Do we know how to integrate?

Radko Mesiar
STU Bratislava, Faculty of Civil Engineering
Dept. of Mathematics

WIUI 2012
Olomouc, June 2012

Contents

1 Introduction

2 Universal integrals

3 Integrals based on copulas

Short history

1850 B.C., Egypt (Moscow Mathematical Papyrus, problem 14) volume of a frustrum of a square pyramide 370 B.C., Greece, EUDOXUS, exhaustion method $3^{\text {rd }}$ century B.C., Greece, ARCHIMEDES, parabols, circle $3^{\text {rd }}$ century A.C. China, LIU HUI, circle $5^{\text {th }}$ century A.C., China, ZU CHONG ZHI and ZU GENG, sphere $5^{\text {th }}$ century A.C., India, ARYABHATA, cube

Short history

> 1850 B.C., Egypt (Moscow Mathematical Papyrus, problem 14) volume of a frustrum of a square pyramide 370 B.C., Greece, EUDOXUS, exhaustion method $3^{\text {rd }}$ century B.C., Greece, ARCHIMEDES, parabols, circle $3^{\text {rd }}$ century A.C., China, LIU HUI, circle $5^{5^{\text {th }} \text { century A.C., China, ZU CHONG ZHI and ZU GENG, sphere }}$ $5^{\text {th }}$ century A.C., India, ARYABHATA, cube

Short history

> 1850 B.C., Egypt (Moscow Mathematical Papyrus, problem 14) volume of a frustrum of a square pyramide 370 B.C., Greece, EUDOXUS, exhaustion method $3^{\text {rd }}$ century B.C., Greece, ARCHIMEDES, parabols, circle $3^{\text {rd }}$ century A.C., China, LIU HUI, circle $5^{\text {th }}$ century A.C., China, ZU CHONG ZHI and ZU GENG, sphere $5^{\text {th }}$ century A.C., India, ARYABHATA, cube

Short history

$$
\begin{aligned}
& 1850 \text { B.C., Egypt (Moscow Mathematical Papyrus, problem 14) } \\
& \text { volume of a frustrum of a square pyramide } \\
& 370 \text { B.C., Greece, EUDOXUS, exhaustion method } \\
& 3^{\text {rd }} \text { century B.C., Greece, ARCHIMEDES, parabols, circle } \\
& 3^{\text {rd }} \text { century A.C., China, LIU HUI, circle } \\
& 5^{\text {th }} \text { century A.C., China, ZU CHONG ZHI and ZU GENG, sphere } \\
& 5^{\text {th }} \text { century A.C., India, ARYABHATA, cube }
\end{aligned}
$$

Short history

1850 B.C., Egypt (Moscow Mathematical Papyrus, problem 14) volume of a frustrum of a square pyramide 370 B.C., Greece, EUDOXUS, exhaustion method $3^{\text {rd }}$ century B.C., Greece, ARCHIMEDES, parabols, circle $3^{\text {rd }}$ century A.C., China, LIU HUI, circle $5^{\text {th }}$ century A.C., China, ZU CHONG ZHI and ZU GENG, sphere $5^{\text {th }}$ century A.C., India, ARYABHATA, cube

Short history

1850 B.C., Egypt (Moscow Mathematical Papyrus, problem 14) volume of a frustrum of a square pyramide 370 B.C., Greece, EUDOXUS, exhaustion method $3^{\text {rd }}$ century B.C., Greece, ARCHIMEDES, parabols, circle $3^{\text {rd }}$ century A.C., China, LIU HUI, circle $5^{\text {th }}$ century A.C., China, ZU CHONG ZHI and ZU GENG, sphere $5^{\text {th }}$ century A.C., India, ARYABHATA, cube

Short history

1615, Austria (LINZ), KEPLER, volume of barels
1854, Germany (GÖTTINGEN), RIEMANN, habilitation thesis
1902, France (NANCY), LEBESGUE, doctoral thesis

Short history

1615, Austria (LINZ), KEPLER, volume of barels

1854, Germany (GÖTTINGEN), RIEMANN, habilitation thesis
1902, France (NANCY), LEBESGUE, doctoral thesis

Short history

1615, Austria (LINZ), KEPLER, volume of barels

1854, Germany (GÖTTINGEN), RIEMANN, habilitation thesis
1902, France (NANCY), LEBESGUE, doctoral thesis

What is difference in Riemann and Lebesgue approach?


```
4 x 100€
2 x 50 €
9\times20€
```

RIEMANN: $(300+250+120)+(200+350+60)+(400+100+180)$ $=670+610+680=1960 €$

LEBESGUE: $(3+2+4)^{*} 100+(5+7+2)^{*} 50+(6+3+4)^{*} 20=900$ $+700+360=1960 €$

What is difference in Riemann and Lebesgue approach?

| $3 \times 100 €$
 $5 \times 50 €$
 $6 \times 20 €$ | $2 \times 100 €$
 $7 \times 50 €$
 $3 \times 20 €$ |
| :--- | :--- | | $4 \times 100 €$ |
| :--- |
| $2 \times 50 €$ |
| $9 \times 20 €$ |

RIEMANN: $(300+250+120)+(200+350+60)+(400+100+180)$ $=670+610+680=1960 €$

IFRESGIJF: $(3+2+4) * 100+(5+7+2) * 50+(6+3+4) * 20=900$ $+700+360=1960 €$

What is difference in Riemann and Lebesgue approach?

| $3 \times 100 €$
 $5 \times 50 €$
 $6 \times 20 €$ | $2 \times 100 €$
 $7 \times 50 €$
 $3 \times 20 €$ |
| :--- | :--- | | $4 \times 100 €$ |
| :--- |
| $2 \times 50 €$ |
| $9 \times 20 €$ |

RIEMANN: $(300+250+120)+(200+350+60)+(400+100+180)$
$=670+610+680=1960 €$
LEBESGUE: $(3+2+4)^{*} 100+(5+7+2)^{*} 50+(6+3+4)^{*} 20=900$
$+700+360=1960 €$

What is difference in Riemann and Lebesgue approach?

| $3 \times 100 €$
 $5 \times 50 €$
 $6 \times 20 €$ | $2 \times 100 €$
 $7 \times 50 €$
 $3 \times 20 €$ |
| :--- | :--- | | $4 \times 100 €$ |
| :--- |
| $2 \times 50 €$ |
| $9 \times 20 €$ |

RIEMANN: $(300+250+120)+(200+350+60)+(400+100+180)$
$=670+610+680=1960 €$
LEBESGUE: $(3+2+4)^{*} 100+(5+7+2)^{*} 50+(6+3+4)^{*} 20=900$
$+700+360=1960 €$

Workers a, b, c

performance per hour in units
$m(0)=0, m(a)=2, m(b)=3, m(c)=4, m(a, b)=7, m(b, c)=$
$5, m(a, c)=4, m(a, b, c)=8$,
capacity in hours $f(a)=5, f(b)=4, f(c)=3$.
Determine the optimal total performance!
α) only one group can work a fixed time period
β) several disjoint groups can work (fixed time in each group may dilfer)
γ) one group starts to work, once a worker stop to work, he cannot start again
§) there are no constraints

Workers a, b, c
performance per hour in units
$m(\emptyset)=0, m(a)=2, m(b)=3, m(c)=4, m(a, b)=7, m(b, c)=$ $5, m(a, c)=4, m(a, b, c)=8$,
capacity in hours $f(a)=5, f(b)=4, f(c)=3$.
Determine the optimal total performance!
α) only one group can work a fixed time period
β) several disjoint groups can work (fixed time in each group may dilfer'
γ) one group starts to work, once a worker stop to work, he cannot start again
§) there are no constraints

Workers a, b, c
performance per hour in units
$m(\emptyset)=0, m(a)=2, m(b)=3, m(c)=4, m(a, b)=7, m(b, c)=$ $5, m(a, c)=4, m(a, b, c)=8$, capacity in hours $f(a)=5, f(b)=4, f(c)=3$. Determine the optimal total performance!

$$
\begin{aligned}
& \alpha) \text { only one group can work a fixed time period } \\
& \beta \text {) several disjoint groups can work (fixed time in each group may } \\
& \text { differ) } \\
& \gamma \text {) one group starts to work, once a worker stop to work, he cannot } \\
& \text { start again } \\
& \delta) \text { there are no constraints }
\end{aligned}
$$

Workers a, b, c
performance per hour in units
$m(\emptyset)=0, m(a)=2, m(b)=3, m(c)=4, m(a, b)=7, m(b, c)=$ $5, m(a, c)=4, m(a, b, c)=8$,
capacity in hours $f(a)=5, f(b)=4, f(c)=3$.
Determine the optimal total performance!
α) only one group can work a fixed time period
β) several disjoint groups can work (fixed time in each group may differ)
γ) one group starts to work, once a worker stop to work, he cannot start again
δ) there are no constraints

$$
V_{\alpha}=\max \left\{c \cdot m(A) \mid c \cdot 1_{A} \leq f\right\}=4 \cdot 7=28
$$

SHILKRET 1971

$V_{\beta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right)\right.$ system disj. $\}=$ $=4 \cdot 7+3 \cdot 4=40$

YANG 1983 (PAN-integral)
$V_{\gamma}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right)\right.$ chain $\}=$ $=3 \cdot 8+1 \cdot 7+1 \cdot 2=33$ CHOQUET 1953
$V_{\delta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f\right\}=4 \cdot 7+1 \cdot 2+3 \cdot 4=42$

$$
V_{\alpha}=\max \left\{c \cdot m(A) \mid c \cdot 1_{A} \leq f\right\}=4 \cdot 7=28
$$

SHILKRET 1971

$$
\begin{gathered}
V_{\beta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right) \text { system disj. }\right\}= \\
=4 \cdot 7+3 \cdot 4=40
\end{gathered}
$$

$$
\text { YANG } 1983 \text { (PAN-integral) }
$$

$$
V_{\alpha}=\max \left\{c \cdot m(A) \mid c \cdot 1_{A} \leq f\right\}=4 \cdot 7=28
$$

SHILKRET 1971

$$
\begin{gathered}
V_{\beta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right) \text { system disj. }\right\}= \\
=4 \cdot 7+3 \cdot 4=40
\end{gathered}
$$

$$
\text { YANG } 1983 \text { (PAN-integral) }
$$

$$
V_{\gamma}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right) \text { chain }\right\}=
$$

$$
=3 \cdot 8+1 \cdot 7+1 \cdot 2=33
$$

CHOQUET 1953
$V_{\delta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f\right\}=4 \cdot 7+1 \cdot 2+3 \cdot 4=42$

$$
V_{\alpha}=\max \left\{c \cdot m(A) \mid c \cdot 1_{A} \leq f\right\}=4 \cdot 7=28
$$

SHILKRET 1971

$$
\begin{gathered}
V_{\beta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right) \text { system disj. }\right\}= \\
=4 \cdot 7+3 \cdot 4=40
\end{gathered}
$$

YANG 1983 (PAN-integral)
$V_{\gamma}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f,\left(A_{i}\right)\right.$ chain $\}=$

$$
=3 \cdot 8+1 \cdot 7+1 \cdot 2=33
$$

CHOQUET 1953

$$
V_{\delta}=\max \left\{\sum c_{i} \cdot m\left(A_{i}\right) \mid \sum c_{i} \cdot 1_{A_{i}} \leq f\right\}=4 \cdot 7+1 \cdot 2+3 \cdot 4=42
$$

LEHRER 2009

Universal integrals

$$
\text { I: } \bigcup_{(X, \mathcal{A}) \in \mathcal{S}}\left(\mathcal{M}_{(X, \mathcal{A})} \times \mathcal{F}_{(X, \mathcal{A})}\right) \rightarrow[0, \infty]
$$

\mathcal{S} the class of all measurable spaces
$\mathcal{M}_{(X, \mathcal{A})}$ all monotone measures on (X, \mathcal{A})
$\mathcal{F}_{(X, \mathcal{A})}$ all non-negative measurable functions $f: X \rightarrow \mathcal{A}$
$(\mathrm{U} / 1) \quad I$ is increasing in both coordinates
$(\mathrm{U} / 2)$ there is pseudo-multiplication $\otimes:[0, \infty]^{2} \rightarrow[0, \infty]$ such that $I\left(m, c 1_{E}\right)=c \otimes m(E)$
$(\mathrm{U} / 3) \quad I\left(m_{1}, f_{1}\right)=I\left(m_{2}, f_{2}\right)$ whenever $m_{1}\left(f_{1} \geq x\right)=m_{2}\left(f_{2} \geq x\right)$ for all $x \in(0, \infty]$

If we constraint to $[0,1]$ case ("fuzzy"), we suppose
$\otimes:[0,1]^{2} \rightarrow[0,1]$ is a semicopula, and always $m(X)=1$

History starts with a geometrical approach to integration, intuitive Riemann integral
Riemann 1854
X special subset R^{n}
$\mathcal{A}=\mathcal{B}(X)$, m Lebesgue measure ("rectangles")
$n=1, \quad X=[a, b], \quad I_{R} \approx \operatorname{area}$
$i_{R}(f)=$
$=\sup \left\{\sum c_{i} \lambda\left(E_{i}\right) \mid \sum c_{i} \cdot 1_{E_{i}} \leq f,\left(E_{i}\right)\right.$ disjoint system of intervals $\}$
R. Mesiar, STU Bratislava, Faculty of Civil Engineering, Dept. of Mathematics

History starts with a geometrical approach to integration, intuitive Riemann integral Riemann 1854
X special subset R^{n}
$\mathcal{A}=\mathcal{B}(X), m$ Lebesgue measure ("rectangles")
$n=1, \quad X=[a, b], \quad I_{R} \approx$ area

History starts with a geometrical approach to integration, intuitive
Riemann integral
Riemann 1854
X special subset R^{n}
$\mathcal{A}=\mathcal{B}(X), m$ Lebesgue measure ("rectangles")
$n=1, \quad X=[a, b], \quad I_{R} \approx$ area
$I_{R}(f)=$
$=\sup \left\{\sum c_{i} \lambda\left(E_{i}\right) \mid \sum c_{i} \cdot 1_{E_{i}} \leq f,\left(E_{i}\right)\right.$ disjoint system of intervals $\}$

Lebesgue 1902
$(X, \mathcal{A}) \in \mathcal{S}$, but m is σ-additive
(if $m(X)=1, m$ is a probability measure)

$$
I_{L}(m, f)=\sup \left\{\sum c_{i} m\left(E_{i}\right) \mid \sum c_{i} \cdot 1_{E_{i}} \leq f,\left(E_{i}\right) \text { disjoint system }\right\}
$$

Choquet 1953 (Šipoš 1979, but also Vitali 1925)

$$
I_{C h}(m, f)=\sup \left\{\sum c_{i} m\left(E_{i}\right) \mid \sum c_{i} \cdot 1_{E_{i}} \leq f,\left(E_{i}\right) \text { chain }\right\}
$$

PAN-integral Yang 1983
á la Lebesgue, m need not be σ-additive

$$
I_{Y}(m, f)=\sup \left\{\sum c_{i} m\left(E_{i}\right) \mid \sum c_{i} \cdot 1_{E_{i}} \leq f,\left(E_{i}\right) \text { disjoint }\right\}
$$

NOT a universal integral

Shilkret 1971

$$
I_{s h}(m, f)=\sup \left\{c \cdot m(E) \mid c \cdot 1_{E} \leq f\right\}
$$

Universal integral

Lehrer 2009 (concave integral)

$$
I_{L}(m, f)=\sup \left\{\sum c_{i} m\left(E_{i}\right) \mid \sum c_{i} \cdot 1_{E_{i}} \leq f\right\}
$$

Not a universal integral

Defect of some integrals - they do not allow to recover original measure m !

PAN-integral

$$
I_{Y}\left(m, 1_{E}\right)=m(E) \text { for } \forall E \in \mathcal{A}
$$

only if m is superadditive, $m(E \cup F) \geq m(E)+m(F), \quad E \cap F=\emptyset$
concave integral
$I_{L}\left(m, 1_{E}\right)=m(E)$ for $\forall E \in \mathcal{A}$
only if m is TB (otally balanced):
(supermodularity $m(A \cup B)+m(A \cap B) \geq m(A)+m(B)$ of m is enough!)

Defect of some integrals - they do not allow to recover original measure m !

PAN-integral

$$
I_{Y}\left(m, 1_{E}\right)=m(E) \text { for } \forall E \in \mathcal{A}
$$

only if m is superadditive, $m(E \cup F) \geq m(E)+m(F), \quad E \cap F=\emptyset$ concave integral

$$
I_{L}\left(m, 1_{E}\right)=m(E) \text { for } \forall E \in \mathcal{A}
$$

only if m is TB (totally balanced); (supermodularity $m(A \cup B)+m(A \cap B) \geq m(A)+m(B)$ of m is enough!)

+ and • can be modified into \oplus and \odot

For example,

$$
\begin{gathered}
x \oplus_{p} y=\left(x^{p}+y^{p}\right)^{\frac{1}{p}}, \quad p>0 \\
x \odot y=x y
\end{gathered}
$$

pseudo-concave integral (Jun Li, R. Mesiar \& E. Pap, 2011)
where $b(c, E)(x)= \begin{cases}c & \text { if } x \in E, \\ 0 & \text { else }\end{cases}$
qualitatively nothing new up to an isomorphism

$$
I_{L}^{\oplus_{p}, \odot}(m, f)=\left(I_{L}\left(m^{p}, f^{p}\right)\right)^{\frac{1}{p}}
$$

+ and • can be modified into \oplus and \odot
For example,

$$
\begin{aligned}
x \oplus_{p} y= & \left(x^{p}+y^{p}\right)^{\frac{1}{p}}, \quad p>0 \\
& x \odot y=x y
\end{aligned}
$$

pseudo-concave integral (Jun Li, R. Mesiar \& E. Pap, 2011)

$$
I_{L}^{\oplus p, \odot}(m, f)=\sup \left\{\bigoplus_{p}\left(c_{i} \odot m\left(E_{i}\right)\right) \mid \bigoplus_{p} b\left(c_{i}, E_{i}\right) \leq f\right\}
$$

where $b(c, E)(x)= \begin{cases}c & \text { if } x \in E, \\ 0 & \text { else }\end{cases}$
qualitatively nothing new up to an isomorphism

$$
I_{L}^{\oplus_{p}, \odot}(m, f)=\left(I_{L}\left(m^{p}, f^{p}\right)\right)^{\frac{1}{p}}
$$

+ and • can be modified into \oplus and \odot
For example,

$$
\begin{aligned}
x \oplus_{p} y= & \left(x^{p}+y^{p}\right)^{\frac{1}{p}}, \quad p>0 \\
& x \odot y=x y
\end{aligned}
$$

pseudo-concave integral (Jun Li, R. Mesiar \& E. Pap, 2011)

$$
I_{L}^{\oplus p, \odot}(m, f)=\sup \left\{\bigoplus_{p}\left(c_{i} \odot m\left(E_{i}\right)\right) \mid \bigoplus_{p} b\left(c_{i}, E_{i}\right) \leq f\right\}
$$

where $b(c, E)(x)= \begin{cases}c & \text { if } x \in E, \\ 0 & \text { else }\end{cases}$
qualitatively nothing new up to an isomorphism

$$
I_{L}^{\oplus_{p}, \odot}(m, f)=\left(I_{L}\left(m^{p}, f^{p}\right)\right)^{\frac{1}{p}}
$$

$\oplus=\mathrm{V} \quad$ (sup)

Working on $[0,1]$, considering \odot any semicopula (1 is neutral element)
all 4 approaches are equivalent, yielding unique integral

$$
\begin{gathered}
{ }^{\oplus, \odot}(m, f)=\sup \{c \odot m(E) \mid b(c, E) \leq f\}= \\
=\sup \{t \odot m(f \geq t) \mid t \in[0,1]\}
\end{gathered}
$$

$\oplus=\mathrm{V} \quad$ (sup)
Working on $[0,1]$, considering \odot any semicopula (1 is neutral element)
all 4 approaches are equivalent, yielding unique integral

$$
\begin{gathered}
{ }^{\oplus, \odot}(m, f)=\sup \{c \odot m(E) \mid b(c, E) \leq f\}= \\
=\sup \{t \odot m(f \geq t) \mid t \in[0,1]\}
\end{gathered}
$$

SUGENO 1974
 SHILKRET 1971
 ${ }^{\mathrm{V}, T}$ WEBER 1986

$\oplus=\mathrm{V} \quad$ (sup)
Working on $[0,1]$, considering \odot any semicopula (1 is neutral element)
all 4 approaches are equivalent, yielding unique integral

$$
\begin{gathered}
{ }^{\oplus, \odot}(m, f)=\sup \{c \odot m(E) \mid b(c, E) \leq f\}= \\
=\sup \{t \odot m(f \geq t) \mid t \in[0,1]\}
\end{gathered}
$$

/ ${ }^{\text {, ^^ SUGENO } 1974}$

/V,. SHILKRET 1971
$j^{\vee, T}$ WEBER 1986

WEBER 1984, on [0, 1]
S: Continuous Archimedean t-conorm
$g:[0,1] \rightarrow[0, \infty]$ additive generator

$$
S(x, y)=g^{(-1)}(g(x)+g(y))
$$

\exists countable partition $\left\{X_{n}\right\}$ of $X, m\left(X_{n}\right)<1$,
m is S-additive

WEBER 1984, on [0, 1]
S: Continuous Archimedean t-conorm
$g:[0,1] \rightarrow[0, \infty]$ additive generator

$$
S(x, y)=g^{(-1)}(g(x)+g(y))
$$

\exists countable partition $\left\{X_{n}\right\}$ of $X, m\left(X_{n}\right)<1$, m is S-additive

$$
W_{m}(f)=g^{(-1)}\left(\sum_{m} \int_{X_{n}} f d g \circ m\right)=
$$

$=\sup \left\{\sum_{i} g^{-1}\left(a_{i} g\left(m\left(A_{i}\right)\right)\right) \mid \sum_{i} b\left(a_{i}, A_{i}\right) \leq f,\left(A_{i}\right)\right.$ disjoint, $\left.m\left(A_{i}\right)<1\right\}$

Example

$X=[0, \infty], \lambda$ Lebesgue measure
i) $S(x, y)=x+y-x y$ $g(x)=-\log (1-x)$ $m(E)=g^{-1} \circ \lambda(E)=1-e^{-\lambda(E)}, \quad f(x)=\frac{1}{1+x^{2}}$

$$
W_{m}(f)=g^{-1}\left(\int_{[0, \infty]} f d \lambda\right)=g^{-1}\left(\frac{\pi}{2}\right)=1-e^{-\frac{\pi}{2}}
$$

ii) $S(x, y)=\min (x+y, 1)$
$g(x)=x, \quad g^{(-1)}=\min (x, 1)$
$m(E)=\min (\lambda(E), 1)$

$$
W_{m}(f)=\min \left(\frac{\pi}{2}, 1\right)=1
$$

Example

$$
\begin{aligned}
& X=[0, \infty], \lambda \text { Lebesgue measure } \\
& \text { i) } S(x, y)=x+y-x y \\
& g(x)=-\log (1-x) \\
& m(E)=g^{-1} \circ \lambda(E)=1-e^{-\lambda(E)}, \quad f(x)=\frac{1}{1+x^{2}} \\
& \qquad W_{m}(f)=g^{-1}\left(\int_{[0, \infty]} f d \lambda\right)=g^{-1}\left(\frac{\pi}{2}\right)=1-e^{-\frac{\pi}{2}}
\end{aligned}
$$

ii) $S(x, y)=\min (x+y, 1)$
$g(x)=x, \quad g^{(-1)}=\min (x, 1)$
$m(E)=\min (\lambda(E), 1)$

$$
W_{m}(f)=\min \left(\frac{\pi}{2}, 1\right)=1
$$

MUROFUSHI \& SUGENO 1991,

fuzzy t-conorm integral (on $[0,1]$)
1 type $I^{\mathrm{V}, \odot}$
2 type á la distorted Choquet

$$
I_{m}^{h, k, g}(f)=h^{(-1)}\left(C h_{g \circ m}(k \circ f)\right)
$$

$g, h, k:[0,1] \rightarrow[0, \infty]$ additive generators of t-conorms;
$h=g \sim$ strict t-conorm S
m is S-additive \Rightarrow Weber integral (1984)

MESIAR 1996,

Choquet-like integral (on $[0, \infty]$)
1 type $I^{\mathrm{V}, \otimes}$
2 type $I_{m}^{g}(f)=g^{-1}\left(C h_{g \circ m}(g \circ f)\right)$
$g:[0, \infty] \rightarrow[0, \infty]$ automorphism

Universal integrals based on copulas, on [0, 1] KLEMENT, MESIAR, PAP 2004, 2010

```
                C : [0, 1] ' }->[0,1
            C(0,x)=C(x,0)=0
            C(1,x)=C(x,1)=x
            C((\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})\vee(\mp@subsup{x}{2}{},\mp@subsup{y}{2}{}))+C((\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})\wedge(\mp@subsup{x}{2}{},\mp@subsup{y}{2}{}))\geqC(\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})+C(\mp@subsup{x}{2}{},\mp@subsup{y}{2}{})
                        C\longleftrightarrow < PC on \mathcal{B}}[[0,1\mp@subsup{]}{}{2}
    P
    IC}(m,f)=\mp@subsup{P}{C}{}({(u,v)\in[0,1\mp@subsup{]}{}{2}|v\leqm(f\gequ)}
```

Universal integrals based on copulas, on [0, 1] KLEMENT, MESIAR, PAP 2004, 2010

$$
\begin{gathered}
C:[0,1]^{2} \rightarrow[0,1] \\
C(0, x)=C(x, 0)=0 \\
C(1, x)=C(x, 1)=x \\
C\left(\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right)\right)+C\left(\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right) \geq C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right)
\end{gathered}
$$

$$
C \longleftrightarrow P_{C} \text { on } \mathcal{B}\left([0,1]^{2}\right)
$$

$$
P_{C}([a, b] \times[0,1])=P_{C}([0,1] \times[a, b])=b-a
$$

$$
I_{C}(m, f)=P_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid v \leq m(f \geq u)\right\}\right)
$$

Universal integrals based on copulas, on [0, 1]
KLEMENT, MESIAR, PAP 2004, 2010

$$
\begin{gathered}
C:[0,1]^{2} \rightarrow[0,1] \\
C(0, x)=C(x, 0)=0 \\
C(1, x)=C(x, 1)=x \\
C\left(\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right)\right)+C\left(\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right) \geq C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \\
C \longleftrightarrow P_{C} \text { on } \mathcal{B}\left([0,1]^{2}\right), \\
P_{C}([a, b] \times[0,1])=P_{C}([0,1] \times[a, b])=b-a
\end{gathered}
$$

$$
I_{C}(m, f)=P_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid v \leq m(f \geq u)\right\}\right)
$$

Universal integrals based on copulas, on $[0,1]$
KLEMENT, MESIAR, PAP 2004, 2010

$$
\begin{gathered}
C:[0,1]^{2} \rightarrow[0,1] \\
C(0, x)=C(x, 0)=0 \\
C(1, x)=C(x, 1)=x \\
C\left(\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right)\right)+C\left(\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right) \geq C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \\
C \longleftrightarrow P_{C} \text { on } \mathcal{B}\left([0,1]^{2}\right), \\
P_{C}([a, b] \times[0,1])=P_{C}([0,1] \times[a, b])=b-a \\
I_{C}(m, f)=P_{C}\left(\left\{(u, v) \in[0,1]^{2} \mid v \leq m(f \geq u)\right\}\right)
\end{gathered}
$$

Figure: graph of the function $m(f \geq u)$

$$
\begin{array}{cc}
I_{\Pi}=I_{C} & \text { Choquet } \\
I_{\text {Min }}=I^{V, \wedge} & \text { Sugeno } \\
I_{C}\left(m, c \cdot 1_{E}\right)= & C(c, m(E))
\end{array}
$$

Figure: graph of the function $m(f \geq u)$

$$
\begin{array}{cc}
I_{\Pi}=I_{C} & \text { Choquet } \\
I_{\text {Min }}=I^{V, \wedge} & \text { Sugeno } \\
I_{C}\left(m, c \cdot 1_{E}\right) & =C(c, m(E))
\end{array}
$$

Fuzzy measure-based integral, on $[0,1]$ Klement, Mesiar, Pap 2004

$$
I_{\mu}(m, f)=\mu\left(\left\{(u, v) \in[0,1]^{2} \mid v \leq m(f \leq u)\right\}\right)
$$

$\mu(E)=\sup (u v \mid(u, v) \in E) \rightarrow$ SHILKRET

Fuzzy measure-based integral, on $[0,1]$
Klement, Mesiar, Pap 2004
μ fuzzy measure on $\mathcal{B}\left([0,1]^{2}\right)$,
$\mu([0, c] \times[0,1])=\mu([0,1] \times[0, c])=c$

$$
I_{\mu}(m, f)=\mu\left(\left\{(u, v) \in[0,1]^{2} \mid v \leq m(f \leq u)\right\}\right)
$$

$\mu(E)=\sup (u v \mid(u, v) \in E) \rightarrow$ SHILKRET
on $[0, \infty]$ similar integrals
one application:
h-index, q-index

$$
H=I^{\vee, \wedge}(m, f) \quad Q=I^{\vee, A}(m, \sqrt{f})
$$

X all publications of an author
$m(E)=\operatorname{card} E$
$f(i)=c_{i}$ number of citations of publication i
on $[0, \infty]$ similar integrals
one application:
h-index, q-index

$$
H=I^{\vee, \wedge}(m, f) \quad Q=I^{\vee, A}(m, \sqrt{f})
$$

X all publications of an author
$m(E)=\operatorname{card} E$
$f(i)=c_{i}$ number of citations of publication i

1 Kolesárová A; Komorníková M: Triangular norm-based iterative compensatory operators. FUZZY SETS AND SYSTEMS 104 (1999) 109-120 (38)

2 Calvo T; Kolesárová A; Komorníková M; et al.: Aggregation operators: Properties, classes and construction methods. In: AGGREGATION OPERATORS: NEW TRENDS AND APPLICATIONS Book Series: Studies in Fuzziness and Soft Computing 97, pp. 3-104 Published: 2002 (21)

3 Komorník J.; Komorníková M.; Mesiar R.; et al.:Comparison of forecasting performance of nonlinear models of hydrological time series. PHYSICS AND CHEMISTRY OF THE EARTH 31 (2006)1127-1145 (12)
4 Komorníková M: Aggregation operators and additive generators. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS 9 (2001) 205-215 (11)

5 Komorníková M.; Szolgay J.; Svetlíková D.; et al.: A hybrid modelling framework for forecasting monthly reservoir inflows. JOURNAL OF HYDROLOGY AND HYDROMECHANICS 56 (2008) 145-162 (5)
6 Hanus J; Komorníková M; Mináriková J: Influence of boxing materials on the properties of different paper items stored inside. RESTAURATOR-INTERNATIONAL JOURNAL FOR THE PRESERVATION OF LIBRARY AND ARCHIVAL MATERIAL 16 (1995) 94-208 (4)
$h=5, q=3$

1 Kolesárová A; Komorníková M: Triangular norm-based iterative compensatory operators. FUZZY SETS AND SYSTEMS 104 (1999) 109-120 (38)

2 Calvo T; Kolesárová A; Komorníková M; et al.: Aggregation operators: Properties, classes and construction methods. In: AGGREGATION OPERATORS: NEW TRENDS AND APPLICATIONS Book Series: Studies in Fuzziness and Soft Computing 97, pp. 3-104 Published: 2002 (21)

3 Komorník J.; Komorníková M.; Mesiar R.; et al.:Comparison of forecasting performance of nonlinear models of hydrological time series. PHYSICS AND CHEMISTRY OF THE EARTH 31 (2006)1127-1145 (12)
4 Komorníková M: Aggregation operators and additive generators. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS 9 (2001) 205-215 (11)

5 Komorníková M.; Szolgay J.; Svetlíková D.; et al.: A hybrid modelling framework for forecasting monthly reservoir inflows. JOURNAL OF HYDROLOGY AND HYDROMECHANICS 56 (2008) 145-162 (5)
6 Hanus J; Komorníková M; Mináriková J: Influence of boxing materials on the properties of different paper items stored inside. RESTAURATOR-INTERNATIONAL JOURNAL FOR THE PRESERVATION OF LIBRARY AND ARCHIVAL MATERIAL 16 (1995) 94-208 (4)

$$
h=5, q=3
$$

Thanks for your attention!

