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Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world
• Heisenberg Uncertainty Principle

σs(x)σs(y) ≥ ~ > 0.

x-momentum, y position of elementary
particle, s state -probability measure

• for classical mechanics

inf
s
(σs(x)σs(y)) = 0.

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 2



• Hilbert, 1900, inspired by the axiomatical
system of geometry by Euclideus, formulated
his Sixth Problem as follows:
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of geometry, can describe a theory for a class of
physical events that is as large as possible.
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• To find a few physical axioms that, similar to the axioms
of geometry, can describe a theory for a class of
physical events that is as large as possible.

• Kolmogorov, probability theory, 1933, 79
years !!!
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• Hilbert, 1900, inspired by the axiomatical
system of geometry by Euclideus, formulated
his Sixth Problem as follows:

• To find a few physical axioms that, similar to the axioms
of geometry, can describe a theory for a class of
physical events that is as large as possible.

• Kolmogorov, probability theory, 1933, 79
years !!!

• G. Birkhoff and J. von Neumann, 1936
quantum logic
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Quantum structures

• Boolean algebras
• Orthomodular lattices
• Hilbert space H, L(H) the system of all

closed subspaces of H
• Orthomodular posets
• D-posets -Kopka and Chovanec 1992
• effect algebras
• MV-algebras - compatibility
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MV-algebras

• MV-algebras were introduced in 1958 by Chang
• more than half century !!!
• Aim: to give an algebraic proof of the

completeness of the Łukasiewicz
infinite-valued sentential calculus.
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• MV-algebra (M ;⊕,∗ , 0) of type 〈2, 1, 0〉 such
that
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• MV-algebra (M ;⊕,∗ , 0) of type 〈2, 1, 0〉 such
that

• 1. x⊕ (y ⊕ z) = (x⊕ y)⊕ z

2. x⊕ y = y ⊕ x

3. x⊕ 0 = x

4. x∗∗ = x

5. x⊕ 0∗ = 0∗

6. (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.
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• unital Abelian ℓ-group (G, u), u strong unit.

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 7



• unital Abelian ℓ-group (G, u), u strong unit.

• Γ(G, u) := [0, u]

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 7



• unital Abelian ℓ-group (G, u), u strong unit.

• Γ(G, u) := [0, u]

•

x⊕ y = (x+ y) ∧ u

x∗ = u− x
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• unital Abelian ℓ-group (G, u), u strong unit.

• Γ(G, u) := [0, u]

•

x⊕ y = (x+ y) ∧ u

x∗ = u− x

• (Γ(G, u),⊕,∗ , 0) - prototypical example of
MV-algebras
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• Mundici, 1986: there is a categorical
equivalence between the variety of
MV-algebras and the category of unital
Abelian ℓ-groups
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• Mundici, 1986: there is a categorical
equivalence between the variety of
MV-algebras and the category of unital
Abelian ℓ-groups

• New look at the category of unital Abelian
ℓ-groups

• Komori 1981: Every proper variety of
GMV-algebras is generated by finitely many
Γ(Z, n) or Γ(Z

−→
× Z, (n, 0))

• Only countably many of subvarieties
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GMV-algebras

• Georgescu and Iorgulescu [GeIo] (pseudo
MV-algebras), Rachunek [Rac] (generalized
MV-algebras) - 1999
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GMV-algebras

• Georgescu and Iorgulescu [GeIo] (pseudo
MV-algebras), Rachunek [Rac] (generalized
MV-algebras) - 1999

• GMV-algebra is an algebra (M ;⊕,− ,∼ , 0, 1) of
type (2, 1, 1, 0, 0) with an additional binary
operation ⊙ defined via

y ⊙ x = (x− ⊕ y−)∼
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(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;

(A4) 1∼ = 0; 1− = 0;

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(A6) x⊕ (x∼ ⊙ y) = y ⊕ (y∼ ⊙ x) = (x⊙ y−)⊕ y =
(y ⊙ x−)⊕ x;

(A7) x⊙ (x− ⊕ y) = (x⊕ y∼)⊙ y;

(A8) (x−)∼ = x.
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•

x ≤ y iff x− ⊕ y = 1

• M – distributive lattice
• x ∨ y = x⊕ (x∼ ⊙ y) and x ∧ y = x⊙ (x− ⊕ y).

• GMV-algebra M is an MV-algebra iff
x⊕ y = y ⊕ x for all x, y ∈ M.
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•

x ≤ y iff x− ⊕ y = 1

• M – distributive lattice
• x ∨ y = x⊕ (x∼ ⊙ y) and x ∧ y = x⊙ (x− ⊕ y).

• GMV-algebra M is an MV-algebra iff
x⊕ y = y ⊕ x for all x, y ∈ M.

• a partial operation + on M : a+ b = a⊕ b iff
a⊙ b = 0 iff a ≤ b− iff b ≤ a∼.

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 11



(G, u) unital ℓ-group, u strong unit
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(G, u) unital ℓ-group, u strong unit

Γ(G, u) := [0, u]

x⊕ y := (x+ y) ∧ u,

x− := u− x,

x∼ := −x+ u,

x⊙ y := (x− u+ y) ∨ 0,
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(G, u) unital ℓ-group, u strong unit

Γ(G, u) := [0, u]

x⊕ y := (x+ y) ∧ u,

x− := u− x,

x∼ := −x+ u,

x⊙ y := (x− u+ y) ∨ 0,

(Γ(G, u);⊕,− ,∼ , 0, u) is a GMV-algebra.

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 12



Theorem 0.1 [Dvu 2002] For any GMV-algebra M ,
there exists a unique (up to isomorphism) unital
ℓ-group G with a strong unit u such that
M ∼= Γ(G, u).
The functor Γ defines a categorical equivalence
between the category of GMV-algebras and the
category of unital ℓ-groups.

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 13



G+

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 14



G+

c u
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Effect Algebras

• Foulis Bennet, EA is a partial algebra
(M ; +, 0, 1) (i) + is associative and
commutative
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• and a+ 1 implies a = 0.
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Effect Algebras

• Foulis Bennet, EA is a partial algebra
(M ; +, 0, 1) (i) + is associative and
commutative

• for ∀ a ∈ M ∃ ! a′ ∈ M s.t. a+ a′ = 1,

• and a+ 1 implies a = 0.

• Kôpka-Chovanec D-posets
• the same structures + vs −

• Boolean algebra, OML: a+ b ∃ iff a ≤ b′,
a+ b := a ∨ b
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Examples

• E(H) quantum mechanics

• clan: C ⊆ [0, 1]Ω; (i), 0, 1 ∈ C, (ii) f ∈ C
⇒ 1− f ∈ C, f ≤ 1− g ⇒ f + g ∈ C

• G - po-group, u ∈ G+, Γ(G, u) := [0, u],
(Γ(G, u),+, 0, u) - EA (interval EA)

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.
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Examples

• E(H) quantum mechanics

• clan: C ⊆ [0, 1]Ω; (i), 0, 1 ∈ C, (ii) f ∈ C
⇒ 1− f ∈ C, f ≤ 1− g ⇒ f + g ∈ C

• G - po-group, u ∈ G+, Γ(G, u) := [0, u],
(Γ(G, u),+, 0, u) - EA (interval EA)

• (RDP): If c ≤ a+ b ∃ a1, b1 ∈ M such that
a1 ≤ a, b1 ≤ b and c = a1 + b1.

• a1 + a2 = b1 + b2, ∃ c11, c12, c21, c22 ∈ M s.t.
a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and
b2 = c21 + c22.
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),
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interpolation po-groups
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is a unique unital interpolation po-group
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• The category of EA with RDP is categorically
equivalent with the category of unital
interpolation po-groups

• E(H) no RDP, but E(H) = Γ(B(H), I)

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 17
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equivalent with the category of unital
interpolation po-groups
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• Ravindran: if EA M satisfies RDP, then there
is a unique unital interpolation po-group
(G, u) s.t. M = Γ(G, u),

• The category of EA with RDP is categorically
equivalent with the category of unital
interpolation po-groups

• E(H) no RDP, but E(H) = Γ(B(H), I)

• Γ(G, u), u strong unit has a state

• s state on (G, u): s(u) = 1, s(G+) ⊆ R
+,

s(g + h) = s(g) + (h). S(Γ(G, u)) ∼= S(G, u)
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• M - MV-algebra part. oper. + on M via a+ b
is defined iff a⊙ b = 0 (equivalently, a ≤ b∗);
we set a+ b = a⊕ b.
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is defined iff a⊙ b = 0 (equivalently, a ≤ b∗);
we set a+ b = a⊕ b.

• (M ; +, 0, 1) is an effect algebra with RDP

• perfect MV-algebras, Γ(Z
−→
× G, (1, 0))
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• M - MV-algebra part. oper. + on M via a+ b
is defined iff a⊙ b = 0 (equivalently, a ≤ b∗);
we set a+ b = a⊕ b.

• (M ; +, 0, 1) is an effect algebra with RDP

• perfect MV-algebras, Γ(Z
−→
× G, (1, 0))

• Di Nola-Lettieri: the variety of perfect
MV-algebras is categorically equivalent with
the category of Abelian ℓ-groups
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Pseudo Effect Algebras

• (E; +, 0, 1) pseudo effect algebra, +
associative
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Pseudo Effect Algebras

•• (E; +, 0, 1) pseudo effect algebra, +
associative

• ∃ ! d ∈ E and ∃ ! e ∈ E s.t. a+ d = e+ a = 1
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Pseudo Effect Algebras

•• (E; +, 0, 1) pseudo effect algebra, +
associative

• ∃ ! d ∈ E and ∃ ! e ∈ E s.t. a+ d = e+ a = 1

• if a+ b exists, ∃ d, e ∈ E s.t.
a+ b = d+ a = b+ e;
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Pseudo Effect Algebras

•• (E; +, 0, 1) pseudo effect algebra, +
associative

• ∃ ! d ∈ E and ∃ ! e ∈ E s.t. a+ d = e+ a = 1

• if a+ b exists, ∃ d, e ∈ E s.t.
a+ b = d+ a = b+ e;

• if 1 + a or a+ 1 exists, then a = 0.
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Pseudo Effect Algebras

•• (E; +, 0, 1) pseudo effect algebra, +
associative

• ∃ ! d ∈ E and ∃ ! e ∈ E s.t. a+ d = e+ a = 1

• if a+ b exists, ∃ d, e ∈ E s.t.
a+ b = d+ a = b+ e;

• if 1 + a or a+ 1 exists, then a = 0.
• RDP if a1 + a2 = b1 + b2 ∃ d1, d2, d3, d4 ∈ E s.t.
d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1,
d2 + d4 = b2.
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•• RDP1: RDP + d2 com d3 interval

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 20



• RDP1: RDP + d2 com d3 interval
• RDP2: RDP + d2 ∧ d3 = 0 - pseudo

MV-algebra
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• RDP1: RDP + d2 com d3 interval
• RDP2: RDP + d2 ∧ d3 = 0 - pseudo

MV-algebra
• Theorem 0.4 If E is a pseudo effect algebra

with (RDP)1, E = Γ(G, u) for some unital
po-group with (RDP1).
If E satisfies (RDP2), E is a GMV-algebra.
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Atomic Effect Algebras

• a atom: [0, a] = {0, a}, A(E)
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Atomic Effect Algebras

• a atom: [0, a] = {0, a}, A(E)

• atomic ∀ x 6= 0 ∃ atom a, s.t. a ≤ x

• Abelian po group (RDP): G: a, b1, b2 ∈ G+,
a ≤ b1 + b2 ∃ a1, a2 ∈ G+ a = a1 + aa
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Atomic Effect Algebras

• a atom: [0, a] = {0, a}, A(E)

• atomic ∀ x 6= 0 ∃ atom a, s.t. a ≤ x

• Abelian po group (RDP): G: a, b1, b2 ∈ G+,
a ≤ b1 + b2 ∃ a1, a2 ∈ G+ a = a1 + aa

• ⇔ a1, a2 ≤ b1, b2 ∃ c s.t a1, a2 ≤ c ≤ b1, b2 -
interpolation
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Atomic Effect Algebras

• a atom: [0, a] = {0, a}, A(E)

• atomic ∀ x 6= 0 ∃ atom a, s.t. a ≤ x

• Abelian po group (RDP): G: a, b1, b2 ∈ G+,
a ≤ b1 + b2 ∃ a1, a2 ∈ G+ a = a1 + aa

• ⇔ a1, a2 ≤ b1, b2 ∃ c s.t a1, a2 ≤ c ≤ b1, b2 -
interpolation

• two sequences of atoms (a1, . . . , an) and
(b1, . . . , bn), similar ∃ permutation s.t. ai = bpi
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• unique atom representation property (UARP):
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• unique atom representation property (UARP):
• (a1, . . . , am) and (b1, . . . , bn) such that
∑m

i=1
ai =

∑n
j=1

bj, then m = n and the
sequences (a1, . . . , an) and (b1, . . . , bn) are
similar.
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• unique atom representation property (UARP):
• (a1, . . . , am) and (b1, . . . , bn) such that
∑m

i=1
ai =

∑n
j=1

bj, then m = n and the
sequences (a1, . . . , an) and (b1, . . . , bn) are
similar.

• Theorem 0.7 Let G be an Abelian po-group
G with a generative unit u fulfilling UARP and
let for any x ∈ G+[0, u], there exist a finite
sequence of atoms a1, . . . , an in G+[0, u] such
that x = a1 + · · ·+ an. Then the following
statements hold:
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• (i) G+[0, u] satisfies RDP.
(ii) For any natural n > 1, the effect algebra

G+[0, nu] satisfies RDP.
(iii) G+[0, nu] = G+[0, u] + · · ·+G+[0, u]

︸ ︷︷ ︸
n−times

.

(iv) The po-group G satisfies RDP.
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• (i) G+[0, u] satisfies RDP.
(ii) For any natural n > 1, the effect algebra

G+[0, nu] satisfies RDP.
(iii) G+[0, nu] = G+[0, u] + · · ·+G+[0, u]

︸ ︷︷ ︸
n−times

.

(iv) The po-group G satisfies RDP.
• ATTENTION: The equation
G+ = ssg(G+[0, u]) does not hold in general
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• (i) G+[0, u] satisfies RDP.
(ii) For any natural n > 1, the effect algebra

G+[0, nu] satisfies RDP.
(iii) G+[0, nu] = G+[0, u] + · · ·+G+[0, u]

︸ ︷︷ ︸
n−times

.

(iv) The po-group G satisfies RDP.
• ATTENTION: The equation
G+ = ssg(G+[0, u]) does not hold in general

• The equation
G+[0, nu] = G+[0, u] + · · ·+G+[0, u]

︸ ︷︷ ︸
n−times

does not

hold, in general.
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• Can happen G+[0, u] satisfies RDP, but EA
G+[0, 2u] not
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• Can happen G+[0, u] satisfies RDP, but EA
G+[0, 2u] not

• EA is orthocomplete if an arbitrary orthogonal
family has a sum.
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• Can happen G+[0, u] satisfies RDP, but EA
G+[0, 2u] not

• EA is orthocomplete if an arbitrary orthogonal
family has a sum.

• EA is σ-orthocomplete if every countable
orthogonal system has a sum.
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• Can happen G+[0, u] satisfies RDP, but EA
G+[0, 2u] not

• EA is orthocomplete if an arbitrary orthogonal
family has a sum.

• EA is σ-orthocomplete if every countable
orthogonal system has a sum.

• E satisfies the chain finite condition, if every
chain in E is a finite set
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• Theorem 0.8 If an effect algebra E with RDP
satisfies the chain finite condition, then
(i) E is a finite set.
(ii) E is an MV-effect algebra.
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• Theorem 0.10 If an effect algebra E with
RDP satisfies the chain finite condition, then
(i) E is a finite set.
(ii) E is an MV-effect algebra.

• Theorem 0.11 Let E be a σ-orthocomplete
atomic effect algebra with RDP and let A(E)
be at most countable. Then the following
statements hold:
(i) If ai, aj ∈ A(E) with ai 6= aj, then ai + aj

and ai ∨ aj exist and ai + aj = ai ∨ aj.
(ii) For any natural number n > 2, the finite set

of mutually different atoms
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• {a1, . . . , an} ⊆ A(E) is orthogonal in E and
∑n

i=1
ai =

∨n
i=1

ai.
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• {a1, . . . , an} ⊆ A(E) is orthogonal in E and
∑n

i=1
ai =

∨n
i=1

ai.

(iii) The set A(E) is an orthogonal family, and
∑

A(E) =
∨
A(E).
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• {a1, . . . , an} ⊆ A(E) is orthogonal in E and
∑n

i=1
ai =

∨n
i=1

ai.

(iii) The set A(E) is an orthogonal family, and
∑

A(E) =
∨
A(E).

• Theorem 0.14 Let E be a σ-orthocomplete
atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). The following statements
hold.
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• {a1, . . . , an} ⊆ A(E) is orthogonal in E and
∑n

i=1
ai =

∨n
i=1

ai.

(iii) The set A(E) is an orthogonal family, and
∑

A(E) =
∨
A(E).

• Theorem 0.15 Let E be a σ-orthocomplete
atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). The following statements
hold.

(i) For any ai ∈ A(E), the isotropic index ıi is
finite, i ∈ I.
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.

(iii) For any distinct elements ai, aj ∈ A(E),
(ıiai) ∧ (ıjaj), and (ıiai) ∨ (ıjaj) exist, and
(ıiai) ∧ (ıjaj) = 0 and
(ıiai) ∧ (ıjaj) = (ıiai) + (ıjaj).
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.

(iii) For any distinct elements ai, aj ∈ A(E),
(ıiai) ∧ (ıjaj), and (ıiai) ∨ (ıjaj) exist, and
(ıiai) ∧ (ıjaj) = 0 and
(ıiai) ∧ (ıjaj) = (ıiai) + (ıjaj).

(iv) For any finite set of mutually distinct elements
a1, . . . , an ∈ A(E), n ≥ 1, (ı1a1) + · · ·+ (ınan)
exists and
(ı1a1) + · · ·+ (ınan) = (ı1a1) ∨ · · · ∨ (ınan).
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(iii) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
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(iii) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
• Theorem 0.17 Let E be a σ-orthocomplete

atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). The following statements
hold.
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(iii) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
• Theorem 0.18 Let E be a σ-orthocomplete

atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). The following statements
hold.

(i) For any ai ∈ A(E), the isotropic index ıi is
finite, i ∈ I.
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.

(iii) For any distinct elements ai, aj ∈ A(E),
(ıiai) ∧ (ıjaj), and (ıiai) ∨ (ıjaj) exist, and
(ıiai) ∧ (ıjaj) = 0 and
(ıiai) ∧ (ıjaj) = (ıiai) + (ıjaj).
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.

(iii) For any distinct elements ai, aj ∈ A(E),
(ıiai) ∧ (ıjaj), and (ıiai) ∨ (ıjaj) exist, and
(ıiai) ∧ (ıjaj) = 0 and
(ıiai) ∧ (ıjaj) = (ıiai) + (ıjaj).

(iv) For any finite set of mutually distinct elements
a1, . . . , an ∈ A(E), n ≥ 1, (ı1a1) + · · ·+ (ınan)
exists and
(ı1a1) + · · ·+ (ınan) = (ı1a1) ∨ · · · ∨ (ınan).
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(v) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
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(v) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
• Theorem 0.20 Let E be a σ-orthocomplete

atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). The following statements
hold.

Recent Results on Commutative and Non-Commutative Effect Algebras – p. 30



(v) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
• Theorem 0.21 Let E be a σ-orthocomplete

atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). The following statements
hold.

(i) For any ai ∈ A(E), the isotropic index ıi is
finite, i ∈ I.
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.

(iii) For any distinct elements ai, aj ∈ A(E),
(ıiai) ∧ (ıjaj), and (ıiai) ∨ (ıjaj) exist, and
(ıiai) ∧ (ıjaj) = 0 and
(ıiai) ∧ (ıjaj) = (ıiai) + (ıjaj).
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(ii) For any ai ∈ A(E), the interval
E[0, ıiai] = {x ∈ E | 0 6 x 6 ıiai} equals
{0, ai, . . . , ıiai}.

(iii) For any distinct elements ai, aj ∈ A(E),
(ıiai) ∧ (ıjaj), and (ıiai) ∨ (ıjaj) exist, and
(ıiai) ∧ (ıjaj) = 0 and
(ıiai) ∧ (ıjaj) = (ıiai) + (ıjaj).

(iv) For any finite set of mutually distinct elements
a1, . . . , an ∈ A(E), n ≥ 1, (ı1a1) + · · ·+ (ınan)
exists and
(ı1a1) + · · ·+ (ınan) = (ı1a1) ∨ · · · ∨ (ınan).
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(v) The set {ıiai | ai ∈ A(E)} is an orthogonal
system, and

∑
{ıiai | ai ∈ A(E)} =

∨
{ıiai |

ai ∈ A(E)} = 1.
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Applications

• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.
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Applications

• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.

• Theorem 0.23 Let E be a monotone
σ-complete atomic pseudo-effect algebra with
RDP and let A(E) be at most countable.
Then E is a commutative PEA, i.e., E is an
effect algebra.
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Applications

• PEA E is monotone σ-complete provided that
every ascending sequence x1 6 x2 6 · · · of
elements in E has a supremum x =

∨

n xn.

• Theorem 0.24 Let E be a monotone
σ-complete atomic pseudo-effect algebra with
RDP and let A(E) be at most countable.
Then E is a commutative PEA, i.e., E is an
effect algebra.

• A state s is σ-additive if, for any monotone
sequence {ai} s.t.

∨

i ai = a, we have
s(a) = limi s(ai). Or, if a =

∑

n an, then
s(a) =

∑

n s(an). Recent Results on Commutative and Non-Commutative Effect Algebras – p. 33



• Theorem 0.25 Let E be a σ-orthocomplete
atomic effect algebra with RDP and let A(E)
be at most countable. Let ıi be the isotropic
index of ai ∈ A(E). For any i ∈ I, we define a
mapping si : E → [0, 1] via

si(a) = max{j | jai 6 a ∧ ıiai}/ıi, a ∈ E.

Then si is an extremal state on E which is
also σ-additive. If s is a σ-additive state on E,
then s(a) =

∑

i λisi(a), a ∈ E.
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• Moreover, every extremal state that is also
σ-additive is just of the form si for a unique i,
and a state s = si for some i ∈ I if and only if
s(ıiai) = 1.
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Observables

• observable: x : B(R) → E, E monotone
σ-complete EA: (i) x(R) = 1, (ii) if E and F
are mutually disjoint Borel sets, then
x(E ∪ F ) = x(E) + x(F ), and (iii) if {Ei} is a
sequence of Borel sets such that Ei ⊆ Ei+1 for
every i and E =

⋃

iEi, then x(E) =
∨

i x(Ei).
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Observables

• observable: x : B(R) → E, E monotone
σ-complete EA: (i) x(R) = 1, (ii) if E and F
are mutually disjoint Borel sets, then
x(E ∪ F ) = x(E) + x(F ), and (iii) if {Ei} is a
sequence of Borel sets such that Ei ⊆ Ei+1 for
every i and E =

⋃

iEi, then x(E) =
∨

i x(Ei).

• {an : n ∈ N} be a finite or infinite sequence of
summable elements,

∑

n∈N an = 1,
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Observables

• observable: x : B(R) → E, E monotone
σ-complete EA: (i) x(R) = 1, (ii) if E and F
are mutually disjoint Borel sets, then
x(E ∪ F ) = x(E) + x(F ), and (iii) if {Ei} is a
sequence of Borel sets such that Ei ⊆ Ei+1 for
every i and E =

⋃

iEi, then x(E) =
∨

i x(Ei).

• {an : n ∈ N} be a finite or infinite sequence of
summable elements,

∑

n∈N an = 1,

• x(E) :=
∑

{an : tn ∈ E}, E ∈ B(R).
observable
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• xt := x((−∞, t)) t ∈ R
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• xt := x((−∞, t)) t ∈ R

• xt ≤ xs if t < s, (1)
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• xt := x((−∞, t)) t ∈ R

• xt ≤ xs if t < s, (1)

•
∧

t xt = 0,
∨

t xt = 1, (2)
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• xt := x((−∞, t)) t ∈ R

• xt ≤ xs if t < s, (1)

•
∧

t xt = 0,
∨

t xt = 1, (2)

•
∨

t<s xt = xs, s ∈ R.(3)

• when does exists an observable x such that
xt = x((−∞, t)), t ∈ R ?
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• xt := x((−∞, t)) t ∈ R

• xt ≤ xs if t < s, (1)

•
∧

t xt = 0,
∨

t xt = 1, (2)

•
∨

t<s xt = xs, s ∈ R.(3)

• when does exists an observable x such that
xt = x((−∞, t)), t ∈ R ?
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• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1

fn, 1} ∈ T .
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• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1

fn, 1} ∈ T .

• monotone σ-complete EA is representable if
there is (Ω, T , h) such that T is a effect-tribe,
h : T → E onto
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• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1

fn, 1} ∈ T .

• monotone σ-complete EA is representable if
there is (Ω, T , h) such that T is a effect-tribe,
h : T → E onto

• Loomis-Sikorski Theorem [BCD] Every
monotone σ-complete EA with RDP is a
σ-epimorphic image of an effect-tribe with
RDP
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• A tribe is a collection T ⊆ [0, 1]Ω s.t. (i) 1 ∈ T ,
(ii) if f ∈ T , then 1− f ∈ T , and (iii) if {fn} is a
sequence from T , then min{

∑∞
n=1

fn, 1} ∈ T .

• monotone σ-complete EA is representable if
there is (Ω, T , h) such that T is a effect-tribe,
h : T → E onto

• Loomis-Sikorski Theorem [BCD] Every
monotone σ-complete EA with RDP is a
σ-epimorphic image of an effect-tribe with
RDP

• E(H) is representable
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• Theorem 0.26 ([DvKu]) If {xt : t ∈ R} is a
system of elements of a representable
monotone σ-complete EA satisfying (1)-(3),
there is a unique observable x such that
xt = x((−∞, t)), t ∈ R.
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• Theorem 0.27 ([DvKu]) If {xt : t ∈ R} is a
system of elements of a representable
monotone σ-complete EA satisfying (1)-(3),
there is a unique observable x such that
xt = x((−∞, t)), t ∈ R.

• The same is true if: E = E(H)
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• Theorem 0.28 ([DvKu]) If {xt : t ∈ R} is a
system of elements of a representable
monotone σ-complete EA satisfying (1)-(3),
there is a unique observable x such that
xt = x((−∞, t)), t ∈ R.

• The same is true if: E = E(H)

• E is a σ-lattice EA
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• Theorem 0.29 ([DvKu]) If {xt : t ∈ R} is a
system of elements of a representable
monotone σ-complete EA satisfying (1)-(3),
there is a unique observable x such that
xt = x((−∞, t)), t ∈ R.

• The same is true if: E = E(H)

• E is a σ-lattice EA
• E is a Boolean σ-algebra, and x preserves

⋃
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• Theorem 0.30 ([DvKu]) If {xt : t ∈ R} is a
system of elements of a representable
monotone σ-complete EA satisfying (1)-(3),
there is a unique observable x such that
xt = x((−∞, t)), t ∈ R.

• The same is true if: E = E(H)

• E is a σ-lattice EA
• E is a Boolean σ-algebra, and x preserves

⋃

• E σ-orthocomplete orthomodular poset
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Thank you for your attention
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