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Basic concepts of imprecise probabilities

• Classical probability theory works with single
probability measures.

• The theory of imprecise probabilities works with
sets of probability measures.

In this lecture we consider probability measures
defined on the powerset2X of a finite set
X = {x1, ..., xn}.

Mpr(X) is the set of all probability measures on2X .
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Theory of imprecise probabilities and decision
theory

Suppose that you are planning to spend your vacations
and there are three possibilities to spend them at
home, in Spainor Italy.
You can evaluate your decisions exactly if you know
the information about weather.
If the weather will bebad, then it is preferable to stay
at home, in case ofgoodweather it is preferable to
travel to Italy, and if the weather will beexcellent,
then you should choose the travel to Spain.
Assume that preferences can be measured by real
numbers that show the benefit of each action.
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Bad Weather Good Weather Excellent Weather
Home 5 5 5
Italy -5 10 10
Spain -10 5 20

Table 1: Evaluation of actions

The mathematical model for describing decisions is in
the following.
We have the space of the states of the world
S = {s1, ...., sN} and decisionsD = {d1, ..., dK}
described by the functionsfi : S → R, i = 1, ..., k.
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In our example,

S = {Bad Weather, Good Weather, Excelent Weather},

D = {Home, Italy, Spain},

and functions are depicted below.

f1(Home) :

S R

BadWeather → 5

GoodWeather → 5

ExcelentWeather → 5
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f2(Italy) :

S R

BadWeather → −5

GoodWeather → 10

ExcelentWeather → 10

f3(Spain) :

S R

BadWeather → −10

GoodWeather → 5

ExcelentWeather → 20
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The value of functionfi(sk) can be interpreted as a
gain (expressed as amount of money) if we make
decisiondi and observe the state of the worldsk.

Obviously, states of the world can appear randomly
and this can be described by a probability distribution
p(sk), i.e. we assign to each state of the worldsk the
probabilityp(sk) such that

1) p(sk) > 0, k = 1, ..., N ,

2)
N∑

k=1

p(sk) = 1.
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Let this distribution be known. Then the choice of the
best decision is based on expected utility computed as
follows

u(di) =
N∑

k=1

fi(sk)p(sk).

Thus,dk ∈ D is the best decision ifu(dk) > u(di) for
all i ∈ {1, ...,K}. We denote the linear quasi-order on
decisions by4, i.e.

di 4 dj if u(di) 6 u(dj).

– p. 8/132



Let us consider the following problem. Assume that
we have a linear quasi-order4 on decisions. What are
the conditions, when4 coincides with the order based
on expected utility.

Theorem 1.Let K be the closed cone of possible
decisions, i.e.f1, f2 ∈ K impliesλ1f1 + λ2f2 ∈ K for
anyλ ∈ [0,+∞), and let4 be a linear quasi-order on
K. Then4 coincides with the order based on expected
utility with a certain probability distribution onS iff
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1. λf1 + (1− λ)f3 ≺ λf2 + (1− λ)f3 for any
f1, f2, f3 ∈ K such thatf1 ≺ f2 andλ ∈ (0, 1].

2. f1, f2 ∈ K andf1 6 f2 impliesf1 4 f2.

3. Let{fi}
∞
i=1 ⊆ K, lim

i→∞
fi → f , andg1 4 fi 4 g2,

i = 1, 2, .... Theng1 4 f 4 g2.

Credal sets

If we have incomparable decisions, then this can be
modeled by credal sets. A credal set is closed, convex
set of probability distributions (probability measures).
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If P is a credal set with a finite number of extreme
pointsPk ∈ Mpr(X), k = 1, ...,m, then

P =

{
m∑

k=1

aiPi|ai > 0,
m∑

k=1

ai = 1

}

.

LetX = {x1, x2, x3}, then any credal set is convex
subset of triangle consisting of points(p1, p2, p3):
pi > 0, p1 + p2 + p3 = 1.
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The typical credal set
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If we model uncertainty by a credal setP, then for
any decisionf ∈ K, we can compute upper and lower
estimates of expected utility:

ū(f) = sup
p∈P

∑

si∈S

f(si)p(si),

u(f) = inf
p∈P

∑

si∈S

f(si)p(si).

In this case the preference relation4 is a partial
quasi-order defined bydi 4 dj if u(fi) 6 u(fj) and
ū(fi) 6 ū(fj).
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Giron and Rios found the conditions, when a partial
quasi-order on decisions can be described by upper
and lower estimates of expected utility.

Theorem 2.Let K be a closed cone of possible
decisions, i.e.f1, f2 ∈ K impliesλ1f1 + λ2f2 ∈ K for
anyλ ∈ [0,+∞),
and let4 be a partial quasi-order onK.
Then4 coincides with the order based on upper and
lower estimates of expected utility with a certain
credal set onS iff
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1. λf1 + (1− λ)f3 ≺ λf2 + (1− λ)f3 for any
f1, f2, f3 ∈ K such thatf1 ≺ f2 andλ ∈ (0, 1].

2. f1, f2 ∈ K andf1 6 f2 impliesf1 4 f2.

3. Let{fi}
∞
i=1 ⊆ K, lim

i→∞
fi → f , andg1 4 fi 4 g2,

i = 1, 2, .... Theng1 4 f 4 g2.

Upper and lower previsions
In decision theory functions from the setK can be
calleddecisions, acts, or gambles. In the theory of
imprecise probabilities the term "gamble" is adopted.
The upper estimatēu(f) of expected utility is called
theupper previsionof f ∈ K, andu(f) is called the
lower previsionof f ∈ K.
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Valuesu(f) andū(f) have the following behavior
interpretation.

Assume you would like to buy or sell shares to get a
gain during some period.

Then valuesu(f) andū(f) can be interpreted as
upper and lower bounds of expected gain.

Using this information you can sell shares with the
price higher or equal tōu(f) and buy them with the
price equal or lower thanu(f).
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Suppose that valuesu(f) andū(f) are given by
experts.

Then it is possible that there is a contradiction among
their opinions. To detect a contradiction, it is used
avoiding sure loss principle.

The estimatesu(f) andū(f) onK avoid sure lossif
there is a probability distributionp onS such that

u(f) 6
∑

si∈S

f(si)p(si) 6 ū(f) for anyf ∈ K.
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In other words, the family of probability distributions

P =

{

p|u(f) 6
∑

si∈S

f(si)p(si) 6 ū(f), f ∈ K

}

is not empty. Obviously,P is a credal set.

If K is a finite set, then checking whether estimates
avoid sure loss or not is produced by solving linear
programming problem.

It is easy to see that the estimateū(f) = a is
equivalent tou(−f) = −a, because the inequality

∑

si∈S

f(si)p(si) 6 ū(f)
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is equivalent to inequality

−ū(f) 6
∑

si∈S

(−f(si))p(si).

This allows us in the sequel to consider lower
previsions onK assuming that upper previsions are
computed bȳu(f) = −u(−f).

The following theorem allows us to express avoiding
sure loss principle directly through the values ofu(f).
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Theorem. A lower previsionu avoids sure loss onK
iff

sup
s∈S

N∑

k=1

(λkfk(s)− λku(fk)) > 0

for anyf1, ..., fN ∈ K andλ1, ..., λN > 0.

Example. Suppose that you bet on the match between
Barcelona and Bavaria,S = {s1, s2, s3}, where
s1 :="Barselona wins",s2 :="Bavaria wins",
s3 :="Draw", and you have the following gambles

fk(s) =

{
1, s = sk,

0, otherwise.
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Assume thatu(f1) = 0.6, u(f2) = 0.3, and
u(f3) = 0.2.
Then

sup
s∈S

3∑

k=1

(fk(s)− u(fk)) = 1− 1.1 = −0.1,

i.e. the avoiding sure loss principle is not fulfilled.

This means that if you bet on all possible results, then
you loss money no matter the outcome of the match.
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Coherence

Let a lower previsionu onK avoids sure loss. Then it
defines a credal set

P =

{

p|u(f) 6
∑

si∈S

f(si)p(si), f ∈ K

}

. (1)

It is possible that the estimateu(f) is not exact w.r.t.
P and we can compute exact boundaries for expected
utility by finding

P (f) = inf
p∈P

∑

si∈S

f(si)p(si), f ∈ K.
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P is called thenatural extensionof u.

If P (f) = u(f) for all f ∈ K, thenu is called a
coherent lower prevision.

Obviously, any functionalP onK defined by a credal
setP by formula (1) is a coherent lower prevision.
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The computation of natural extension can produced by
solving the following linear programming problem:

∑

si∈S

f(si)p(si) → min

given






∑

si∈S

fk(si)p(si) > u(fk), fk ∈ K,
∑

si∈S

p(si) = 1,

p(si) > 0, si ∈ S.
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The natural extension can be also computed as

P (f) = sup

{
∑

k

λku(fk)

∣
∣
∣
∣
∣

∑

k

λkfk 6 f, λk > 0, fk ∈ K

}

.

Example. Assume that in previous example

u(f1) = 0.3, u(f2) = 0.3, u(f3) = 0.2,

ū(f1) = 0.6, ū(f2) = 0.6, ū(f3) = 0.4.

Then the corresponding credal set can be described by
the following system of linear inequalities:
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0.3 6 p(s1) 6 0.6,

0.3 6 p(s2) 6 0.6,

0.2 6 p(s3) 6 0.4,

p(s1) + p(s2) + p(s3) = 1.

If we express the valuep(s3) = 1− p(s1)− p(s2), and
put it to the third inequality, we get







0.3 6 p(s1) 6 0.6,

0.3 6 p(s2) 6 0.6,

0.6 6 p(s1) + p(s2) 6 0.8.
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The graphical solution of this system of inequalities is
shown below.

– p. 27/132



We see that the extreme points of this credal setP are

P1 =



 0.3︸︷︷︸

p(s1)

, 0.3︸︷︷︸

p(s2)

, 0.4︸︷︷︸

p(s3)



, P2 =



 0.5︸︷︷︸

p(s1)

, 0.3︸︷︷︸

p(s2)

, 0.2︸︷︷︸

p(s3)



,

P3 =



 0.3︸︷︷︸

p(s1)

, 0.5︸︷︷︸

p(s2)

, 0.2︸︷︷︸

p(s3)



.

We see that estimatesu andū avoid sure loss, but they
are not coherent. We can compute the natural
extension ofu andū, using formulas:

P (fk) = inf
p∈P

∑

si∈S

fk(si)p(si),

P̄ (fk) = sup
p∈P

∑

si∈S

fk(si)p(si).
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Then

P (f1) = 0.3, P (f2) = 0.3, P (f3) = 0.2,

P̄ (f1) = 0.5, P̄ (f2) = 0.5, P̄ (f3) = 0.4.
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Using natural extension, we can extend a coherent
prevision on the linear space of gambles. Therefore,
in the sequel we assume thatK is a linear space of
functions onS.

Theorem. Let K be a linear space of functions onS.
A functionP

−

: K → R is a coherent lower prevision

iff

1. P (λf + c) = λP (f) + c for all λ > 0, c > 0, and
f ∈ K.

2. P (f) 6 P (g) if f 6 g andf, g ∈ K.

3. P (f + g) > P (f) + P (g) for all f, g ∈ K.
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Sets of desirable gambles

Let the imprecise probability model is given by a
coherent lower previsionP

−

: K → R. Then it can be

equivalently described by the set of desirable gambles.

A gamblef ∈ K is calleddesirableif P
−

(f) > 0, i.e.

the set of all desirable gambles that corresponds toP
−

is
D = {f ∈ K|P (f) > 0} .
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It is easy to derive thatD is a convex cone inK and it
is characterized as follows:

a) if f 6 0, thenf /∈ D;

b) if f > 0, thenf ∈ D;

c) if f, g ∈ D, thenf + g ∈ D;

d) if f ∈ D andλ > 0, thenλf ∈ D.
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For every cone of desirable games, we can recover the
corresponding coherent lower and upper previsions by
formulas:

P (f) = sup {α ∈ R|f − α ∈ D} ,

P̄ (f) = inf {α ∈ R|α− f ∈ D} .

Obviously, these formulas imply that

P̄ (f) = −P (−f).
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Avoiding sure loss for sets of desirable gambles

Assume that an expert say that gambles from the set
D0 are desirable. If expert’s beliefs are contradictory,
then there are desirable gamblesf1, ..., fN in D0 such
that

λ1f1 + ... + λNfN 6 0.

In other words,D0 avoids sure loss iff

sup
s∈S

{λ1f1(s) + ...+ λNfN(s)|λi > 0, fi ∈ D0} > 0.
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Natural extension for sets of desirable gambles

Let us assume that the set of desirable gamblesD0

avoids sure loss andD0 ⊇ {f ∈ K|f > 0}. Then we
can describe the set of all desirable gambles in linear
spaceK by

D = {λ1f1(s) + ... + λNfN(s)|λi > 0, fi ∈ D0} ,

i.e. D is a minimal cone inK that contains all linear
combinations of gambles inD0 with positive
coefficients. The setD can be considered as a natural
extension ofD0.
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The graphical illustration of natural extension

f1, f2, f3, f4 ∈ D0,

D = ÂOB\{(0, 0)} is the natural extension.
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Lower and upper probabilities

Imprecise probability models based on credal sets and
coherent lower previsions are equivalent for the finite
case, but the model based on the sets of desirable
gambles is slightly general.

Less general models are based on lower and upper
probabilities.

Consider gambles, defined by

1A(s) =

{
1, s ∈ A,

0, s /∈ A,
whereA ⊆ S.
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LetK = {1A}A∈2S , where2S is the powerset ofS,
andP is a lower prevision onK. Then we can
describe values ofP onK by a set function

µ(A) = P (1A), whereA ∈ 2S.

If P avoids sure loss onK, thenµ is called alower
probability.

Analogously, ifP̄ is an upper prevision and avoids
sure loss, then a set functionµ on2S defined by
µ(A) = P̄ (1A), whereA ∈ 2S, is called anupper
probability.
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Let µ be a lower probability on2S. Then the value
µ(A) can be interpreted as a lower estimate of
probability, therefore,

1. µ(∅) = 0 andµ(S) = 1;

2. µ(A) 6 µ(B) if A ⊆ B ( the larger set should
have the larger probability).

Thus, lower and upper probabilities obey axioms 1
and 2 for monotone measures. Probability measures
are also monotone measures, such that

µ(A) + µ(B) = µ(A ∪ B) if A ∩B = ∅.
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We denote the set of all probability measures on2S by
Mpr.

If µ1, µ2 are monotone measures andµ1(A) 6 µ2(A)

for all A ∈ 2S, then we writeµ1 6 µ2.

Interpretation of avoiding sure loss and natural
extension for lower and upper probabilities

µ is a lower probability if there is a probability
measureP ∈ Mpr such thatµ 6 P .

µ is an upper probability if there is a probability
measureP ∈ Mpr such thatµ > P .
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Obviously, a lower probability defines a credal set

P(µ) = {P ∈ Mpr|P > µ} ,

and we can calculate the natural extensionµcoh of µ
by

µcoh(A) = inf
P∈P(µ)

P (A).

If µcoh = µ, thenµ is called a coherent lower
probability.

The equivalent definition:µ is acoherent lower
probability if for any A ∈ 2S there isP ∈ Mpr such
thatµ 6 P andµ(A) = P (A).
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The dual relation̄P (f) = −P (−f) for lower and
upper previsions is transformed to the following dual
relation on monotone measures. The set functionµd is
called thedualof µ if

µd(A) = 1− µ(Ā), A ∈ 2S.

Assume thatµ is a lower probability. Then obviously
µ andµd define the same credal set

P(µ) = {P ∈ Mpr|P > µ} =
{
P ∈ Mpr|P 6 µd

}
.

This allows us to describe uncertainty using lower or
upper probabilities.
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2-monotone measures

A monotone measureµ is called2-monotoneif

µ(A) + µ(B) 6 µ(A ∩ B) + µ(A ∪B)

for all A,B ∈ 2S.

Any 2-monotone measure is a coherent lower
probability, but 2-monotone measures is a special
class of coherent lower probabilities.
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Natural extension of a 2-monotone measure

The natural extension of a 2-monotone measure on the
linear space of all gamblesK is computed by the
Choquet integral

P (f) =

∫ ∞

0

µ({s ∈ S|f(s) > t})dt

for any non-negative functionf ∈ K.

This integral can be extended on all functions inK
using the propertyP (f + c) = P (f)+ c, wherec ∈ R.
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2-alternative measures

The dual measureµd of a 2-monotone measureµ is
called 2-alternative. It obeys the following
characteristic property:

µd(A) + µd(B) > µd(A ∩ B) + µd(A ∪ B)

for all A,B ∈ 2S.
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Belief and plausibility functions

A monotone measureBel : 2S → [0, 1] is called a
belief functionif it can be represented as

Bel(B) =
∑

A⊆B

m(A),

where a non-negative set functionm, calledthe basic
probability assignment, has the following properties:

∑

A∈2S
m(A) = 1 andm(∅) = 0.
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The dual measure of a belief function is called a
plausibility function. It can be computed bym as
follows

Pl(B) =
∑

A∩B 6=∅

m(A).

Any belief function can be represented as a convex
sum of primitive belief functions of the type

η〈{A}〉(B) =

{
1, A ⊆ B,

0, otherwise,

as follows
Bel =

∑

A∈2S
m(A)η〈{A}〉.
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Evidently anyη〈{A}〉 describes uncertainty when we
know that eventA occurs but we don’t have any
additional information.

Any belief function is 2-monotone, i.e. belief
functions are in the family of 2-monotone measures.

Example. Assume that experts predict the rate of euro
to dollar. Each expert choose the interval of its
possible values:





[1.12, 1.32]
︸ ︷︷ ︸

A1

, [1.21, 1.41]
︸ ︷︷ ︸

A2

, [1.32, 1.51]
︸ ︷︷ ︸

A3

, [1.05, 1.32]
︸ ︷︷ ︸

A4






.
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Then we can aggregate beliefs of experts using belief
function

Bel =
4∑

i=1

m(Ai)η〈{Ai}〉.

In the last formula we can take into account the
competence of experts by assigning valuesm(Ai),
i = 1, ..., 4. Assume that experts have the same
competence, thenm(Ai) = 0.25, i = 1, ..., 4 and, for
example,

Bel([1.1, 1.5]) = 0.75; Pl([1.1, 1.5]) = 1;
Bel([1.4, 1.6]) = 0; Pl([1.1, 1.5]) = 0.5.
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Possibility measures and necessity measures

A possibility measureΠ is a monotone measure with
the following property:

Π(A ∪B) = max{Π(A),Π(B)} for everyA,B ∈ 2S.

A possibility measure is usually defined with the help
of possibility distribution function

π(s) = Π({s}), s ∈ S.
Then

Π(A) =

{

max
x∈A

π(x), A 6= ∅,

0, A = ∅.
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The dual of a possibility measureΠ is anecessity
measureN with the following characteristic property:

N(A ∩B) = min{N(A), N(B)}

for everyA,B ∈ 2S.

Each necessity measure is a special belief function.

LetBel be a belief function with the basic probability
assignmentm. Then a setA is calledfocal for Bel if
m(A) > 0.

A belief function is a necessity measure iff the set of
its focal elements is a chain with respect to⊆.
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Conditioning

In the classical probability theory a probability of
eventA givenB (P (B) 6= 0) is defined by

P (A|B) = P (A ∩ B)/P (B).

Clearly, conditioning induces a probability measure
on2S, which we denotePB.

LetP be a credal set. ThenP givenB is the set of
probability measuresPB defined by

PB = {PB|P ∈ P, P (B) 6= 0} .
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Proposition. Let P be a credal set and letB ∈ 2S be
such thatP (B) 6= 0 for all P ∈ P.

ThenPB is a credal set.

In addition, ifP has a finite number of extreme points

P (1), ..., P (N), thenP (1)
B , ..., P

(N)
B are extreme points

of PB.

– p. 53/132



Conditioning for coherent lower previsions

Proposition. Let P be a coherent lower prevision and
P (1B) > 0, whereB ∈ 2S. Then the updated
information in case of eventB occurs is described by
a coherent lower previsionPB that obeys the
following generalized Bayesian rule:

P (1B(f − PB(f)) = 0.

Remark. By above Proposition for findingPB(f) we
need to solve the equationP (1B(f − c) = 0 w.r.t. c.
We get the unique solution, since the function
P (1B(f − c) is strictly decreasing inc, when
P (1B) > 0.
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Conditioning for sets of desirable gambles

Proposition. Let D be a set of all desirable gambles
in the linear spaceK.

Then the updated information in case of eventB ∈ 2S

occurs is described by the setDB of desirable
gambles defined by

DB = {f ∈ K|1Bf ∈ D} .
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Example. Coin Tossing. Suppose that a fair coin is
’tossed’ twice, in such a way that heads and tails are
equally likely on each of the tosses but there can be
arbitrary dependence between the tosses. For
example, the coin may be tossed first in the usual way,
but on the second ’toss’ it may be placed to have the
same outcome as the first toss, or it may be placed to
have the opposite outcome from the first toss.
Let





x1︸︷︷︸

(Heads,Heads)

, x2︸︷︷︸

(Heads,Tails)

, x3︸︷︷︸

(Tails,Heads)

, x4︸︷︷︸

(Tails,Tails)







be the set of possible outcomes.
– p. 56/132



Then the corresponding credal setP is described by
the following system of inequalities.







p(x1) + p(x2) = 0.5,

p(x1) + p(x3) = 0.5,

p(x1) + p(x2) + p(x3) + p(x4) = 1,

p(xi) > 0, i = 1, ..., 4.

Solving this system, we get






p(x2) = 0.5− p(x1),

p(x3) = 0.5− p(x1),

p(x4) = p(x1),

p(xi) > 0, i = 1, ..., 4.
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Thus, extreme points ofP are





0︸︷︷︸

p(x1)

, 0.5︸︷︷︸

p(x2)

, 0.5︸︷︷︸

p(x3)

, 0︸︷︷︸
p(x4)






,






0.5︸︷︷︸

p(x1)

, 0︸︷︷︸
p(x2)

, 0︸︷︷︸
p(x3)

, 0.5︸︷︷︸

p(x4)






.

The corresponding coherent lower and upper
previsions can be computed as

P (f) = min {0.5f(x1) + 0.5f(x4), 0.5f(x2) + 0.5f(x3)} ,

P̄ (f) = max {0.5f(x1) + 0.5f(x4), 0.5f(x2) + 0.5f(x3)} .
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The corresponding set of desirable gambles is

D = {f ∈ K|f(x1) + f(x4) > 0}∩
{f ∈ K|f(x2) + f(x3) > 0} .

We can also represent this uncertainty with the help of
coherent lower probabilities. The values of the
corresponding monotone measureµ are shown below.
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In this case models described byP andµ are
equivalent, butµ is not 2-monotone, because for sets
A = {x1, x2} andB = {x1, x3}

µ(A) + µ(B) = 1 > 0.5 = µ(A ∪B) + µ(A ∩ B).
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Let us consider on this example how conditioning is
produced. Let us assume that at least one outcome is
heads. Then we should findPB, where
B = {x1, x2, x3}. After updating each extreme point
of P, we get





0︸︷︷︸

p(x1)

, 0.5︸︷︷︸

p(x2)

, 0.5︸︷︷︸

p(x3)

, 0︸︷︷︸
p(x4)







given B
−−−−→






0︸︷︷︸

p(x1)

, 0.5︸︷︷︸

p(x2)

, 0.5︸︷︷︸

p(x3)

, 0︸︷︷︸
p(x4)












0.5︸︷︷︸

p(x1)

, 0︸︷︷︸
p(x2)

, 0︸︷︷︸
p(x3)

, 0.5︸︷︷︸

p(x4)







given B
−−−−→






1︸︷︷︸

p(x1)

, 0︸︷︷︸
p(x2)

, 0︸︷︷︸
p(x3)

, 0︸︷︷︸
p(x4)






.

– p. 61/132



Therefore,

PB(f) = min {f(x1), 0.5f(x2) + 0.5f(x3)} ,

P̄B(f) = max {f(x1), 0.5f(x2) + 0.5f(x3)} .

We can represent this information as the set of
desirable gambles as

DB = {f ∈ K|f(x1) > 0}∩{f ∈ K|f(x2) + f(x3) > 0} .
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If we represent this information with coherent lower
probabilities we get a monotone measureµB shown
below.
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Möbius transform

The set of all set functions on2X is a linear space and
the system of set functions

{
η〈B〉

}

B∈2X
is the basis of

it. We can find the representation

µ =
∑

B∈2X
m(B)η〈B〉

of anyµ : 2X → R using the Möbius transform:

m(B) =
∑

A⊆B

(−1)|B\A|µ(A).
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Projections of measures

Let µ ∈ Mmon(X) andϕ : X → Y , thenµϕ is a
monotone measure on2Y defined by

µϕ(B) = µ ({x ∈ X|ϕ(x) ∈ B), whereB ∈ 2Y .

Let µ ∈ Mmon(X × Y ) then marginal measuresµX

andµY are defined by

1. µX(A) = µ(A× Y ) for A ∈ 2X ;

2. µY (A) = µ(X × A) for A ∈ 2Y .
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Projections of credal sets

The same operations are analogously defined for
credal sets:

LetP ∈ Cr(X) andϕ : X → Y then

P
ϕ = {Pϕ|P ∈ P} .

LetP ∈ Cr(X × Y ) then marginal credal setsPX

andPY are defined by

PX = {PX |P ∈ P} andPY = {PY |P ∈ P}.
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Shannon entropy

Let P be a probability measure on2X then the
Shannon entropy is defined by

S(P ) = −c
∑

xi∈X

P ({xi}) lnP ({xi}), wherec > 0.

If information is measured in bits, and the information
of one bit is equal to 1 then

S(P ) = −
∑

xi∈X

P ({xi}) lg2 P ({xi}).

The Shannon entropy measures conflict in the
information.
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Hartley measure

Let us assume that we have the information that the
random variable takes definitely a value from an
non-empty setA ⊆ X , The uncertainty of this
information is measured by a Hartley measure:

H(A) = c ln |A|.

If information is measured in bits, and the information
of one bit is equal to 1 then

H(A) = lg2 |A|.

The Hartley measure reflects the non-specificity in the
information. – p. 68/132



Types of uncertainty in the theory of imprecise
probabilities

Conflict. It refers to probability measures.

Non-specificity.It refers to the choice of a probability
measure from the possible alternatives.

Types of uncertainty measures:

• UN is a measure of non-specificity;
• UC is a measure of conflict;
• UT is a measure of total uncertainty.
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Requirements for choosing uncertainty measures
suggested by George J. Klir

Subaddivity:The amount of uncertainty in a joint
representation of evidence (defined on Cartesian
product) cannot be greater then the sum of amounts of
uncertainty in the associated marginal representations
of evidence.

Additivity: The amount of uncertainty in a joint
representation of evidence is equal to the sum of the
amounts of uncertainty in the associated marginal
representations of evidence if and only if the marginal
representations are non-interactive according to the
rules of uncertainty calculus involved.
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Monotonicity: When evidence can be ordered in the
uncertainty theory employed (as in possibility theory),
the relevant uncertainty measure must preserve this
ordering.

Continuity: Any measure of uncertainty must be
continuous functional.

Expansibility:Expanding the universal set by
alternatives that are not supported by evidence must
not affect the amount of uncertainty.

Symmetry:The amount of uncertainty does not
change when elements of the universal set are
rearranged.

– p. 71/132



Range:The range of uncertainty is[0,M ], where0
must be assigned to the unique uncertainty function
that describe full certainty andM depends on the size
of the universal set involved and on the chosen unit of
measurement (normalization).

Branching/Consistency:When uncertainty can be
computed in multiple ways, all acceptable within the
calculus of the uncertainty theory involved, the results
must be the same (consistent).

Normalization:A measurement unite defined by
specifying what the amount should be for a particular
(and usually very simple) uncertainty function.
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Axioms for choosing an uncertanty measure on
Mpr

Subaddivity:Let P ∈ Mpr(X × Y ), then
UT (PX) + UT (PY ) > UT (P ).

Additivity: Let P ∈ Mpr(X × Y ) andP = PX × PY ,
thenUT (PX) + UT (PY ) = UT (P ).

Continuity:UT is a continuous functional.

Expansibility:Let P ∈ Mpr(X) and letϕ : X → Y
be a injection such thatX ⊆ Y andϕ(x) = x for all
x ∈ X. ThenUT (P

ϕ) = UT (P ).
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Symmetry:Let P ∈ Mpr(X) and letϕ : X → X be a
bijection, thenUT (P

ϕ) = UT (P ).

Range:UT : Mpr → [0,+∞) andUT (P ) = 0 iff P is
a Dirac measure, i.e. there isx ∈ X such that
P ({x}) = 1.

Normalization:LetX = {x1, x2} andP ∈ Mpr(X) is
such thatP ({x1}) = P ({x2}) = 0.5. Then
UT (P ) = 1.
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Remarks

1. It is well known that the above requirements lead to
the Shannon entropy functional:

S(P ) = −
∑

xi∈X

P ({xi}) lg2 P ({xi}).

2. The additivity axiom has the following
interpretation through random variables: if random
variablesξX ξY are independent, then

UT (ξX , ξY ) = UT (ξX) + UT (ξY ).
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3. The additivity property of Shannon entropy can be
understood also as

S(ξX , ξY ) = S(ξX |ξY ) + S(ξY ),

and the last expression can be taken as an additivity
axiom.

4. The additivity axiom for general theories of
imprecise probabilities must be based on more general
independence principles than in the classical
probability theory.
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5. It is hard to understand what continuity means for
functionals on credal sets.

6. Some times monotonicity requirement can be
formulated as: Additional information reduces
uncertainty.

7. It is possible to introduce one axiom that includes
symmetry and expansibility axioms:

Let P ∈ Mpr(X) and letϕ : X → Y be a injection.
ThenUT (P

ϕ) = UT (P ).
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Independent principles in the theory of imprecise
probabilities

Notation:

X is a finite non-empty set;

Here we consider all possible sets of probability
measures on2X .

The set of all possible such objects is denoted by
Spr(X).
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General definition

LetP ∈ Spr (X × Y ), whereX andY are finite
nonempty sets. Assume thatP is the joint description
of two random variables,ξX andξY , with values inX
andY , respectively. We say thatξY is irrelevant to ξX
if knowing an exact discription ofξY has no influence
on the description ofξX . They areindependentif ξX
is irrelevant toξY andξY is irrelevant toξX .

Question:How this general definition can be viewed
through concieved types of uncertainty: conflict and
nonspecificity?
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Independence in probability theory

Let P ∈ Mpr(X × Y ) be the joint description ofξX
andξY , and letPX andPY be marginal probability
measures.

AssumeξY takes the valuey ∈ Y . Then the
information aboutξX is described byP|y ∈ Mpr(X),
defined by

P|y(A) =
P (A× {y})
P (X × {y})

,

whereA ∈ 2X andP (X × {y}) 6= 0.
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ξY is irrelevantto ξX iff
P|y = PX for anyy ∈ Y with PY ({y}) 6= 0.

Random variablesξX andξY areindependent
if ξX is irrelevant toξY , andξY is irrelevant toξX .

It is well known that in probability theory irrelevance
implies independence, andP = PX × PY .
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Two types of conditioning

1. Let we know the exact descriptionPY ∈ PY of the
random variableξY . Then

P|PY
= {µ ∈ P|µY = PY }

is the conditioning givenPY .

2. Let we know both the probability distribution and
the true valuey ∈ Y of ξY in the experiment. Then for
anyy ∈ Y with PY ({y}) > 0

P|PY ,y =
{
µ|y|µ ∈ P|PY

}

is the conditioning givenPY andy ∈ Y .
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Precise general definition.

We say thatξY is fully irrelevant(or irrelevant) toξX
iff

P|PY ,y =
(
P|PY

)

X
= PX

for anyPY ∈ PY and anyy ∈ Y with PY ({y}) > 0.

ξX andξY are calledfully independent(or
independent)if the full irrelevance is fulfilled in both
directions.
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Independence related to nonspecificity (marginal
independence)

ξY is marginally irrelevantto ξX if

(
P|PY

)

X
= PX for anyPY ∈ PY .

ξX andξY are calledmarginally independentif the
marginal irrelevance is fulfilled in both directions.
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Independence related to conflict (epistemical
independence)

LetP|y =
⋃

PY ∈PY |PY ({y})>0

P|PY ,y.

ThenξY is epistemically irrelevantto ξX if

P|y = PX for anyy ∈ Y such thatP|y 6= ∅.

ξX andξY are calledepistemically independentif the
epistemical irrelevance is fulfilled in both directions.
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Examles

Let random variablesξX andξY be described by a set
P ∈ Spr (X × Y ). Then

a) they are independent if
P = {PX × PY |PX ∈ PX , PY ∈ PY };

b) ξY is irrelevant toξX if
P = {P ∈ Mpr (X × Y ) |PX ∈ PX , PY ∈ PY }

andPX = P
(
η〈B〉

)
for some nonempty setB ⊆ X.
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Main result

TheoremLet random variablesξX andξY be jointly
described by a credal setP ∈ Spr(X × Y ). ThenξY
is fully irrelevant toξX iff ξY is marginally and
epistemically irrelevant toξX .

It is possible to show by an example that there are
cases when marginal and epistemical irrelevance does
not imply full irrelevance in general.
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Products
The inverse problem: How to define the joint
description of independent sources of information
using marginals?
The solution is based on the maximum uncertainty
principle and on the following. If random variablesξX
andξY are independent and described by setsPX and
PY . Then among their possible joint descriptions
there is a largest set defined by

Pmax = {P ∈ Mpr (X × Y )|
∀x ∈ X : P|x, PY ∈ PY ;

∀y ∈ Y : P|y, PX ∈ PX

}
.

This set is called the product ofPX andPY and
denoted byPX ×PY .
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Other products

The marginal independence implies the following
product.

PX ×N PY =
{P ∈ Mpr (X × Y ) |PX ∈ PX , PY ∈ PY }.

Under the assumption thatξY is irrelevant toξX , we
get the following largest set:

PX ×I PY =
{
P ∈ Mpr (X × Y )|PY ∈ PY ;∀y ∈ Y : P|y, PX ∈ PX

}
.
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Properties

if PX andPY are credal sets, then the epistemic
independence implies the introduced product
PX ×PY .

It is possible to show that if ifPX andPY are credal
sets, thenPX ×PY , PX ×N PY , PX ×I PY are also
credal sets, i.e. the introduced operations can be
performed within credal sets.
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Strong independence

LetPX ∈ Cr (X) andPY ∈ Cr (Y ). Then a credal
set inCr (X × Y ), being a convex closure of the set
{PX × PY |PX ∈ PX , PY ∈ PY } describesstrong
independenceof credal setsPX andPY . We denote
this product byPX ×S PY .

The strong independence give us the smallest set of
probability measures, for which independence is
fulfilled. This implies from the next proposition.
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Proposition. Let independent random variablesξX
andξY be described by a credal setP ∈ Cr(X × Y ).
Then

(i) ξY is irrelevant toξX iff
PX ×S PY ⊆ P ⊆ PX ×I PY ;

(ii) ξX andξY are independent iff
PX ×S PY ⊆ P ⊆ PX ×PY .
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Möbius product

Let µX ∈ Mbel(X), µY ∈ Mbel(Y ) and letmX , mY be
their basic probability assingments.

Then the Möbius product ofµX andµY is a belief
measureµ ∈ Mbel(X × Y ) with a basic probability
assingment

m(A×B) = mX(A)mY (B) (m is equal to0 on other
subsets ofX × Y ).

The Möbius product ofµX andµY is denoted by
µ = µX ×M µY .
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The probabilistic interpretation of M öbius product

Let µ ∈ Mbel(X) and letm be its basic probability
assingment. Thenµ can be concieved as a description
of random valueξ with values in2X such that
Pr (ξ = A) = m(A).

Thenµ(A) = Pr (ξ ⊆ A).

Let ξ be a random value with values in2X×Y andξX ,
ξY be its projections onX andY , respectively. Then

Pr (ξX = A) = Pr {prXξ = A},

Pr (ξY = B) = Pr {prY ξ = B}.
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ξX andξY are independent according to the usual
definition if for anyA ∈ 2X andB ∈ 2Y

Pr (ξX = A) Pr (ξY = B) = Pr {prXξ = A, prY ξ = B} .

If ξX andξY are independent, in addition, by known
marginalsµX ∈ Mbel(X) andµY ∈ Mbel(Y ) their
joint descriptionµ ∈ Mbel(X × Y ) according to the
maximum uncertainty principle can be defined as

µ = µX ×M µY .
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Paper: A.G. Bronevich, G.J. Klir Axioms for
Uncertainty Measures on Belief Functions and
Credal Sets

Objectives for investigation:Introducing axioms for a
total uncertainty measure and its disaggregation on
belief functions and credal sets under the principle of
uncertainty invariance.
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Previous works

1. It was established that if we consider coherent
lower probabilities, there are two types of uncertainty
"conflict" and "nonspecificity". One can find other
terms in the literature, for example, "conflict" =
"randomness", "nonspecificity" = "imprecision". 2.

There is an opinion that measures of uncertainty
interact in additive manner, i.e. there is a measure of
total uncertaintyUT that accumulates additively two
types of uncertainty by

UT = UN + UC ,
whereUN is a measure of non-specificity andUC is a
measure of conflict.
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3. LetU be an uncertainty measure. What kinds of
properties it should possess? There is an opinion that
these properties should generalize properties of the
Shannon entropy and the Hartley measure.

Let us remind that theShannon entropyS is the
functional defined on the set of probability measures
by

S(P ) = −c
∑

ω∈Ω

P ({ω}) lnP ({ω}),

whereP ∈ Mpr andc > 0 is chosen by using the
normalization (boundary) condition.
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TheHartley measureH is used when we have the
only information about random variableξ that it takes
value in a setA. This information can be described by
a{0, 1}-valued necessity measureη〈A〉 and by
definition

H
(
η〈A〉

)
= c ln (|A|) ,

wherec > 0 is chosen by using the normalization
condition.
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These measures have the following properties:

P1.Symmetry:S (Pϕ) = S(P ),

H
(

ηϕ〈A〉

)

= H
(
η〈A〉

)
for any bijectionϕ : Ω1 → Ω2.

P2.Label Independency:S (Pϕ) = S(P ),

H
(

ηϕ〈A〉

)

= H
(
η〈A〉

)
for any bijectionΩ1 → Ω2.

P3.Expansibility:S (Pϕ) = S(P ),

H
(

ηϕ〈A〉

)

= H
(
η〈A〉

)
for any injectionϕ : Ω1 → Ω2

such thatΩ1 ⊂ Ω2 andϕ(ω) = ω for eachω ∈ Ω.
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P4.Additivity: S (PX × PY ) = S (PX) + S (PY ),
H

(
η〈A×B〉

)
= H

(
η〈A〉

)
+H

(
η〈B〉

)
.

P5.Subadditivity:Let Ω = X × Y , P ∈ Mpr(Ω) and
C ⊆ Ω. ThenS (P ) 6 S (PX) + S (PY ),
H

(
η〈C〉

)
6 H

(
η〈prXC〉

)
+H

(
η〈prY C〉

)
.

Let us notice that P2 => P1 and P1, P2 and P3 can be
equivalently changed to

P1 - P3.S (Pϕ) = S(P ), H
(

ηϕ〈A〉

)

= H
(
η〈A〉

)
for

any injectionϕ : Ω1 → Ω2.
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If we go to more general theories of imprecise
probabilities, then there are questions: How to
generalize these properties? What new properties can
be considered as necessary ones?

Because of many approaches to independence in the
theory of imprecise probabilities, it is not clear how
define additivity properties of uncertainty measures.
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Harmanec’s axioms for a total uncertainty
measure onMbel

R0. Functionality. A measure of total uncertainty is a
functionalUT : Mbel → [0,+∞).

R1. Label Independency.Let X, Y be finite
nonempty sets andϕ : X → Y be a bijection. Then
UT (µ

ϕ) = UT (µ) for anyµ ∈ Mbel(X).
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R2. Continuity.Let µ ∈ Mbel(X), m be the Möbius
transform ofµ. Then the function
f(x) = UT

(
µ− xη〈A〉 + xη〈B〉

)
, which is defined for

arbitrary nonempty setsA,B ∈ 2X and any
x ∈ [−m(B),m(A)], is continuous on
[−m(B),m(A)].

R3. Expansibility.Let X andY be finite nonempty
sets,X ⊂ Y , andϕ : X → Y be an injection, defined
by ϕ(x) = x for all x ∈ X. ThenUT (µ

ϕ) = UT (µ)
for anyµ ∈ Mbel(X).

R4. Subadditivity.Let µ ∈ Mbel (X × Y ), then
UT (µX) + UT (µY ) > UT (µ).
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R5. Additivity. Let µX ∈ Mbel(X), µY ∈ Mbel(Y ),
and letµ ∈ Mbel (X × Y ) be the Möbius product of
µX andµY . ThenUT (µX) + UT (µY ) = UT (µ).

R6. Monotone Dispensability.Let µ ∈ Mbel(X) and
m be the Möbius transform ofµ. If ν ∈ Mbel(X) can
be represented asν =

∑

A∈2X\∅

m(A)µA, where

µA ∈ Mbel(X) andµA 6 η〈A〉 for all A ∈ 2X\∅, then
UT (µ) 6 UT (ν).

– p. 105/132



R7. Probabilistic Normalization.If X = {x1, x2},
P ∈ Mpr(X), andP ({x1}) = P ({x2}) = 0.5. Then
UT (P ) = 1.

R8. Nonspecificity Normalization.If X = {x1, x2},
thenUT

(
η〈X〉

)
= 1.
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Questions:

1. How to generalize continuity axiom R3 for credal
sets?
2. How to generalize additivity axiom R6 for credal
sets?
3. Why axiom R7 is presented in this form? May be it
is better to use

R10. Strong Monotone Dispensability.Let
µ, ν ∈ Mbel(X) andµ > ν. ThenUT (µ) 6 UT (ν)
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4. Why it is required (see axioms R8 and R9) that
UT

(
η〈X〉

)
= UT (P ) for X = {x1, x2} and for the

probability measureP defined in R8?

R1-R5 can be easily reformulated for credal sets.

D. Harmanec has proved that the upper entropy:

S∗(µ) = sup {S(P )|P ∈ P(µ)}

satisfies axioms R1-R9 and this is the smallest one
among functionals obeying axioms R1-R9.
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Possible disaggregations ofS∗

1. UT = S∗, UN = GH, UC = S∗ −GH,

whereGH is the generalized Hartley measure.

If µ =
∑

A∈2X\∅

m(A)η〈A〉, then

GH(µ) = c
∑

A∈2X\∅

m(A) ln |A| .

2. UT = S∗, UN = S∗ − S∗, UC = S∗,
whereS∗ is the minimal entropy defined by

S∗(µ) = inf {S(P )|P ∈ P(µ)} .
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Properties of uncertainty measures

S∗ GH S∗ −GH S∗ − S∗ S∗

subadditivity + + - - -
additivity w.r.t.
Möbius product + + + - -
addivity w.r.t.

strong
independence + - - + +
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Questions:

1. Is the property of subadditivity essential for
measures of nonspecificity and measures of conflict?

2. How the generalized Hartley measure can be
generalized for credal sets?

3. Does a justifiable subadditive measure of conflict
exist or does not?

4. What additivity properties are essential for total
uncertainty measures, measures of nonspecificity and
measures of conflict?

5. Is a total uncertainty measure unique or is not?
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To answer these questions, it is necessary

1. To introduce a system of axioms for uncertainty
measures, which can be equivalently formulated for
belief functions and credal sets.

2. To look critically at independence principles in the
theory of imprecise probabilities through the problem
of defining uncertainty measures with properties,
which are similar to ones of the Shannon entropy.
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Axioms for a total uncertainty measure and its
disaggregation on belief functions

UT is a measure of total uncertainty;
UN is a measure of nonspecificity;
UC is a measure of conflict.

Axiom 1. Let µ ∈ Mbel(X). ThenUN(µ) = 0 if
µ ∈ Mpr(X) andUC(µ) = 0 if µ = η〈B〉, B ∈ 2X\∅.

Axiom 2. Let ϕ : X → Y be an injection, i.e.
ϕ (x1) 6= ϕ (x2) if x1 6= x2. ThenUT (µ

ϕ) = UT (µ),
UN (µϕ) = UN (µ), UC (µϕ) = UC (µ) for any
µ ∈ Mbel(X).
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Partial cases of Axiom 2:

Symmetry Axiom ifY = X andϕ is a bijection;

Label Independency Axiom ifϕ is a bijection;

Expansibility Axiom ifX ⊆ Y is an injection such
thatϕ(x) = x for all x ∈ X.

Axiom 3. Let µ ∈ Mbel(X), Y ⊆ X, andϕ : X → Y .
ThenUT (µ) > UT (µ

ϕ).

Axiom 4. If µ1, µ2 ∈ Mbel(X) andµ1 6 µ2, then
UN(µ1) > UN(µ2) andUT (µ1) > UT (µ2).
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Axiom 5. Let µ = µX ×M µY , whereµX ∈ Mbel(X),
µY ∈ Mbel(Y ), andµX = η〈A〉 for someA ⊆ X. Then
UT (µ) = UT (µX) + UT (µY ).

Axiom 6. Let µ ∈ Mbel (X × Y ) andµY ∈ Mpr (Y ).
Then

UT (µ) =
∑

y∈Y

µY ({y})UT

(
µ|y

)
+ UT (µY ) ,

whereµ|y(A) =
µ (A× {y})
µY ({y})

, A ∈ 2X .
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Axiom 6 is the generalization of the property of
Shannon entropy:S (ξ, η) = S(ξ|η) + S(η), whereξ
andη are random variables with values inX andY .

Axiom 7. Let µ ∈ Mbel(X × Y ). Then
UT (µ) ≤ UT (µX) + UT (µY ) (the subadditivity
axiom).

Axiom 8. UC(µ) + UN(µ) = UT (µ) for anyµ ∈ Mbel.
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Corollaries from axioms

Corollary 1.Let µ1, µ2 ∈ Mbel(X),
µ = aµ1 + (1− a)µ2 for a ∈ [0, 1].

Then
aUT (µ1) + (1− a)UT (µ2) 6 UT (µ).
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Corollary 2.Let µ =
∑m

k=1 akµk, where
µk ∈ Mbel (Xk), ak > 0, k = 1, ...,m,

∑m
k=1 ak = 1,

andXk, k = 1, ...,m, be pairwise disjoint finite
nonempty sets, i.e.{Xk}

m
k=1 is a partition of

X =
⋃m

k=1Xk. Then

UT (µ) =
m∑

k=1

akUT (µk) + UT (µ
ϕ),

whereϕ : X → {X1, ..., Xm} is such thatϕ(x) = Xk

if x ∈ Xk.
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Corollary 3.LetP ∈ Mpr(X). ThenUT (P ) = S(P ),
whereS is the Shannon entropy.

Corollary 4.Letµ ∈ Mbel (Ω) andµ = η〈A〉,
A ∈ 2Ω\∅. ThenUT (µ) = H (µ), whereH is the
Hartley measure.

Corollary 5.Letµ =
∑m

k=1 akµk, where
µk ∈ Mbel(X), ak > 0, k = 1, ...,m,

∑m
k=1 ak = 1,

and letP ∈ Mpr ({1, ...,m}) be such that
P ({k}) = ak, k = 1, ...,m. Then

m∑

k=1

akUT (µk) + UT (P ) > UT (µ) .
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P1.The maximal entropyS∗ satisfies all the axioms
for a total uncertainty measure onMbel.

P2.Possible disaggregations ofS∗ onMbel:

UT = S∗, UC = S∗, UN = S∗ − S∗, whereS∗ is the
minimal entropy;

UT = S∗, UN = GH, UC = S∗ −GH, whereGH is
the generalized Hartley measure.
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Axioms for uncertainty measures on credal sets

Axiom 1c. Let P ∈ Cr(X). ThenUN(P) = 0 if P is
a singleton andUC(P) = 0 if P = P

(
η〈B〉

)
, B ⊆ X.

Axiom 2c. Let ϕ : X → Y be an injection. Then
UT (P

ϕ) = UT (P), UN (Pϕ) = UN (P),
UC (Pϕ) = UC (P) for anyP ∈ Cr(X).

Axiom 3c. Let X, Y be finite sets,ϕ : X → Y and
P ∈ Cr(X). ThenUT (P) > UT (P

ϕ).

Axiom 4c. If P1,P2 ∈ Cr(X) andP1 ⊇ P2, then
UN (P1) > UN (P2) andUT (P1) > UT (P2).
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Axiom 5c. Let X, Y be finite sets,PX = P
(
η〈A〉

)
,

A ⊆ X, andPY ∈ Cr(Y ). Consider a credal set
P

∗ ∈ Cr(X × Y ), defined byP∗ = PX ×N PY .
Then

UT (P
∗) = UT (PX) + UT (PY ).

Axiom 6c. Let P ∈ Cr(X × Y ) andPY = {PY },
wherePY ∈ Mpr (Y ). Then

UT (P) =
∑

y∈Y

PY ({y})UT

(
P|y

)
+ UT (PY ),

whereP|y =
{
P|y|P ∈ P

}
.
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Axiom 7c. Let X, Y be finite sets and
P ∈ Cr(X × Y ). Then
UT (P) ≤ UT (PX) + UT (PY ) (the subadditivity
axiom).

Axiom 8c.UC(P) + UN(P) = UT (P), P ∈ Cr.
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The set of all possible total uncertainty measures
and its structure

F (Mbel) is the set of all total uncertainty measures on
Mbel.

P1.F (Mbel) is a convex cone, i.e.fi ∈ F (Mbel),
ci > 0,i = 1, 2, impliesc1f1 + c2f2 ∈ F (Mbel), and
−f /∈ F (Mbel) for anyf 6≡ 0 in F (Mbel).
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Normalization conditions:

LetX = {x1, x2} andP ∈ Mpr(X) such that
P ({x1}) = 0.5. Then

Fa,b (Mbel) =
{
f ∈ F (Mbel) |f

(
η〈X〉

)
= a, f (P ) = b

}
.

Axiom 4 implies thata > b > 0. Any f 6≡ 0 in
Fa,b (Mbel) if a > 0.

Proposition.For anya > 0, Fa,0 (Mbel) = {GH},
whereGH is the generalized Hartley measure with
GH

(
η〈X〉

)
= a, |X| = 2.
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F(µ) is the set of focal elements ofµ ∈ Mbel.

Mbel|d(X) is the set of all possible belief measures on
2X with disjoint focal elements.

Proposition.Letf ∈ Fa,b (Mbel), µ ∈ Mbel|d(X), and
letm be the Möbius transform ofµ. Then

f(µ) = a
∑

B∈F(µ)

m(B) lg2 |B|−b
∑

B∈F(µ)

m(B) lg2m(B).
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4 is nonstrict order onMbel defined byµ1 4 µ2 for
µ1 ∈ Mbel(X) andµ2 ∈ Mbel(Y ) if there is a mapping
ϕ : Y → X such thatµϕ

1 6 µ2.

P2.4 is transitive onMbel andUT (µ1) ≥ UT (µ2) if
µ1 4 µ2.

An upper bound of an arbitraryUT ∈ Fa,b (Mbel):

Ūa,b
T (µ) = inf

{
UT (ν)|ν ∈ Mbel|d, ν 4 µ

}
;.

A lower bound of an arbitraryUT ∈ Fa,b (Mbel):

Ua,b
T (µ) = sup

{
UT (ν)|ν ∈ Mbel|d, µ 4 ν

}
.
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P3. Ūa,b
T (µ), Ua,b

T (µ) do not depend on a chosen
UT ∈ Fa,b (Mbel) by Proposition 3.

Proposition.The following statements are true:

1)Ua,b
T 6 UT 6 Ūa,b

T for anyUT ∈ Fa,b (Mbel);
2)Ua,a

T = S∗;

3) Ūa,0
T = GH.

P4.Ua,b
T /∈ Fa,b (Mbel) if a > 0 andb = 0.

Question: whether̄Ua,b
T is a total uncertainty measure

or not?
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Providing the uniqueness of a total uncertainty
measure under the law of conflict-nonspecificity
transformation

A measure of nonspecificity consists of 2 parts:

U
(1)
N (µ) = sup {UC(g)|g ∈ Mbel(X), g > µ} − UC(µ)

is the amount of nonspecificity, which can be
transformed to conflict;

U
(2)
N (µ) = UN(µ)− U

(1)
N (µ) is the amount of

nonspecificity, which cannot be transformed to
conflict.
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Suppose thatU (1)
N (µ) can be transformed to pure

conflict. Then

U
(1)
N (µ) =

sup {UC(P )|P ∈ Mpr(X), P > µ} − UC(µ).

We have thatUT = U
(1)
N + U

(2)
N + UC , where

S∗ = U
(1)
N + UC is a total uncertainty measure.
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Assume thatU (2)
N is a total uncertainty measure.

ThenUT ∈ Fa,b (Mbel) is defined uniquely and it is
represented by

UT = S∗ +GH,
where

S∗ ∈ Fb,b (Mbel) is the upper entropy:

GH ∈ Fa−b,0 (Mbel) is the generalized Hartley
measure.

In particular, ifa = b, thenUT = S∗.
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Open problems

1. Are setsFa,0 (M2−mon), Fa,0 (Cr) empty? It is
likely thatFa,0 (M2−mon) 6= ∅, i.e. the generalized
Hartley measure can be linearly extended to the set of
2-monotone measures.

2. Are setsFa,b (Mbel), a > 0, a > b > 0, singletons?

3. What kind of additional justifiable properties
should measures of nonspecificity and conflict
possess?
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