implification Logic as a tool for manipulation of implications

Angel Mora Bonilla

Department of Applied Mathematics University of Malaga, Spain

Workshop Information, Uncertainty, and Imprecision Olomouc, June 2012

Outline

(1) Background

- $\mathrm{SL}_{\mathrm{FD}}$ logic
- Redundancy: Classical logics versus SL logic
- Closure
- Minimal Keys
(4) Conclusions
- SL as a tool for manipulation of implications
\bullet
Angel Mora
2/57
Oniversiono
OEMALAGA

Relationships between data

Relational Model: It is easy to represent data

World Gazetteer					
Spain: largest cities and towns and statistics of their population					
download data for Google Earth					
view more cities and places					
no.	${ }_{\text {cens }}^{\substack{\text { census } \\ 1991}}$	censusu	${ }_{2010}^{\text {estimate }}$		
1 Madrid	3010422	2938723	3273049	3332646	
2 Barcelona	1643421	1503884	1619337	1624598	0.16
3 valencia	752909	738441	809267	831261	1.35
4 Sevilla	683028	684633	704198	703029	-0.08
5 zaragoza	59434	614905	675121	685963	
6 Malaga	522108	524414	568507	571731	0.28
7 Murcia	328100	370745	441345	453985	1.42
8 Palma	296754	333801	404681	419285	1.79
9 Las Palmas		354863			
10 Billao		349972			

- SL as a tool for manipulation of implications
\bullet
Angel Mora
$3 / 57$

Relational model

But, be careful

	Subject	Identity Card	Surname	Name	Course
t1	Algebra	22022022A	SMIIU	RALPM	3
t2	Algebra	33333333A	ROSE	PETER	1
t3	Calculus	22222222A	SMIUL	RALPH	3
t4	Calculus	44444444B	BRANDON	ANNE	4
t5	Calculus	11111111C	BUGLE	LOUISE	2
t6	Numerical	33333333A	ROSE	PAUL	1
	Methods				

BELATIQNAL RATA BASE

Studying the relations between the data, we avoid the anomalies, inconsistencies, redundancies, ...

Relational model

But, be careful

	Subject	Identity Card	Surname	Name	Course
t1	Algebra	22022022A	SMIIU	RALPM	3
t2	Algebra	33333333A	ROSE	PETER	1
t3	Calculus	22222222A	SMIUL	RALPH	3
t4	Calculus	44444444B	BRANDON	ANNE	4
t5	Calculus	11111111C	BUGLE	LOUISE	2
t6	Numerical Methods	33333333A	ROSE	PAUL	1

BELATIQNAL RATA BASE

Studying the relations between the data, we avoid the anomalies, inconsistencies, redundancies, ...

Functions

	Subject	Identity Card	Surname	Name	Closed Call
t1	Algebra	อวาอออออล	SMIUL	RALPH	4
t2	Algebra	33333333A	ROSE	PETER	1
t3	Calculus	29อขอบอ2	SMMIU	RALPH	4
t4	Calculus	44444444B	BRANDON	ANNE	5
t5	Calculus	11111111C	BUGLE	LOUISE	3
t6	Numerical	33333333A	ROSE	PETER	1
	Methods				

BELATIQNAH RATA BASE

Valuable Functions: $f($ Closed Call $)=$ Registration Fee Functions for extension: (using the table)

Functional Dependencies

Co-author (14)
Robert S. Amold
C. T. Salley

William A. Martin
Kenneth L. Deckert
Dines Bjorner (Dines Bjørner)

Conference (4)
SIGMOD
IFIP
JCDKB
AFIPS
Journal (6)
CACM
TODS
SOFTWARE
Sigmod Record
SIGART

Academic > Author> Edgar Frank Codd
 Edgar Frank Codd IBM
Publications: 22 | Citations: 4582 | G-Index: 22 | H-Index: 13
Interests: Databases, Software Engineering, Artificial Intelligence
Collaborated with 14 co-authors from 1970 to 1993; Cited by 4362 authors
© Homepage | © Bing

Publication (22) 庇Eiscex Order by: Year -
Providing olap (on-line analytical processing) to user-analysts: an it mandate (Ctations: 168)
E. F. Codd, S. B. Codd, C. T. Salley

Published in 1993.
The Relational Model for Database Management, Version 2 (Citations: 103)
E. F. Codd

Published in 1990.

Defines FDs (1972) and normalization.

\bullet
Angel Mora
$6 / 57$

Functional Dependencies

	Subject	Identity Card	Surname	Name	Closed Call
t1	Algebra	2ออ2อบอ2A	SMMIU	RALPH	4
t2	Algebra	33333333A	ROSE	PETER	1
t3	Calculus	2ออบอบอ2	SWMIU	RALPH	4
t4	Calculus	44444444B	BRANDON	ANNE	5
t5	Calculus	11111111C	BUGLE	LOUISE	3
t6	Numerical	33333333A	ROSE	PETER	1
	Methods				

REWATIQNAH RATA BASE

Functional Dependencies (FDs)

$t_{1 / \text { idCard }}=t_{3 / \text { idCard }}$ implies that $t_{1 / \text { surname }}=t_{3 / \text { surname }}$ y $t_{1 / \text { name }}=t_{3 / \text { name }}$
$t_{2 / \text { idCard }}=t_{6 / \text { idCard }}$ implies that $t_{2 / \text { surname }}=t_{6 / \text { surname }}$ y $t_{2 / \text { name }}=t_{6 / \text { name }}$

Functional Dependencies

	Subject	Identity Card	Surname	Name	Closed Call
t1	Algebra	2ออ2อบอ2A	SMMIU	RALPH	4
t2	Algebra	33333333A	ROSE	PETER	1
t3	Calculus	2ออบอบอ2	SWMIU	RALPH	4
t4	Calculus	44444444B	BRANDON	ANNE	5
t5	Calculus	11111111C	BUGLE	LOUISE	3
t6	Numerical	33333333A	ROSE	PETER	1
	Methods				

REWATIQNAH RATA BASE

Functional Dependencies (FDs)

$t_{1 / \text { idCard }}=t_{3 / \text { idCard }}$ implies that $t_{1 / \text { surname }}=t_{3 / \text { surname }}$ y $t_{1 / \text { name }}=t_{3 / \text { name }}$
$t_{2 / \text { idCard }}=t_{6 / \text { idCard }}$ implies that $t_{2 / \text { surname }}=t_{6 / \text { surname }}$ y $t_{2 / \text { name }}=t_{6 / \text { name }}$
idCard \mapsto Surname, Nane

Functional Dependencies

Definition

Let R be a relation over \mathcal{A}. Any affirmation of the type $X \mapsto Y$, where $X, Y \subseteq \mathcal{A}$, is called functional dependency (henceforth FD) over R. We say that R satisfies $X \mapsto Y$ if, for all $t_{1}, t_{2} \in R$ we have that: $t_{1 / X}=$ $t_{2 / X}$ implies that $t_{1 / Y}=t_{2 / Y}$.

Functional Dependencies

idCard \mapsto Surname, Name
Surname, Name \rightarrow Antiqueness, Degree Antiqueness, Degree \mapsto Salary

From FDs the following information can be deduced:
idCard - Salary

- All models of Γ satisfy $X \mapsto Y$?
- To analyze this question in all the relations is intractable from the point of view of the semantics.
- A syntactic method to deduce information is required.

Functional Dependencies

idCard \mapsto Surname, Name Surname, Name \rightarrow Antiqueness, Degree Antiqueness, Degree \mapsto Salary

From FDs the following information can be deduced:

$$
\text { idCard } \mapsto \text { Salary }
$$

$\Gamma \models X \mapsto Y$

- All models of Γ satisfy $X \mapsto Y$?
- To analyze this question in all the relations is intractable from the point of view of the semantics.
- A syntactic method to deduce information is required.

Axiomatic System of Armstrong

Definition

Let Ω be a set of atoms and let \mapsto be a binary connective, the language of the functional dependencies logic is defined as:

$$
\mathcal{L}=\left\{X \mapsto Y \mid X, Y \in 2^{\Omega} \text { y } X \neq \varnothing\right\}
$$

Definition

\mathbf{L} is the logic given by $(\mathcal{L}, \mathcal{S})$ where \mathcal{S}, has the unique axiom
\lfloor Axiom $\rfloor: \vdash_{\mathcal{S}_{\text {Par }}} X \mapsto Y, \quad$ if $Y \subseteq X$
and the following inference rules:
\lfloor Trans $\rfloor: \quad X \mapsto Y, Y \mapsto Z \vdash X \mapsto Z \ldots \ldots \ldots \ldots$. Transitivity

What about FDs now?

Figure : A normalized database schema for a generic social networking site (http://www.codinghorror.com)

What about FDs now?

1

This database is faster in the queries

Always? No, in huge database the

queries are slower.

And ... you have lost the semantics of the relationship between the data !!!

Figure : Non-normalized

What about FDs now？

1

User	ser 园
\square Properties	
\％user＿id	
10］first＿name	
－last＿name	
國 sex	
（8）hometown	
19］relationship＿status	
\％interested＿in	
－religious＿views	
political＿views	
10 work＿phone	
10，home＿phone	
cell＿phone	
01 screen＿name＿1	
1 screen＿name＿1＿service	
［1］screen＿name＿2	
囫 screen＿name＿2＿service	
Work＿history＿1	
19 work＿history＿2	
11 work＿history＿3	
－1 affiliation＿1	
19］affiliation＿2	
团 affiliation＿3	

This database is faster in the queries

Always？No，in huge database the

 queries are slower．And ．．．you have lost the semantics of the relationship between the data ！！！

Figure ：Non－normalized

What about FDs now？

User	er 园
\square Properties	
园 user＿id	
－1 first＿name	
19，last＿name	
枵 sex	
［ ${ }^{\text {c }}$ hometown	
10］relationship＿status	
\％interested＿in	
\％religious＿views	
political＿views	
Wrork＿phone	
\％home＿phone	
cell＿phone	
10 screen＿name＿1	
	17］screen＿name＿1＿service
\％screen＿name＿2	
	［1］screen＿name＿2＿service
－1 work＿history＿1	
\＄work＿history＿2	
	10 work＿history＿3
T affiliation＿1	
4］affiliation＿2	
1919affiliation＿3	
	－afrilation＿3

This database is faster in the queries

Always？No，in huge database the

 queries are slower．And ．．．you have lost the semantics of the relationship between the data ！！！

Figure：Non－normalized

Towards a new framework

FDs have been left aside!!!

- Armstrong's Axioms are not appropriate to reason.
- Unfortunately, today, normalization is being forgotten in the database design.
- Companies must repair the bad-design (over-cost) when database degenerates .
- Commercial tools do not incorporate FDs because they do not know how manage it.
- In some tools it is possible to specify FDs (Oracle) but none incorporates algorithms for FDs.

It is really necessary an adequate formalization!!!

Our tools: Lattice theory, Logic

Towards a new framework

FDs have been left aside!!!

- Armstrong's Axioms are not appropriate to reason.
- Unfortunately, today, normalization is being forgotten in the database design.
- Companies must repair the bad-design (over-cost) when database degenerates .
- Commercial tools do not incorporate FDs because they do not know how manage it.
- In some tools it is possible to specify FDs (Oracle) but none incorporates algorithms for FDs.

It is really necessary an adequate formalization!!!

Our tools: Lattice theory, Logic

Outline

(2) Algebraic framework

- $\mathrm{SL}_{\mathrm{FD}}$ logic
- Redundancy: Classical logics versus SL logic
- Closure
- Minimal Keys
(4) Conclusions
- SL as a tool for manipulation of implications
\bullet
Angel Mora
$14 / 57$
Oniversiono
OEMALAGA

From Algebra to Logic

Non-deterministic ideal operators: An adequate tool for formalization in Data Bases, P. Cordero, et.al. - Discrete Applied Mathematics 156 (6), 2008

- Characterize the concept of Armstrong's relation (full-family, f-family).
- Formalize database redundancy.
- Propose the algebraic definition of the normal forms in database.
- Achieve trivial results about hard problems in functional dependencies.
- Extend the concept of scheme and the study of keys and antikeys.

Non-deterministic operator

Definition

Let A be a non-empty set and $n \in \mathbb{N}$ with $n \geq 1$. If $F: A^{n} \rightarrow 2^{A}$ is a total mapping, we say that F is a non-deterministic operator with arity n in A (henceforth, ndo)

We denote the set ndos with arity n in A by $\mathcal{N d o}_{n}(A)$ and, if F is a ndo, we denote its arity by $\operatorname{ar}(F)$. As usual,

$$
F\left(a_{1}, \ldots, a_{i-1}, X, a_{i+1}, \ldots, a_{n}\right)=\bigcup_{x \in X} F\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right) .
$$

In Hyperalgebra Theory the ndo is known as hyperoperation.

Non-deterministic ideal operator

In database theory, the study of FDs is based on the concept of f-family:

$$
D F_{\mathcal{R}}=\{X \mapsto Y \mid \Gamma \models X \mapsto Y\}
$$

Let (A, \leq) be a poset and $F: A \longrightarrow 2^{A}$ a ndo in A. We say that F is a nondeterministic ideal operator (nd.ideal-o) if it is:

- reflexive
- transitive
- $F(a)$ an ideal of (A, \leq) for all $a \in A$

Theorem

F be a unary ndo in a poset (A, \leq).

$$
F \text { is a } f \text {-family in } A \text { if and only if is a nd.ideal-o in }\left(2^{A}, \subseteq\right) \text {. }
$$

[^0]\bullet
Angel Mora
$17 / 57$

Non-deterministic ideal operator

In database theory, the study of FDs is based on the concept of f-family:

$$
D F_{\mathcal{R}}=\{X \mapsto Y \mid \Gamma \models X \mapsto Y\}
$$

Definition

Let (A, \leq) be a poset and $F: A \longrightarrow 2^{A}$ a ndo in A. We say that F is a nondeterministic ideal operator (nd.ideal-o) if it is:

- reflexive
- transitive
- $F(a)$ an ideal of (A, \leq) for all $a \in A$

Theorem

F be a unary ndo in a poset (A, \leq).

Non-deterministic ideal operator

In database theory, the study of FDs is based on the concept of f-family:

$$
D F_{\mathcal{R}}=\{X \mapsto Y \mid \Gamma \models X \mapsto Y\}
$$

Definition

Let (A, \leq) be a poset and $F: A \longrightarrow 2^{A}$ a ndo in A. We say that F is a nondeterministic ideal operator (nd.ideal-o) if it is:

- reflexive
- transitive
- $F(a)$ an ideal of (A, \leq) for all $a \in A$

Theorem

F be a unary ndo in a poset (A, \leq).,
F is a f-family in A if and only if is a nd.ideal-o in $\left(2^{A}, \subseteq\right)$.

Generator

Definition

| Let (A, \leq) be a lattice and F a nd.ideal-o in A. We say that $G \in \mathcal{N d o} o_{n}(A)$ is a generator of F if $\widehat{G}=F$.

```
Let (A,\leq) be a lattice and }F,G\in\mathcal{Ndoon(A). We say that F}\mathrm{ and }G\mathrm{ are equivalent if
F}=\widehat{G}
```

We formalize the definition of the idea of "to have less information than":

Let (A, \leq) bea lattice and $F, G \in \mathcal{N d o} o_{n}(A)$. We say that F is redundant if there exists G equivalent to F such that $G \prec F$.
\square

Generator

Definition

| Let (A, \leq) be a lattice and F a nd.ideal-o in A. We say that $G \in \mathcal{N d o}(A)$ is a generator of F if $\widehat{G}=F$.

Definition

Let (A, \leq) be a lattice and $F, G \in \mathcal{N d o} o_{n}(A)$. We say that F and G are equivalent if $\widehat{F}=\widehat{G}$.

We formalize the definition of the idea of "to have less information than":

Let (A, \leq) bea lattice and $F, G \in \mathcal{N} d_{n}(A)$. We say that F is redundant if there exists G equivalent to F such that $G \prec F$.

Generator

Definition

| Let (A, \leq) be a lattice and F a nd.ideal-o in A. We say that $G \in \mathcal{N d o} n_{n}(A)$ is a generator of F if $\widehat{G}=F$.

Definition

Let (A, \leq) be a lattice and $F, G \in \mathcal{N d o} o_{n}(A)$. We say that F and G are equivalent if $\widehat{F}=\widehat{G}$.

We formalize the definition of the idea of "to have less information than":

$$
G \prec F
$$

Definition

Let (A, \leq) bea lattice and $F, G \in \mathcal{N d o}(A)$. We say that F is redundant if there exists G equivalent to F such that $G \prec F$.

Example 1

$$
F: 2^{A} \rightarrow 2^{2^{A}}
$$

$$
F(\{a\})=\{\{a, c\}\}, \quad F(X)=\varnothing \text { otherwise }
$$

is redundant because $G: 2^{A} \rightarrow 2^{2^{A}}$

$$
G(\{a\})=\{\{c\}\}, \quad G(X)=\varnothing \text { otherwise }
$$

satisfies that $G \prec F$ and, as $F(\{a\}) \subseteq \widehat{G}(\{a\})=\{\varnothing,\{a\},\{c\},\{a, c\}\}$, we have that $\widehat{G}=\widehat{F}$.

Example 2

$F: 2^{A} \rightarrow 2^{2^{U}}, F(\{a\})=\{\{c\}\}, \quad F(\{a, c\})=\{\{b\}\}, \quad F(X)=$ \varnothing otherwise is redundant because $G: 2^{A} \rightarrow 2^{2^{A}}$

$$
G(\{a\})=\{\{c\},\{b\}\}, \quad G(X)=\varnothing \text { otherwise }
$$

satisfies that $G \prec F$ and $\widehat{G}=\widehat{F}$.

Redundancy

Proposition

- $G(a)$ is given by $G(a)=F(a) \backslash\{b\}$ and $G(x)=F(x)$ otherwise when $b \in \widehat{G(a)}$.

Let (A, \leq) be a lattice and $F \in \mathcal{O} n d_{1}(A)$. We say that $G \in \mathcal{O} n d_{1}(A)$ is a minimal generator of F if:

- G is equivalent to F,
- $G \prec F$ and
- G is not redundant.

Redundancy

Proposition

- $G(a)$ is given by $G(a)=F(a) \backslash\{b\}$ and $G(x)=F(x)$ otherwise when $b \in \widehat{G(a)}$.

Definition

Let (A, \leq) be a lattice and $F \in \mathcal{O} n d_{1}(A)$. We say that $G \in \mathcal{O} \cap d_{1}(A)$ is a minimal generator of F if:

- G is equivalent to F,
- $G \prec F$ and
- G is not redundant.

Outline

(3) Logic

- $\mathbf{S L}_{\text {FD }}$ logic
- Redundancy: Classical logics versus
- Closure
- Minimal Keys

4 Conclusions

- SL as a tool for manipulation of implications
\bullet
Angel Mora
22/57

From Algebra to Logic

Stages:

- Firstly, we proposed a new Simplification Rule adequate to remove redundancy in an automatic way.
- Simplification Rule turned the heart of a novel logic : $\mathbf{S L}_{\mathrm{FD}}$ logic - Simplification logic for FDs.
- $\mathbf{S L}_{\text {ED }}$ logic turned out to be the engine of automated methods: redundancy removal, closure algorithm, minimal keys, etc.

Simplification Logic

Definition: $\mathbf{S L}_{\mathrm{FD}}$ logic

\lfloor Axiom $\rfloor: \vdash_{\mathcal{S}_{\mathrm{FD}}} X \mapsto Y, \quad$ si $Y \subseteq X$

- 【Frag」 $X \mapsto Y \vdash_{\mathcal{S}_{\mathrm{FD}}} X \mapsto Y^{\prime}$ if $Y^{\prime} \subseteq Y$

Fragmentation

 if $X \subseteq U, X \cap Y=\varnothing$
and the following derived rule:

if $X \subseteq U V, X \cap Y=\varnothing$

Outline

- SL logic
- Redundancy: Classical logics versus $\mathbf{S L}_{\mathrm{FD}}$ logic
- Closure
- Minimal Keys

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- Fragmentation 3 times,
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d$ $c e \mapsto a, c e \mapsto g\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- Fragmentation 3 times,
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto a, c e \mapsto g\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

I $\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- Fragmentation 3 times
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto a, c e \mapsto g\}$
- Using Augmentation Rule - ce \mapsto a is redundant
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d$ $c e \mapsto g\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

I $\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$
Rules: Fragmentation 3 times

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- Fragmentation 3 times
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto a, c e \mapsto g\}$
- Using Augmentation Rule - ce \mapsto a is redundant
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\}$

Deduction with classical logics for FDs

「Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \rightarrow g\}$
- Using Reflexivity Rule - cg $\mapsto \mathrm{c}$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d$

Deduction with classical logics for FDs

「Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\}$
- Using Reflexivity Rule - cg $\mapsto \mathrm{c}$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\} \cup\{c g \mapsto c\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\}$
- Using Reflexivity Rule - cg $\mapsto \mathrm{c}$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\} \bigcup\{c g \mapsto c\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$
Rules: Fragmentation 3 times, Augmentation, Reflexivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\} \cup\{c g \mapsto c\}$
- Using Union Rule - cg $\mapsto b c$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d-$ $c e \mapsto g\} \cup\{c g \mapsto c, c g \mapsto b c\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$
Rules: Fragmentation 3 times, Augmentation, Reflexivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\} \bigcup\{c g \mapsto c\}$
- Using Union Rule - cg $\mapsto b c$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$,

$$
c e \mapsto g\} \cup\{c g \mapsto c, c g \mapsto b c\}
$$

Deduction with classical logics for FDs

| Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\} \bigcup\{c g \mapsto c, c g \mapsto b c\}$
\square
- Using Transitivity Rule - cg $\mapsto d$ is redundant
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto$ $\bigcup\{c g \mapsto c, c g \mapsto b c\}$

Deduction with classical logics for FDs

| Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c g \mapsto d$, $c e \mapsto g\} \bigcup\{c g \mapsto c, c g \mapsto b c\}$
\square
- Using Transitivity Rule $-c g \mapsto d$ is redundant
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c\}$
- Using Pseudotransitivity Rule - cd $\mapsto b$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c\}$
- Using Pseudotransitivity Rule - $c d \mapsto b$ is added as derived FD
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity, Pseudotransitivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$
- Using Augmentation Rule - acd $\mapsto b$ is redundant
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g$, be $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$

Deduction with classical logics for FDs

Removing redundancy - FD logic of R. Fagin

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity, Pseudotransitivity

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$
- Using Augmentation Rule - acd $\mapsto b$ is redundant
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$

Deduction with classical logics for FDs

| Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity, Pseudotransitivity, Augmentation

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$
- From the three derived rules, one of them is added to the set of FDs, and the other two are removed.

Deduction with classical logics for FDs

| Removing redundancy - FD logic of R. Fagin
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity, Pseudotransitivity, Augmentation

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$ $\bigcup\{c g \mapsto c, c g \mapsto b c, c d \mapsto b\}$
- From the three derived rules, one of them is added to the set of FDs, and the other two are removed.
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g, c d \mapsto b\}$

Deduction with classical logics for FDs

From
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$

Using in different ways:

Fragmentation 3 times, Augmentation, Reflexivity, Union, Transitivity, Pseudotransitivity, Augmentation, (to add one derived FD)

A set without redundancy
$\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g, c d \mapsto b\}$

CÍEssical logics for FDs: Armstrong's Axioms

Automated manipulation of FDs is not possible using the FDs logics.

- What rules must be applied and in which direction?
- In which order must be selected?
- At the end, we must clean the redundant FDs.

Only one way: Natural Deduction.

Alutomated method with Simplification Iogic

Removing redundancy

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- Simplification
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$

Alitomated method with Simplification Iogic

Removing redundancy
$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, a c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- Simplification
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$

Alitomated method with Simplification Iogic

Removing redundancy

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Simplification

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto a g\}$
- r-Simplification
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto g\}$

Alitomated method with Simplification Iogic

Removing redundancy

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules: Simplification, r-Simplification

- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b d, c e \mapsto g\}$
- r-Simplification
- $\{a b \mapsto c, c \mapsto a, b c \mapsto d, c d \mapsto b, d \mapsto e g, b e \mapsto c, c g \mapsto b, c e \mapsto g\}$

Alutomated method with Simplification Iogic

Removing redundancy

$\{\mathrm{ab} \mapsto \mathrm{c}, \mathrm{c} \mapsto \mathrm{a}, \mathrm{bc} \mapsto \mathrm{d}, \mathrm{acd} \mapsto \mathrm{b}, \mathrm{d} \mapsto \mathrm{eg}, \mathrm{be} \mapsto \mathrm{c}, \mathrm{cg} \mapsto \mathrm{bd}, \mathrm{ce} \mapsto \mathrm{ag}\}$ Rules:

Automatically:

Simplification, r-Simplification, r-Simplification
The same set without redundancy
$\{a b \mapsto c, c \mapsto a, b c \mapsto d, d \mapsto e, d \mapsto g, b e \mapsto c, c g \mapsto b, c e \mapsto g, c d \mapsto b\}$

$\mathrm{SL}^{\text {B }}$

logic is adequate to design automated methods to reason with FDs.

Automated method to remove redundancy

NPUT: Γ (a set of FDs)
OUTPUT: Γ^{\prime} (a FDs set with less redundancy) BEGIN

1. \lfloor Reduc $\rfloor+\lfloor$ Axiom \rfloor
2. 【Union】

REPEAT
3. Simplification \lfloor Simp $\rfloor+\lfloor$ rSimp \rfloor

UNTIL more simplifications cannot be applied
4. Check if it is possible to apply Generalized Transitivity

END
Important improvement with respect the rest of FDs algorithms: all of them apply the rule \lfloor Frag \rfloor as their first transformation.

Outline

(3) Logic

- $\mathrm{SL}_{\text {FD }}$ logic
- Redundancy: Classical logics versus
- Closure
- Minimal Keys

4. Conclusions

- SL as a tool for manipulation of implications
\bullet
Angel Mora
$42 / 57$

$\mathrm{SL}_{\mathrm{FD}}$ closure

Closure via functional dependence simplification, A. Mora et.al., IJCM, 89 (4), 2012

- We present an automated method directly based on Simplification Logic to calculate the closure of a set of attributes.
- Fields of application goes from theoretical areas as algebra or geometry to practical areas as databases and artificial intelligence: data analysis, knowledge structures, knowledge compilation, redundant constraint elimination, query optimization, finding key problem, etc.

$\mathrm{SL}_{\mathrm{FD}}$ closure

Theorem

- Equivalency I: If $U \subseteq W$ then $\{T \mapsto W, U \mapsto V\} \equiv \mathcal{S}_{\text {FD }}\{T \mapsto W V\}$
- Equivalency II: If $V \subseteq W$ then $\{T \mapsto W, U \mapsto V\} \equiv \mathcal{S}_{\mathrm{FD}}\{T \mapsto W\}$
- Equivalency III: If $U \cap W \neq \varnothing$ or $V \cap W \neq \varnothing$ then

$$
\{T \mapsto W, U \mapsto V\} \equiv \mathcal{S}_{\mathrm{FD}}\{T \mapsto W, U-W \mapsto V-W\}
$$

From Γ and X, calculate X^{+}(the closure of X):

- Add $T \mapsto X$
- Apply systematically the three equivalences based on $\mathrm{SL}_{\mathrm{FD}}$ logic. Result:

$\mathrm{SL}_{\mathrm{FD}}$ closure

Theorem

- Equivalency I: If $U \subseteq W$ then $\{T \mapsto W, U \mapsto V\} \equiv \mathcal{S}_{\text {FD }}\{T \mapsto W V\}$
- Equivalency II: If $V \subseteq W$ then $\{T \mapsto W, U \mapsto V\} \equiv \mathcal{S}_{\mathrm{FD}}\{T \mapsto W\}$
- Equivalency III: If $U \cap W \neq \varnothing$ or $V \cap W \neq \varnothing$ then

$$
\{T \mapsto W, U \mapsto V\} \equiv \mathcal{S}_{\mathrm{FD}}\{T \mapsto W, U-W \mapsto V-W\}
$$

Automated Prover to obtain the closure

From Γ and X, calculate X^{+}(the closure of X):

- Add T $\mapsto X$
- Apply systematically the three equivalences based on $\mathbf{S L}_{\mathrm{ED}}$ logic.

Result: $\operatorname{T} \mapsto X^{+}$

Execution

Closure of $\{$ afd $\}$
 $\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
$\mathrm{c} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \times$
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(I)
$T \mapsto$ afdc

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
(III)
$\mathrm{c} \mapsto \mathrm{gh}$
(III)
none
(II)
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(I)
$T \mapsto$ afdc

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
(III)
$\mathrm{C} \mapsto \mathrm{gh}$
$\mathrm{cij} \mapsto \mathrm{kl}$
\times
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(I)
$T \mapsto$ afdc

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
(III)
$\mathrm{c} \mapsto \mathrm{gh}$
(III)
none
(II)
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(I)
$T \mapsto$ afdc

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
(III)
$\mathrm{C} \mapsto \mathrm{gh}$
$\mathrm{cij} \mapsto \mathrm{kl}$
\times
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(I)
$T \mapsto$ afdc

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
(III)
$\mathrm{c} \mapsto \mathrm{gh}$
(III)
none
(II)
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(I)
$T \mapsto$ afdc

Execution

Closure of $\{\mathbf{a f d}\}$
$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afd $\mathrm{ak} \mapsto \mathrm{bc} \quad \mathrm{cd} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \mathrm{de} \mapsto \mathrm{f} \quad \mathrm{g} \mapsto \mathrm{de} \quad \mathrm{hf} \mapsto \mathrm{ia} \quad \mathrm{f} \mapsto \mathrm{c}$
$\mathrm{k} \mapsto \mathrm{bc}$
$\mathrm{c} \mapsto \mathrm{gh} \quad \mathrm{cij} \mapsto \mathrm{kl} \quad \times$
$\mathrm{g} \mapsto \mathrm{e}$
$\mathrm{h} \mapsto \mathrm{i}$
(III)
(III)
none
(II)
(III)
(III)
(I)
$T \mapsto$ afdc

Execution

```
Closure of {afd}
{ak\mapstobc, cd\mapstogh, cij\mapstokl, de\mapstof,g\mapstode, hf\mapstoia,f\mapstoc}
```


Closure of $\{$ afd $\}$

```
\(\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}\)
```

 T \(\rightarrow\) afdc
 \(\mathrm{k} \mapsto \mathrm{bc} \quad \mathrm{c} \mapsto \mathrm{gh}\)
 \(\mathrm{cij} \mapsto \mathrm{kl} \times \mathrm{g} \mapsto \mathrm{e}\)
 \(h \mapsto i\)
 $\mathrm{k} \mapsto \mathrm{b}$
\times
(I)
T \mapsto afdcgh
$\mathrm{ij} \mapsto \mathrm{kl}$

T \mapsto afdcghe
(I)
(III)

.

T \rightarrow afdc
$\mathrm{k} \mapsto \mathrm{bc}$

$\mathrm{cij} \mapsto \mathrm{kl}$
\times
$g \mapsto e$

$T \mapsto$ afdcghei

Execution

```
Closure of {afd}
{ak\mapstobc, cd\mapstogh, cij\mapstokl, de\mapstof,g\mapstode, hf\mapstoia,f\mapstoc}
```

 T \(\rightarrow\) afdc
 \(\mathrm{k} \mapsto \mathrm{bc} \quad \mathrm{c} \mapsto \mathrm{gh}\)
 \(\mathrm{cij} \mapsto \mathrm{kl} \times \mathrm{g} \mapsto \mathrm{e}\)
 \(h \mapsto i\)
 $\mathrm{k} \mapsto \mathrm{b}$
\times
(I)
T \mapsto afdcgh
$\mathrm{ij} \mapsto \mathrm{kl}$

T↔afdcghe
(I)

T↔afdcghei

Execution

```
Closure of {afd}
{ak\mapstobc, cd\mapstogh, cij\mapstokl, de\mapstof,g\mapstode, hf\mapstoia, f\mapstoc}
```

 Tッ \(\rightarrow\) afdc
 \(\mathrm{k} \mapsto \mathrm{bc} \quad \mathrm{c} \mapsto \mathrm{gh}\)
 \(\mathrm{cij} \mapsto \mathrm{kl} \times \mathrm{g} \mapsto \mathrm{e}\)
 \(h \mapsto i\)
 \(\mathrm{k} \mapsto \mathrm{b}\)
 \(\times\)
 (I)
 T \(\mapsto\) afdcgh
 $\mathrm{ij} \mapsto \mathrm{kl}$
(III)
(I)

T \mapsto afdcghe
(I)

T \mapsto afdcghei

Execution

```
Closure of {afd}
{ak\mapstobc, cd\mapstogh, cij\mapstokl, de\mapstof,g\mapstode, hf\mapstoia, f\mapstoc}
```


Closure of \{afd\}

```
\(\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}\)
```

 T \(\rightarrow\) afdc
 \(\mathrm{k} \mapsto \mathrm{bc} \quad \mathrm{c} \mapsto \mathrm{gh}\)
 \(\mathrm{cij} \mapsto \mathrm{kl} \times \mathrm{g} \mapsto \mathrm{e}\)
 \(\mathrm{k} \mapsto \mathrm{b}\)
 \(\times\)
 $\mathrm{ij} \mapsto \mathrm{kl}$
(III)
(I)

T↔afdcghe

T \mapsto afdc
$\mathrm{k} \mapsto \mathrm{bc}$

$\mathrm{cij} \mapsto \mathrm{kl}$
\times
$g \mapsto e$

$$
h \mapsto i
$$

$\mathrm{k} \mapsto \mathrm{b}$
(III)
(I)
T \mapsto afdcgh
(I)
T \mapsto afdcgh

Execution

Closure of $\{$ afd $\}$
T \rightarrow afdcghei
$\mathrm{k} \mapsto \mathrm{b}$
none
$\mathrm{ij} \mapsto \mathrm{kl}$
none
T円afdcghei

$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$

Execution

Closure of $\{$ afd $\}$

$\{\mathrm{ak} \mapsto \mathrm{bc}, \mathrm{cd} \mapsto \mathrm{gh}, \mathrm{cij} \mapsto \mathrm{kl}, \mathrm{de} \mapsto \mathrm{f}, \mathrm{g} \mapsto \mathrm{de}, \mathrm{hf} \mapsto \mathrm{ia}, \mathrm{f} \mapsto \mathrm{c}\}$
T \mapsto afdcghei
$\mathrm{k} \mapsto \mathrm{b}$
none
$\mathrm{ij} \mapsto \mathrm{kl}$

Tゅafdcghei
none

$\mathrm{SL}_{\mathrm{FD}}$ closure: Results

Ratio 3/4

Outline

(3) Logic

- $\mathrm{SL}_{\mathrm{FD}}$ logic
- Redundancy: Classical logics versus
- Closure
- Minimal Keys
(4) Conclusions
- SL as a tool for manipulation of implications
\bullet
Angel Mora
$47 / 57$

Pruning the search space for keys

Ideal non-deterministic operators as a formal framework to reduce the key finding problem, A. Mora et. al., IJCM, 88 (9), 2011

- We have presented a formal method in the framework of the lattice theory to prune the problem of finding all the minimal keys.
- With lineal cost, this prune method provides a longer reduction than the rest of techniques (The \%-reduction in an experiment was the 70,52 \%).

We define $\varrho_{a}: A \rightarrow(a]$ with $\varrho_{a}(x)=x \wedge a$

- ($(a], \leq)$ defines a Boole Algebra
- $\pi: L \rightarrow L / \equiv_{a}$ is the homomorphism that assigns to x its equivalence class $\complement_{a}(x)$
- $\Psi: L / \equiv_{a} \rightarrow(a]$ is the isomorphism defined as $\Psi\left(C_{a}(x)\right)=\varrho_{a}(x)$

Prunning the scheme

Algorithm: core and the body of R
Let $R=<\mathcal{A}, \Gamma>$ be a relational schema.

1. $\operatorname{Dnt}(\Gamma)=\bigcup_{X \mapsto Y \in \Gamma} X$
2. $\operatorname{Dte}(\Gamma)=\bigcup_{X \mapsto Y \in \Gamma} Y$
3. core $=\mathcal{A}-\operatorname{Dte}(\Gamma)$
4. body $=\left(\operatorname{Dnt}(\Gamma) \cap\left(\mathcal{A}-\right.\right.$ core $\left.\left.^{+}\right)\right)$

Theorem

Let $R=<\mathcal{A}, \Gamma>$ be a scheme. Let \mathcal{K} be a minimal key of R, then we have that $\operatorname{core}_{F} \subseteq \mathcal{K} \subseteq\left(\right.$ core $_{F} \cup$ body $\left._{F}\right)$.

Wastl Method

- Wastl introduces a Hilbert style inference system, called \mathbb{K}, for deriving all keys.
- Wastl builds a tableaux which represents the search space to find all the keys applying the inference system IK.

The rules of the \mathbb{K} inference system

Rules of inference:

$$
\begin{array}{ll}
\mathbb{K}_{1}: & \frac{X \mapsto a Y}{X Y \mapsto b} \\
\mathbb{K}_{2}: & \frac{X \mapsto a \quad Y \mapsto b}{X Y \mapsto b}
\end{array}
$$

Wastl Method

Let $\mathcal{A}=\{a, b, c\}$ and $\Gamma=\{c \mapsto a, a \rightarrow b, b \mapsto a\}$. We build the root of the Wastl tree $(a b c \mapsto a)$ by applying the \mathbb{K}_{2} rule. And applying \mathbb{K}_{1} we build the tableaux.

$S L_{F D^{-K e y ~ A l g o r i t h m ~}}$

Automated reasoning to infer all minimal keys, P. Cordero et.al., Submitted.

Definition: ψ-Operator

$$
\begin{aligned}
& \Psi_{X \mapsto Y}\left(U_{\mapsto} V\right)=\left\{\begin{array}{l}
U \mapsto V-Y, \text { if } U \cap Y=\varnothing \\
(U X)-Y \mapsto V-(X Y) \text { otherwise }
\end{array}\right. \\
& \Psi_{X \mapsto Y}(\Gamma)=\left\{\Psi_{X \mapsto Y}\left(U_{\mapsto} V\right) \mid U \mapsto V \in \Gamma\right\}
\end{aligned}
$$

SL FD-Key Algorithm

Example

Let $\mathcal{A}=\{a, b, c, d, e, f, g\}$ and $\Gamma=\{a d f \mapsto g, c \mapsto d e f, e g \mapsto b c d f\}$.
We have that core ${ }_{F}=\{a\}$ and $\operatorname{body}_{F}=\{c, d, e, f, g\}$. So, we reduce the problem considering $\mathcal{A}^{\prime}=\{c, d, e, f, g\}$ and $\Gamma^{\prime}=\{d f \mapsto g, c \mapsto d e f, e g \mapsto c d f\}$.

Execution

Results:

- Keys in our tableaux are $\{c$, def, eg $\}$
- core $=\{a\}$
- Thus the set of all the minimal keys is $\{a c$, adef, aeg $\}$.
- Our tableaux has 7 nodes and 3 levels of depth, while this same example in Wastl's method produces a tableaux of 56 nodes and 5 levels of depth.

Outline

(2) Algebraic framework

- $\mathrm{SL}_{\mathrm{FD}}$ logic
- Redundancy: Classical logics versus
- Closure
- Minimal Keys

4 Conclusions

Conclusions

- Formalization of FDs as non-deterministic operators in the algebraic framework has guided us to:
- A logic for functional dependencies: Simplification Logic for FDs.
- Automated methods based on logic to:
- remove redundancy.
- calculate the closure.
- obtain all minimal keys.
- Simplification Logic can be applied in extensions of classical models: fuzzy extensions, XML extensions, FCA.

[^0]: - SL as a tool for manipulation of implications

