we define a mapping $s_{i}: E \rightarrow[0,1]$ via

$$
s_{i}(a)=\max \left\{j \mid j a_{i} \leqslant a \wedge \imath_{i} a_{i}\right\} / \imath_{i}, \quad a \in E .
$$

Then s_{i} is an extremal state on E which is also σ-addlitive. If s is a σ-additive state on E, then $s(a)=\sum_{i} \lambda_{i} s_{i}(a), a \in E$.

- Moreover, every extremal state that is also σ-additive is just of the form s_{i} for a unique i, and a state $s=s_{i}$ for some $i \in I$ if and only if $s\left(\imath_{i} a_{i}\right)=1$.

Observables

- observable: $x: \mathcal{B}(\mathbb{R}) \rightarrow E, E$ monotone σ-complete EA: (i) $x(\mathbb{R})=1$, (ii) if E and F are mutually disjoint Borel sets, then $x(E \cup F)=x(E)+x(F)$, and (iii) if $\left\{E_{i}\right\}$ is a sequence of Borel sets such that $E_{i} \subseteq E_{i+1}$ for every i and $E=\bigcup_{i} E_{i}$, then $x(E)=\bigvee_{i} x\left(E_{i}\right)$.

Observables

- observable: $x: \mathcal{B}(\mathbb{R}) \rightarrow E, E$ monotone σ-complete EA: (i) $x(\mathbb{R})=1$, (ii) if E and F are mutually disjoint Borel sets, then $x(E \cup F)=x(E)+x(F)$, and (iii) if $\left\{E_{i}\right\}$ is a sequence of Borel sets such that $E_{i} \subseteq E_{i+1}$ for every i and $E=\bigcup_{i} E_{i}$, then $x(E)=\bigvee_{i} x\left(E_{i}\right)$.
- $\left\{a_{n}: n \in N\right\}$ be a finite or infinite sequence of summable elements, $\sum_{n \in N} a_{n}=1$,

Observables

- observable: $x: \mathcal{B}(\mathbb{R}) \rightarrow E, E$ monotone σ-complete EA: (i) $x(\mathbb{R})=1$, (ii) if E and F are mutually disjoint Borel sets, then $x(E \cup F)=x(E)+x(F)$, and (iii) if $\left\{E_{i}\right\}$ is a sequence of Borel sets such that $E_{i} \subseteq E_{i+1}$ for every i and $E=\bigcup_{i} E_{i}$, then $x(E)=\bigvee_{i} x\left(E_{i}\right)$.
- $\left\{a_{n}: n \in N\right\}$ be a finite or infinite sequence of summable elements, $\sum_{n \in N} a_{n}=1$,
- $x(E):=\sum\left\{a_{n}: t_{n} \in E\right\}, E \in \mathcal{B}(\mathbb{R})$. observable
- $x_{t}:=x((-\infty, t)) t \in \mathbb{R}$
- $x_{t}:=x((-\infty, t)) t \in \mathbb{R}$
- $x_{t} \leq x_{s}$ if $t<s$, (1)
- $x_{t}:=x((-\infty, t)) t \in \mathbb{R}$
- $x_{t} \leq x_{s} \quad$ if $t<s,(1)$
- $\bigwedge_{t} x_{t}=0, \quad \bigvee_{t} x_{t}=1,(2)$
- $x_{t}:=x((-\infty, t)) t \in \mathbb{R}$
- $x_{t} \leq x_{s}$ if $t<s$, (1)
- $\bigwedge_{t} x_{t}=0, \quad \bigvee_{t} x_{t}=1,(2)$
- $\bigvee_{t<s} x_{t}=x_{s}, s \in \mathbb{R}$.(3)
- when does exists an observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R} ?$
- $x_{t}:=x((-\infty, t)) t \in \mathbb{R}$
- $x_{t} \leq x_{s}$ if $t<s$, (1)
- $\bigwedge_{t} x_{t}=0, \quad \bigvee_{t} x_{t}=1,(2)$
- $\bigvee_{t<s} x_{t}=x_{s}, s \in \mathbb{R}$.(3)
- when does exists an observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R} ?$
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.
- monotone σ-complete EA is representable if there is (Ω, \mathcal{T}, h) such that \mathcal{T} is a effect-tribe, $h: \mathcal{T} \rightarrow E$ onto
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.
- monotone σ-complete EA is representable if there is (Ω, \mathcal{T}, h) such that \mathcal{T} is a effect-tribe, $h: \mathcal{T} \rightarrow E$ onto
- Loomis-Sikorski Theorem [BCD] Every monotone σ-complete EA with RDP is a σ-epimorphic image of an effect-tribe with RDP
- A tribe is a collection $\mathcal{T} \subseteq[0,1]^{\Omega}$ s.t. (i) $1 \in \mathcal{T}$, (ii) if $f \in \mathcal{T}$, then $1-f \in \mathcal{T}$, and (iii) if $\left\{f_{n}\right\}$ is a sequence from \mathcal{T}, then $\min \left\{\sum_{n=1}^{\infty} f_{n}, 1\right\} \in \mathcal{T}$.
- monotone σ-complete EA is representable if there is (Ω, \mathcal{T}, h) such that \mathcal{T} is a effect-tribe, $h: \mathcal{T} \rightarrow E$ onto
- Loomis-Sikorski Theorem [BCD] Every monotone σ-complete EA with RDP is a σ-epimorphic image of an effect-tribe with RDP
- $\mathcal{E}(H)$ is representable .
- Theorem 0.26 ([DvKu]) If $\left\{x_{t}: t \in \mathbb{R}\right\}$ is a system of elements of a representable monotone σ-complete EA satisfying (1)-(3), there is a unique observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R}$.
- Theorem 0.27 ([DvKu]) If $\left\{x_{t}: t \in \mathbb{R}\right\}$ is a system of elements of a representable monotone σ-complete EA satisfying (1)-(3), there is a unique observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R}$.
- The same is true if: $E=\mathcal{E}(H)$
- Theorem 0.28 ([DVKu]) If $\left\{x_{t}: t \in \mathbb{R}\right\}$ is a system of elements of a representable monotone σ-complete EA satisfying (1)-(3), there is a unique observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R}$.
- The same is true if: $E=\mathcal{E}(H)$
- E is a σ-lattice EA
- Theorem 0.29 ([DVKu]) If $\left\{x_{t}: t \in \mathbb{R}\right\}$ is a system of elements of a representable monotone σ-complete EA satisfying (1)-(3), there is a unique observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R}$.
- The same is true if: $E=\mathcal{E}(H)$
- E is a σ-lattice EA
- E is a Boolean σ-algebra, and x preserves \bigcup
- Theorem 0.30 ([DVKu]) If $\left\{x_{t}: t \in \mathbb{R}\right\}$ is a system of elements of a representable monotone σ-complete EA satisfying (1)-(3), there is a unique observable x such that $x_{t}=x((-\infty, t)), t \in \mathbb{R}$.
- The same is true if: $E=\mathcal{E}(H)$
- E is a σ-lattice EA
- E is a Boolean σ-algebra, and x preserves \cup
- $E \sigma$-orthocomplete orthomodular poset

Thank you for your attention

References

[Cha] C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
[Dvu1] A. Dvurečenskij, Pseudo MV-algebras are intervals in €-groups, J. Austral. Math. Soc. Ser. 72 (2002), 427445.
[Dvu1] A. Dvurečenskij, Loomis-Sikorski theorem for σ complete $M V$-algebras and ℓ-groups, J. Austral. Math. Soc. Ser. A 68 (2000), 261-277.
[DvHo1] A. Dvurečenskij, W.C. Holland, Top varieties of generalized MV-algebras and unital lattice-ordered groups, Comm. Algebra 35 (2007), 3370-3390.
[BCD] D. Buhagiar, E. Chetcuti, A. Dvurečenskij, LoomisSikorski representation of monotone σ-complete effect algebras, Fuzzy Sets and Systems 157 (2006), 683-690.
[1] Foulis, D.J., Bennett, M.K. (1994), Effect algebras and unsharp quantum logics. Found. Phys. 24 1325-1346.
[DvKu] A. Dvurečenskij, M. Kuková, Observables on quantum structures,
[2] Dvurečenskij, A., Pulmannová, S. (2000), "New Trends in Quantum Structures". Kluwer Academic Publ., Dordrecht, Ister Science, Bratislava, 2000, 541 + xvi pp.
[3] Dvurečenskij, A., Vetterlein, T. (2001), Pseudoeffect algebas. I. Basic properties. Inter. J. Theor. Phys. 40, 685-701.
[4] Dvurečenskij, A., Vetterlein, T. (2001) Pseudoeffect algebras. II. Group representation. Inter. J. Theor. Phys. 40, 703-726.
[5] Dvurečenskij, A., Xie, Y. (2012), Atomic effect algebras with the Riesz decomposition property, Found. Phys., to appear. DOI: 10.1007/s10701-012-9655-7
[Gelo] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Multiple Val. Logic 6 (2001), 95-135.
[Kom] Y. Komori, Super Lukasiewicz propositional logics, Nagoya Math. J. 84 (1981), 119-133.
[Mun] D. Mundici, Interpretation of AF C^{*}-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.
[Rac] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255273.

