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Motivation and Goals

On the one hand concept lattices are a nice tool for
semiautomatic generation of taxonomies and ontologies, and
just for clustering data

On the other hand there can be exponentially many concepts
as compared to the context size

Let us keep only few “best” concepts

But what does “best” mean?
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Selection criteria

Selecting concepts wrt.

intent and extent size constraints [Kuznetsov 1989], [Stumme
2000] (iceberg lattices)

concept stability [Kuznetsov 1990], [Obiedkov, Roth 2006]

concept separation [Klimushkin et al. 2010]

concept probability [Klimushkin et al. 2010] (rediscovered
concept probability from [Emillion 2008]
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Stability definition

Let K = (G ,M, I ) be a formal context and (A,B) be a formal
concept of K.

Definition

The intentional stability σin(A,B) of (A,B), or σin(A), is defined
as follows:

σin(A,B) =
|C ⊆ A | C ′ = B|

2|A|

Definition

The extentional stability σex(A,B) of (A,B), or σex(B), is defined
as follows:

σex(A,B) =
|C ⊆ B | C ′′ = B|

2|B|
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Stability applications

Stability is a very useful tool for selecting interesting concepts of
the concept lattice. Here are some examples:

Study of defects in plastic production (S.Kuznetsov, 1990)

Study of epistemic communities (S.Obiedkov, C. Roth et al.
2006-2008)

Choosing cure trajectory (N.Jay et al., 2008)

Filtering noise in contexts (M.Klimushkin et al., 2010)

Categorizing French verbs (I.Falk et al., 2011)
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Restructuring Möbius function: An approach based on
concept stability

The numerator of intensional stability γ(A,B) = |C ⊆ A | C ′ = B|
is the number of all generators of the concept (A,B), so

2|A| =
∑

(C ,D)≤(A,B)

γ(C ,D)

γ(A,B) =
∑

(C ,D)≤(A,B)

2|C |µ((C ,D), (A,B)),

where µ(A,B) is the Möbis function of the concept lattice.
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Complexity of computing stability

Given a context (G ,M, I ) and a concept (A,B), the problems
of computing σin(A,B) and σex(A,B) are #P-complete

Definition: A counting problem is in #P if there is a
non-deterministic, polynomial time Turing machine that, for each
instance I of the problem, has a number of accepting computations
that is exactly equal to the number of distinct solutions for
instance I .

Examples of #P-complete problems:

Given a matrix, output its permanent

Given a bipartite graph, output the number of its perfect
matchings

Given a CNF, output the number of its satisfying assignments

Given a graph, output the number of its vertex covers

Given a context, output the number of its concepts
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FPRAS

Many counting problems that are #P-complete can be solved
approximately by randomized polynomial algorithms

Definition

Fully Polynomial Randomized Approximation Scheme (FPRAS)

time complexity is polynomial in |INPUT | and ε−1

Pr [(1− ε) · ans ≤ N ≤ (1 + ε) · ans)] ≥ 3
4

Example: Number of truth assignments of a DNF (#DNF)
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FPRAS

What about approximations with a fixed constant factor? (the
approximation with any factor 1± ε seems to be too strong
condition)

If we have an algorithm for a #P-complete problem with
polynomial approximation
(q(|INPUT |) · ans ≤ N ≤ p(|INPUT |) · ans), where ans is the
exact value being approximated, then there is an FPRAS.

Why randomized?

For #P-complete problems no deterministic approximate algorithm
is known.
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Counting independent sets

Given a hypergraph G = (V , E), E = {E1, . . . ,Em},
U ⊆ V is called independent set if Ei * U, 1 ≤ i ≤ m,
U ⊆ V is called coindependent set if U * Ei , 1 ≤ i ≤ m.

Counting independent set (#IS)
INPUT: A hypergraph G
OUTPUT: The number of independent sets (of all sizes) of G

There is no FPRAS for #IS, unless NP = RP (still hard even in
the case of graphs)
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Counting non-closed sets

Counting non-closed sets (#NC)
INPUT: A formal context K = (G ,M, I ).
OUTPUT: The number of sets B ⊆ M that B ′′ 6= B

For any hypergraph G it is easy to construct a context KG such
that set A is closed iff A is a subset of some hyperedge of G .

Proposition

There is no FPRAS for #NC unless NP = RP
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Approximate stability

Exact computing of concept stability is #P-complete, but can it be
computed approximately with FPRAS?

There is no FPRAS for stability computation (unless NP = RP),
since otherwise there would have been an FPRAS for #NC.

However we can approximate stability with bounded absolute error
using Monte-Carlo approach. By definition, σ(A) = Pr(X ′′ = A),
where X is chosen uniformly random from subsets of A.
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Monte-Carlo method

GetStability(A,N)

1 answer ← 0
2 for i ← 1 to N
3 do pick random subset X of A
4 if X ′′ = A
5 then answer ← answer +1
6 answer ← answer

N
7 return answer
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Experimental results on random contexts

The Y -axis (Error) gives the relative error

|S(K, σ̃, σθ)∆S(K, σ, σθ)|/|S(K, σ, σθ)|.

S(K, σ, σθ) denotes the set of all concepts with stability σ ≥ σθ;
S(K, σ̃, σθ) denotes the set of all concepts with approximate
stability σ̃ ≥ σθ, where σθ is a parameter (stability threshold).
For every pair g ∈ G , m ∈ M of a random context K = (G ,M, I )
one has (g ,m) ∈ I with probability d called context density.
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Experimental results on random contexts

Figure: Approximation quality for random contexts 100× 30 with density
0.3
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Experimental results on random contexts

Figure: Approximation quality for random contexts 150× 30 with density
0.2
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Summary for Algorithmic Complexity of Stability

The problem of computing stability of a concept is
#P-complete

Given a context, no FPRAS for counting non-closed subsets of
attributes (objects) is possible unless RP = NP

An approximate algorithm for computing stability, which can
run in reasonable time for approximations with bounded ab-
solute error, was proposed
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Concept Separation Index

[M.Klimushkin, S.Obiedkov, C.Roth, ICFCA’2010]

How much the objects covered by concept (A,B) differ from
other objects from G \ A?

How much the attributes covered by concept (A,B) differ
from other attributes from M \ B?

Concept separation index S(A,B) gives a numerical measure
to answer these questions

S(A,B) =
|A| · |B|∑

a∈A |{a}′|+
∑

b∈B |{b}′| − |A| · |B|
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Concept Probability Index

[M.Klimushkin, S.Obiedkov, C.Roth, ICFCA’2010], rediscovering
the notion from [R.Emillion, 2008]

Concept probability is the probability of the fact that a
concept with the same intent will appear in a random context,
attributes being independent.

The probability pm that an object has attribute m equals the
proportion of objects in the original context that have this
attribute

The probability that a particular object has all attributes from
B is PB =

∏
m∈B pm.

P(B = B ′′) =
n∑

k=0

(

(
n

k

)
pk
B · (1− pB)n−k

∏
m 6∈B

(1− pk
m))
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