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In various applications we have

introduced some specialized information

aggregation and fusion methods in which

the effect and importance of new

information depends on earlier

information provided, the current state of

our knowledge.



IDAIDA
We shall refer to these methods as IDAIDA

Intelligently Directed Aggregation

Here we shall describe some examples of
IDA



Human LearningHuman Learning

• Step by Step inclusion of new information

• We fuse new information with old

• We use our intelligence to control the

learning process

• Provides a prototypical example of IDA



Understanding Mechanisms of
Human Learning 

• Enables the construction of more cognitively

capable agents

• Build better algorithms for processing data

• Improve aspects of man-machine interaction



Participatory Learning
A Paradigm for More Human Like Learning



Basic Premise of Participatory Learning
Paradigm

Learning takes place in the framework of what

is already learned and believed

• Every aspect of the learning process is effected

and guided by the current belief system

• Learning is a highly noncommutative Process  

   First Impressions are Important

   The order of experiences matters



An Example Model of Participatory Learning 

• Variables of Interest:            V = 

V1

.

Vn

• Current Belief of Variables:         X = 
x1
.

xn

• Additional new data:             D = 

d 1

.

d n



Updation Process

• Updation Process:

X = F(X, D)

       Updated Belief Structure

X = 
x1
.

xn

• Learning depends on difference between what

we currently believe and new data

                (D - X)



Participatory Learning Mechanism

         X = X + β (D - X)


Openness to learning

β = α  ρ

Compatibility of
observation with
current belief

Basic Learning
Rate



Compatibility Mechanism

• Strongly Noncommutat ive
Measures compatibility of Observation with Belief

•Possible Form for ρρρρ

       ρ = 1 - 1
n  |xj∑  -dj|

• Updation Algorithm:
X = X + β (D - X)

xj = xj + α ρ ( dj -xj)

• Provides Context Uses Information about whole

observation 



• Features of Learning Algorithm

               xj = xj + α ρ ( dj -xj)

  i. No learning when data complete ly  agrees or

disagrees with current belief

  ii. Optimal learning when m o s t  of the dj ' s

agree with the xj' s

  iii. Step by step 

• Allows fast learning 
        High α
      "Bad" Observations Choked by ρ



• ρ  evaluates the acceptability of data in context of

current belief system

• can be a very complex process involving a more

complex inference process then in the above



Needs Mechanism to Avoid Being Locked into

Wrong Beliefs !!!!



General Framework of Participatory Learning

Paradigm

Acceptance
Function

Updation
Process

Belief
System

Arousal Mechanism

Data



AROUSAL MECHANISM

Introduce arousal factor to monitor

performance of beliefs

Modified Updation Rule:

X = X + α ρ(1 − δ) (D - X)
  

             arousal factor



                
X = X + α ρ(1 − δ) (D - X)

• δ Near zero
Model blocks out incompatible data

Past data are compatible with belief

• δ Near One
Lets all data modify beliefs

Historically Beliefs are Incompatible with
observat ions



Arousal Factor Calculation

  δ  = δ + λ ((1 - ρ) - δ)

δ:     Current Arousal factor

δ:    New arousal factor

λ:     Learning rate

ρ:Compatibility of current observation

• Incompatible Observation (ρ = 0) increases arousal

• Compatible Observation (ρ = 1) decreases arousal



Alternative Method for Inclusion of Arousal
Factor

• F(ρ, δ) = ρ(1 - δ)

• F(ρ, δ) = S(ρ, δ)
        S is a t-conorm

• F(ρ, δ) = Max(ρ, δ)

• F(ρ, δ) = ρ + δ - ρ δ

Basic Model
X = X + (ρ + δ - ρ δ) α (D - X)



Overall Structure of Participatory Learning

Paradigm

Two Level Model

I. Foreground:  Learning Rule

   • X = X + α ρ(1 − δ) (D - X)

  • Changes belief based on current observation

   • Fast Learning: high α

ΙΙΙΙ ΙΙΙΙ ....    Background: Arousal Factor Calculation

    • δ = δ + λ  ((1 - ρ) - δ)

  • Performance based on history of compatibility

   • Slow change: low λ



One Lesson for teaching

Repeat things in different ways



Participatory Learning In Neural Networks

• Neural model with n output nodes

• Error at the kth  output neuron ek  

• Change in connection weight between node k

and node j of the previous layer
                      ∆wkj = η xj f'k (net k) ek

• Introduce term ρb :     ∆wkj = ρb η  xj f'k (net k) ek

• ρ = 1 - 1n  |ej|∑ , compatibility of observation with model 

• b is the measure of confidence

   necessitates introduction of a arousal component

• ρ b  term introduced at all layers in the back

propagation 



Rule Base Expression of PL Model

R 1 :  If compatibility of observation is h i g h  then
move current belief closer to current observation

R2:  If compatibility of observation is l o w  then
don't change current belief

Fuzzy Systems Model of Rule Base

R1:  If ρ is HIGH then ∆ is α  (D - X)

R2:  If ρ is LOW  then ∆ is 0



Solution of Fuzzy Model

∆ = 
HIGH(ρ) α (D - X) + LOW(ρ) 0

HIGH(ρ) + LOW(ρ)

Using Linear definitions of Fuzzy Sets
HIGH(ρ) = ρ 
LOW(ρ) = 1 - ρ

∆ = ρ α (D - X)

Obtain Original Rule Updation Rule:
            X = X + ρ α (D - X)

Inclusion of Arousal:    X = X + ρ(1 − δ) α (D - X)



Allow Slow Learning in case of Incompatibility

R1:  If ρ is HIGH then ∆ is α  (D - X)

R2:  If ρ is LOW  then ∆ is β (D - X)
                 α > β

Solution: 
∆ = (β + (α − β)ρ) (D - X)

Updation Rule:
X = X + (β + (α − β)ρ) (D - X)

Inclusion of Arousal Factor:
X = X + (β + (α − β)ρ(1 − δ)) (D - X)



Properties of Model: X = X + (β + (α − β)ρ(1 − δ)) (D - X)

• β  = 0             Obtain Previous model

• β = α                                          X = X + α (D - X)
     Usual learning model   Nonparticipatory model

• β  ≠  0
Learning Occurs even if ρ = 0

• ρ  = 1
Learning Occurs at α  rate

• ρ  = 0
Learning Occurs at β rate



General Participatory Learning Model

• Rule Base:

        If ρ is Ai then ∆ is α i (D - X)

• Ai fuzzy subsets partitioning unit interval: 

(very low, low etc)      Ai < Aj  for i < j

• α i learning rates:

        α i < α j  for i < j



Updation Rule

X = X + 

Aj(ρ)α j ∑
j = 1

n

Aj(ρ) ∑
j = 1

n (D - X)

Inclusion of Arousal Component

X = X + 

Aj(ρ(1 -δ))α j ∑
j = 1

n

Aj(ρ(1 -δ)) ∑
j = 1

n (D - X)



 Learning Experience

• Components 

  Content of the Experience

  Source of the Content

• Acceptability of Experience depends on 

  Content compatibility current belief system

  Credibility of the source.

Information about both these components are

contained in PL agent's current belief system



Normally compatible content is allowed into the

system and is more valued if it is from a credible

source rather than a non-credible source

Incompatible content is generally blocked, and

more strongly blocked from a non-credible source

than credible source



Including Source Credibility in PL Process

• Collection of possible sources   S = {S1, ..., Sn}

• C(j) ∈  [0, 1] belief about credibility of source Sj

Stored in the belief system of the Pl agent

• Updation when kth observation from source Sj
Vk = Vk-1+ α C(j) ρk

(1-ak)(dk(i) - Vk-1(i))

• Arousal level updation algorithm
ak = (1 - C(j)β) ak-1 + C(j) β ρk



Updation of the Source Credibility

• PL agent learns source credibility from learning
experiences  

• Ck(j) credibility of source Sj after kth  experience

•  Mjk = 1 if Sj is the source of kth experience 
    Mjk = 0 if Sj is not source of the kth experience

•  Ck(j) = Ck-1(j) + Mjk λ  ak-1(ρk - Ck-1)
                                   λ ∈ [0, 1] is a base learning rate

•  Can be different learning rates for each source

•  If λ(j) = 0  fixed credibility for the jth  source



Classes of Learning  Sources

• Direct sensory experiences
Seeing an auto accident, 
Smelling alcohol on somebody's breath
Hearing John tell Mary I love you.

Observations made with our own sensory organs

• From an “authority”
Being told by another person
Reading something in a book
Obtaining it from the internet
Seeing it on T.V.

Contents processed by some other cognitive agent
Subject to "interpretation" by the processing agent



• From electro-mechanical sensor

Speedometer on your car

Thermomete r

Air traffic controllers screens  

Contents processed by neutral physical device

• From reflection

Deduct ion

Induct ion

Reasoning 

Conscious rational manipulation of information

already in an agent's belief system



• From Beyond(Mystic) 
Dreams
Hallucinations
Being told by God
Gut feeling

Useful in modeling terrorists many of whom are
religious fundamentalists who construct their

belief system using this type of source.
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Hierarchical Representation
for Fuzzy Systems Modeling

The Hierarchical Prioritized
Structure

The HPS Model



Advantages of
Fuzzy Systems Modeling

• Widely used technology for building intelligent
systems with many applications

• Allows rapid and inexpensive development of
systems by greatly reducing the number of rules
needed in the modeling process

• Allows capture of expert information in a manner
easy for the expert to articulate by providing a bridge
between human cognition and formal models.



Basic Fuzzy Systems Modeling

Small Medium Large• Uses fuzzy sets to
represent words

• Uses collection of fuzzy
rules to represent
relationships:

If U is Ai then V is Bi

Ai and Bi are fuzzy sets
S M L

S

M

L

u

v



• Flat representation of if-then rules can lead to
unsatisfactory results.

• Rule base:
If U is 12 the V is 29

   If U is [10-15] then V is [25–30].

• With U = 12 we get V is [25 - 30].
• Defuzzification leads to  V = 27.5

• Very specific instruction was not followed

The more specific information was swamped by the less
specific information



Difficulty Handling Conflicting
Special  Cases when Using Default Rules

Default Rule:
If the light is red then Cross.

Special Case:
If the light is red and a fire engine is
coming then Don’t Cross.

Systems needs to intelligently decide
which rule to apply



 Benefits of Including
Default Rules in Models

• Gives applications robustness to operate in situations
in which they have not been explicitly  trained.

• Contributes to affordable systems development by
further reducing number of rules needed

• Allows modularity by enabling modeling of
commonsense knowledge which can used across
applications



We provide the ability to include default rules in

applications by  using an extension of fuzzy systems

modeling technology based on a hierarchical structure



Hierarchical Prioritized
Structure (HPS)

• Each level consists of a
collection of fuzzy rules

• More specific rules higher in
structure

• Default rules at lower level

• Inference combines basic
fuzzy model with hierarchical
aggregation



Inference in
Hierarchical Prioritized Structure

• Within each level uses  basic fuzzy
reasoning

• Between levels uses special
hierarchical aggregation operator

• Combination allows preference to be
given to rules higher in the structure



Functioning of the HPS

• 1. Initialize V0 = ∅  and j = 1

• 2. Calculate potential contribution of level j, Tj

• 3.Using HUA Hierarchical Updation
Aggregation  find output Vj of the j th level,
denoted Gj

• 4. If j = n stop; Model output is Vn

• 5. Set j = j + 1 and go to step 2



Calculation of Output Tj

•  Level j consists of  fuzzy rules

If U is Aji  then V is Bji

•  System input is U = x*

•  Apply standard fuzzy reasoning calculate
potential output at level j    Tj

∀Τ j (y) = Maxi[ϒji ∧  Bji(y)]   where ϒji = Aji(x*)



Hierarchical
Aggregation  Operator

Formally the hierarchical aggregation method uses

Gj(y) = Tj (y) * (1 – gj–1) + Gj–1(y)

→ Gj is output of level j

→ gj-1= Maxy[Gj-1(y)]  measures how much matching
up to this point.

→ Tj is potential contribution of level j



Properties of HAU

           Gj(y) = Tj (y) * (1 – gj–1) + Gj–1(y)

•  Not pointwise

•  gj-1 acts as choke on effect of Tj

•  If gj-1 = 1 no effect of new level

•  Effect of new level inversely proportional to
strength of solution already found



How Hierarchical
Aggregation Works

Allows contribution from current level only if no
solution found at higher levels

High Levels

Output Relevance

Current Level
Contribution

+

Switch  Blocks Contribution 
if relevance high



HUA Operator

• If no y with Gj–1(y) = 1 we add to output

• Each y gets 1 - gj–1 portion of the potential
contribution at that level

• HPS looks for the most relevant rule relating to
this input.

• If this rule completely matches x* then we stop
our inference process



The HEU function

Gj(y) = Tj( y) * (1 – gj–1) + Gj–1( y)

Maximizes the specificity of the value of the
output variable. If G is the final output of the
system HEU operates so make G have a high
specificity given the knowledge base



HEU Is Nonmonotonic

D(z) = A(z) * (1 -bmax) + B(z)

• Monotonicity:

If A2 ⊆  A1 and B2 ⊆  B1 then D2 ⊆  D1

• Counter Example:

A1 = A2 = {1 /x, 0 .8 /y}

B2 = {0.2/x, 0 .4 /y} B1 = {0.2/ x, 1/ y }

D1 = {0.2/x, 1/y}    D2 = {0.8/ x, 0. 88 / y }

D2 ⊄  D1



Constructing HPS Models

•  Constructed from User Supplied Rule
Base

•  Learn ed fro m Observed Data

•  Adaption
      Initialize with user knowledge
      Mo dify u sing Observations



Example

Using an HPS to model V = f(U)



LEVEL #4

Default knowledge

If U is anything the V is 2u



LEVEL #3

If U is low  th e n V is "about 40"

If U is m e d th e n V is "abo u t 85”

If U is high  th e n V is "abo u t 130"



LEVEL #2

If U is "about 10" then V is "about 20"

If U is "about 30" then V is "about 50"

If U is "about 60" then V is "about 90"

If U is "about 80" then V is "about 120

If U is "about 100" then V is "about 150



LEVEL #1

If U is 5 then V is 13

   If U is 75 then V is 80

If U is 85 then V is 100



HPS has an inherent structure

to enable  natural  human-like

learning mechanism



Three Level Exception
Driven HPS

• Initialize with default and other rules
at lowest level

• Only exceptions (observations
deviating from model prediction) are
remembered,

• Rules at level-2 based on clustering
of exceptions

– Patches to initial rules

Level -1
Exceptions

Level-2

Level-3
Default Rules

Exception  
   Rules

Input U

Output V



Learning Paradigm in HPS

1. Information enters the system from observations
and experiences.

2. Stored at highest level of hierarchy.

3. When enough observations cluster in a
neighborhood, replace these by a rule at next lower
level of hierarchy

4. If possible combine group of second level rules to
form new “more general” rule at third level -
resulting in rule reduction

 



Learning Mechanism

Experience

Add to
level
one

Can we 
aggregate 

exceptions?

Add
rule to
level 2

END

Disregard

Yes

Yes

No

No

Is it an 
exception?



Three Level HPS

• Provides natural human-like learning

• Allows for inclusion of prior knowledge

• Uses observations to modify prior
knowledge

• Rules filter down the model 



Benefits of Hierarchical
Prioritized Structure

• Allows inclusion of default rules

• Creates prioritized aggregation

• Retains modularity

• Capability to emulate learning of general rules

• Provides model allowing explanation of how and what
has been learned



Lexicographically PrioritizedLexicographically Prioritized

Multicriteria Multicriteria Decisions UsingDecisions Using

Scoring FunctionsScoring Functions



Multi-Criteria Decision ProblemMulti-Criteria Decision Problem

• Collection of criteria C = {C1, ..., Cn}

• Set of alternatives X = {x1, ..., xm}.

• Ci(x) as a value in the unit interval

• Overall satisfaction of alternative to criteria

• Weighted Aggregation of criteria satisfactions

 
C(x) = wi Ci(x)

i
∑



Properties of Importance WeightsProperties of Importance Weights

• wi ∈ [0, 1]

• C(x) is called a weighted scoring function

• C(x) is monotonic in Ci(x)

• Special case: wi sum to 1

      C(x) is called a weighted averaging function

       Mini[Ci(x)] ≤ C(x) ≤ Maxi[Ci(x)] (Bounded)



These weighted aggregation operators allow

tradeoffs between criteria.

We can compensate for decrease of ∆ in

satisfaction to criteria Ci by gain wk/wi  ∆ in

satisfaction to criteria Ck.



In some applications we may have a

lexicographiclexicographic ordering of the criteria and do not

want to allow this kind of compensation between

criteria.



Child Bicycle Selection ProblemChild Bicycle Selection Problem

 Selecting bicycle for child using criteria of safety and cost

 However any bicycle we select must be safe

 We do not want poor safety to be compensated for by

very low cost.

 Before considering cost must be sure the bicycle is safe.

 A lexicographic induced prioritization ordering of criteria.

 Safety has a higher priority.



 In organizational decision making criteria desired

by superiors generally, have a higher priority then

those of their subordinates.  The subordinate must

select from among the solutions acceptable to the

superior.

 Air traffic controller decisions involve a prioritization

of considerations with passenger safety usually at

the top.



 WHAT IS NEEDEDWHAT IS NEEDED

 An aggregation operator that can

handle lexicographically induced

priority between the criteria



 Solution ImperativeSolution Imperative

 Use importance weights

 Importance weight of lower priority criteria based on
satisfaction to higher priority criteria

 Effectively prevents satisfaction of lower priority

criteria from compensating for poor satisfaction to

higher priority criteria.



Prioritized ScoringPrioritized Scoring

OperatorOperator



Problem FormulationProblem Formulation

• Collection of criteria partitioned into q distinct categories

               H1, H2, ..., Hq

• Hi = {Ci1, Ci2, ..., Cini}: Cij are the criteria in category Hi

• A  prioritization between these categories

           H1 > H2, ... > Hq

• Criteria in Hi have a higher priority than those in Hk if i < k

• Criteria in the same category have the same priority

• Total number of criteria is n



Prioritized Scoring OperatorPrioritized Scoring Operator
PS OperatorPS Operator

• Alternative x ∈ X

• Cij(x)  ∈  [0, 1] is x satisfaction to criteria Cij.

• C(x) overall score for  alternative x 

• Prioritized Scoring (PS) operator

• Weights used to enforce the priority relationship

• Weights will be dependent on x

 

C(x) = ( wijCij(x))
j=1

ni

∑
i=1

q

∑



Determination of WeightsDetermination of Weights

• For each category Hi we calculate Si = Minj[Cij(x)]

• Si is the value of the least satisfied criteria in category Hi

• S0 = 1 by convention

• Calculate

• Set

• Use

 
Ti = Sk

k=1

i−1

∏          (T3 = S0S1S2)

 
uij = Ti

 
wij = uij



Properties of the weightsProperties of the weights

• Criteria in same category have same weight

• Criteria in top category have weight 0ne

• Lower priority criteria smaller weights

 
wij = Ti

 Ti ≥ Tk for i < k

 T1 = 1     (Criteria in H1 have weight 1)

• If Si = 0 then wkj = 0 for k > i (Contribution blocked)



 

C(x) = Ti( Cij(x))
j=1

ni

∑
i=1

q

∑

Effective Prioritized Scoring OperatorEffective Prioritized Scoring Operator

 Ti decreases as i increases

Low satisfaction for higher priority criteria

blocks contribution by low priority criteria



Manifests Fundamental Feature of the PrioritizationManifests Fundamental Feature of the Prioritization

Poor satisfaction to any higher criteria reduces the

ability for compensation by lower priority criteria.

.





Basic Features of the PS OperatorBasic Features of the PS Operator

• Importance weights of a criterion depend on the

satisfaction to higher priority criteria

• Lower priority criteria only contribute to the score of

alternatives satisfying higher priority criteria

• Lower priority criteria used to distinguish between

alternatives satisfying higher priority criteria

• Importance weights will be different across

alternatives.



Why have we chosen this scoring type operator rather

then an averaging operator which simply requires that

we normalize the weights ?

In this case of partial ordering of the criteria (more the

one criteria in each category) performing this

normalization does not always guarantee a monotonic

aggregation







Prioritized Scoring Operator Respects thePrioritized Scoring Operator Respects the
MonotonicityMonotonicity

For example 1

• w1j = u1j = 1 and w2j = u2j = 0

• C(x) = 3.

For example 2

•w1j = u1j = 1 and w2j = u2j = 1

•C(x) = 4

 The monotonicity is respected.



If the priority relationship between the

criteria is a linear ordering (one criteria in

each category) then we can obtain a

monotonic prioritized averaging (PA)

operator



Prioritized AveragingPrioritized Averaging

OperatorsOperators



Problem FormulationProblem Formulation

• Collection of criteria partitioned into q distinct categories

               H1, H2, ..., Hq

• Hi = {Ci}: One criteria in criteria in category Hi.

• A  prioritization between these categories

           C1 > C2, ... > Cq.

• Criteria Ci has higher priority than Ck if i < k.



Prioritized Averaging OperatorsPrioritized Averaging Operators
PA OperatorPA Operator

• Alternative x ∈ X

• Ci(x)  ∈  [0, 1] is x satisfaction to criteria Ci

• C(x) overall score for  alternative x 

• Prioritized Averaging (PA) operator

 
C(x) = wiCi(x)

i=1

q

∑

 The wi  depend on Ck(x) for k < i



Determination of WeightsDetermination of Weights

• For category Hi we calculate Si = Ci(x)

• Si is the value of the least satisfied criteria in category Hi

• S0 = 1 by convention

• Calculate

 
Ti = Sk

k=1

i−1

∏          (T3 = S0S1S2)

 ui = Ti       (pre-weights)

 
wi =

Ti
T

    T = Ti
i
∑        



Prioritized Averaging OperatorPrioritized Averaging Operator

 
C(x) = wiCi(x)

i=1

q

∑

 
wi =

Ti
T

    T = Ti
i
∑        

 Ti = C1(x)C2(x)C3(x)....Ci−1(x)    i >1

 T1 = 1

 Weights decrease as i increases

Lack of satisfaction to higher priority criteria
blocks compensation by lower priority criteria



IllustrationIllustration
 C1 > C2 > C3 > C4

 C1(x) = 1 C2(x) = 0.5 C3(x) = 0.2 C4(x) = 1

  T1 = 1 T2 = 1 T3 = 0.5 T4 = 0.1 T = 2.6

 w1 = 0.38 w2 = 0.38 w3 = 0.2 w4 = 0.04

 C(x) = (0.38)(1) + (0.38)(0.5)+ (0.2)(0.2) + (0.04)(1) = 0.65

 C1(y) = 0.2 C2(y) = 0.5 C3(y) = 1 C4(y) = 1

  T1 = 1 T2 = 0.2 T3 = 0.1 T4 = 0.1 T = 1.4

 w1 = 0.72 w2 = 0.14 w3 = 0.07 w4 = 0.07

 C(y) = (0.72)(0.2) + (0.14)(0.5)+ (0.07)(1) + (0.07)(1) = 0.35



Alternative Determination of Alternative Determination of SSii

 
Hi = {Ci1,Ci2,Ci3,......,Cini

}

Si is effective satisfaction of criteria in Hi

 
Si = Minj[Cij(x)]      (Least satisfied criteria)

 

Si =
1

nij=1

ni

∑ Cij(x)  (Average satisfaction in Hi)     

 
Si = OWA(Ci1(x),Ci2(x),Ci2(x), ....,Cini

(x))
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Non-Non-Montonic Montonic PrioritizedPrioritized

Set OperationsSet Operations



Basic Operations on Fuzzy SetsBasic Operations on Fuzzy Sets

• Assume A and B are two fuzzy subsets of X.
• Standard intersection operation: E = A ∩  B

E(x) = Min[A(x), B(x)] = A(x) ∧ B(x).

• Set inclusion for fuzzy sets A ⊆  B if A(x) ≤ B(x)   for all x

• A of X is called normal if there exists at least one     x ∈ X
such that A(x) = 1.

• Possibility: Poss[A/B] = Maxx[A(x) ∧ B(x)] = Maxx[E(x)]

• Certainty:  Cert[A / B] = 1− Poss[A / B]



 Properties of Intersection

¶ Pointwiseness: E(x) just depends on A(x) & B(X)

¶ Commutativity: A ∩B = B ∩ A (Equivalence of Arguments)

¶ Associativity: A ∩ (B ∩ C) = (A ∩  B) ∩  C

 ¶ Monotonicity:If A1 ⊆ A2 &  B1 ⊆ B2 then A1 ∩ B1 ⊆ A2 ∩  B2

 ¶ A ∩  X = A          X ∩  A = A

 ¶ ∅   ∩  A = ∅       A ∩  ∅ = ∅

¶ A ∩  B ⊆ A          A ∩  B ⊆  B

¶ If A ⊆  B then A ∩  B = A   If B ⊆  A then A ∩  B = B



Significant Observation About
Intersection

• Conflict between A and B results in subnormal E

• The larger the conflict the smaller E

• Essentially conflict results in null intersection

• 1 - Poss[A/B] measures degree of conflict



Non-Monotonic Intersection OperatorNon-Monotonic Intersection Operator

• Assume A and B are two fuzzy subsets of X.

• Define the non-monotonic intersection operator η

η(A, B) = D

• Here D is fuzzy subset of X such that

D(x) = ((1 – Poss[A/B]) ∧ A(x))∨ (A(x) ∧  B(x))

• We can also express η as

             D(x) = A(x) ∧ (B(x) ∨ (1 – Poss[A/B]))



Essential Workings of  Essential Workings of  ηη(A, B)(A, B)

• Test  whether A and B are not conflicting

• If a non-null intersection then this non-null

intersection becomes η(A, B).

• If A and B don't intersect then we obtain A.



Important Distinction Between Standard
Intersection and the η Intersection

•  If F = A ∩  B then F(x) = A(x) ∧ B(x)

• F(x) just depends upon A(x) and B(x)

 ∩  is a  pointwise operator

• If E = η(A, B) then

E(x) = ((1 – Poss[A/B]) ∧ A(x)) ∨ A(x) ∧ B(x))

• E(x) depends upon the whole sets A and B

η is not a pointwise operator



  ηη  is non-monotonicis non-monotonic

Example: A = {x1, x2, x3}  and B = {x5}
Consider η(A, B)

Since Poss[A/B] = 0 we get
η(A, B) = A = {x1, x2, x3}

Example: Consider G = {x1, x2, x3, x4} and H = {x1, x5}.
We note that

A ⊆  G and B ⊆ H
Consider η(G, H).
Since Poss[G/H] = 1 then

η(G, H) = G ∩ H = {x1}

We see that η(G, H) ⊂ η(A, B)



The η operator is Not commutative,
η(A, B) ≠ η (B, A).

Example:

  A = {x1, x2, x3}

 B = {x4, x5}.

 Poss[A/B] = 0

η(A, B) (x) = A(x) ∨ (A(x) ∧ B(x)) = A(x).

η (B, A) (x) = B(x) ∨(A(x) ∧ B(x)) = B(x)



• Ordering of the arguments in η operator is of significance.

• There is distinction between the arguments

• In the face of conflict we revert to A

• In η(A, B) we say that A has priority over B.

• Call A the primary argument and B the secondary argument

.

The non-monotonic intersection admits aThe non-monotonic intersection admits a

concept of priority amongst its argumentsconcept of priority amongst its arguments.



  Interaction with X and Null SetInteraction with X and Null Set

• η(A, X) = A

•  η(X, A) = A        if A is normal

      η(X, A) (x) = (1 – Maxx[A(x)]) ∨ A(x)   if A is subnormal

•  η(∅, A) = ∅

•  η(A, ∅) = A

• η(A, B) = ∅ iff A = ∅



Observations About ContainmentObservations About Containment

•  η(A, B) ⊄  A
• If Poss[A/B] = α, then η(A, B) (x) ≤ B(x) for all x where
B(x) ≥ 1 – α

In particular if α = 1, then η(A, B) ⊆  B.

•If A ⊆  B then η(A, B) = A

•If B ⊆  A then η(A, B) (x) = (1 – ß) ∧ A(x)∨B(x), where

Maxx[B(x)] = ß

•When B ⊆  A the closer B is to being normal the closer

η(A, B) is to B while the further B is from normal the

closer η(A, B) is to A.



Idempotency is satisfied by this operationIdempotency is satisfied by this operation

η(A, A) (x) = ((1 – Poss[A/A]) ∧ A(x) ∨ (A(x) ∧ A(x)) = A(x).



ηη  Operator is Not AssociativeOperator is Not Associative

Procedure for Aggregation Depends upon the
Priorities

•A > B to indicate A has priority over B

•A ≡ B to indicate A and B are of equal priority



The following are the structurally distinct manifestations

of priorities among three elements

1.  A > B > C                η(A, B, C)

2.  A ≡ B ≡  C                η((A, B, C))

3.  A > B, B ≡ C            η(A, (B, C))

4.  A ≡  B, B > C            η((A, B), C)



A > B > CA > B > C

Definition: η(A, B, C) = η(η(A, B), C)

More generally if A1 > A2 > . . . . , > Aq we denote this as

η(A1, A2, . . . ,Aq)

and define it

η(η(η, . . . , (η(A1, A2), A3), . . . , Aq)

if we let Dj be the result after including the jth term then

     D1 = A1

Dj(x) = ((1 – Poss[Dj-1/Aj]) ∧ Dj-1(x)) ∨ (Dj-1(x) ∧ Aj(x))     j > 1.



A A ≡≡  B B ≡≡    CC

• η((A, B, C)) = D

• D = A ∩ B ∩ C

• Implement as the standard intersection



A > B, B A > B, B ≡≡  CC

• D = η(A, (B, C))

• D(x) = ((1 – Poss[B/A]) ∧ (1 – Poss[C/A]) ∧ A(x))
  ∨ ((1 – Poss[B/(C ∩  A)]) ∧ C(x) ∧ A(x))
  ∨ ((1 – Poss[C/(B ∩  A)]) ∧ B(x) ∧ A(x))
  ∨ (A(x) ∧ B(x) ∧ C(x))

• Aggregation Imperative

   We first try to use the intersection of all three, A ∩  B ∩  C.

If this results in  conflict we then try to use the intersection  of

A with either B or C,    (A ∩  B) ∪ (A ∩  C)

if both these fail then we use A.



A A ≡  ≡  B, B > CB, B > C

• D = η((A, B), C)
• D(x) = ((1 – Poss[C/A ∩  B]) ∧ A(x) ∧ B(x))
             ∨ (A(x) ∧ B(x) ∧ C(x)).

• Aggregation Imperative

We first try to use the intersection of all three, A ∩  B ∩  C.

If this results in  conflict we then we use the intersection  of A

and B



A complete generalized approach is
available in

Yager, R. R.,  "Non-monotonic set
theoretic operations," Fuzzy Sets and
Systems 42, 173-190, 1991



SOME APPLICATIONSSOME APPLICATIONS



Information Fusion and ReasoningInformation Fusion and Reasoning

• Conjunction or intersection plays a central role in the

aggregation of information.

• Given a piece of information I1.  If we receive a second

piece of information I2 then the combined information is the

intersection of these two pieces of information.

• If the two pieces of information conflict we left, as a result

of their conjunction, with an inconsistency, the null set.



Commonsense or Default reasoningCommonsense or Default reasoning

• We start with a piece of knowledge called an assumption

or default value, I3.

• If we receive a piece of information, I4, we must combine

this with our default value.

• In this case if there exists a conflict rather then being left

with the inconsistency we realize that the original piece of

information, I3, was only an assumption and withdraw it in

the face of conflict.

• Here then information  I4 has priority over I3



Example of Commonsense Default LogicExample of Commonsense Default Logic

• For example one could assume that a typical college

student is in their twenties.

• If we find out that Mary is a college student who is fifty

years old we want to withdraw the conjecture that she is in

her twenties

• However if we get no other information about Mary’s age

we use the default value



Multi-Criteria Decision Making
Set of criteria: A1 A2 , ………, Aq

Priority of Aj over Aj+1

if A1 > A2 > . . . . , > Aq we denote this as

η(A1, A2, . . . ,Aq)

Information Retrieval



Modification of Modification of ηη operation operation.

•Consider

η(A, B; α) = A(x) ∧ (B(x) ∨ ((1 – Poss[A/B]) ∧ α))

• When α = 0 we get a non prioritized standard  intersection

η(A, B; 0) = A ∩  B

• While when α = 1 we get the prioritized intersection

η(A, B; 1) = η(A, B)



•View  α as specifying  some degree of priority.

•When α = 0, A and B are of equal priority

• When α = 1, A has complete priority over B.

• Intermediate values indicate degrees of priority.



Application to Belief RevisionApplication to Belief Revision

• View E = η(A, B) as a kind of Belief revision operation

• Using η(A, B) we are having A revised by B.

             E(x) = A(x) ∧ (B(x) ∨ (1 – Poss[A/B]))

• Allow A to be revised if B doesn't conflict too strongly with it.

•If degree of conflict (1 – Poss[A/B]) = 1 then no revision occurs

• If conflict  equals zero maximal revision occurs.

• Viewing η(A, B; α) in this perspective we can see that

α determines how strongly A is held.



Non-Monotonic Union OperatorNon-Monotonic Union Operator

• ψ(A, B) = E

• E is a fuzzy subset of X such that

E(x) = (Poss(¬A/¬B) ∨ A(x)) ∧ (A(x) ∨  B(x))

• Alternatively we can write it as

E(x) = A(x) ∨ (B(x) ∧  Poss(¬A/¬B))

• We note that ψ and η are related by De Morgans Law.

ψ(A, B) (x) = (1 – η(¬A/¬B) (x))



The EndThe End




