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Classification based on likelihood functions

Classification problem:
1. Patterns are vectors inRn that should be classified
on two classesω1 andω2.
2. Classes are described by probability densities
h(x|ω1) andh(x|ω2).
3. It is necessary choose classifier

x ∈ ωi if x ∈ Ωi, i = 1, 2,

where{Ω1,Ω2} is a partition ofRn.

that minimizes the probability of error.
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Then{Ω1,Ω2} should be chosen as a solution of the
following optimization problem:

p(ω1)

∫

Ω2

f(x|ω1)dx+ p(ω2)

∫

Ω1

f(x|ω2)dx → min,

wherep(ω1), p(ω2) = 1− p(ω1) are probabilities of
occurrence of classesω1 andω2. The above
optimization problems can be solved as follows

x ∈ Ω1 if L(x) > α,

whereL(x) = f(x|ω1)/f(x|ω2) is a likelihood
function andα = p(ω2)/p(ω1).
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Some times probabilitiesp(ωi) are not known. In this
case for choosingα, we use the Neumann-Pirson
criterion. Notice that we can describe all possible
classifiers by sets

Lα = {x ∈ R
n|L(x) > α}.

These sets can be conceived as a strict cuts of some
fuzzy set. It rational to connect such sets with
probabilities, for example, to choose fuzzy setF such
that

F1−p = Lα if
∫

Lα

f(x|ω1)dx = p.

whereF1−p = {x ∈ R|F (x) > 0} is the strict(1− p)-
cut of a fuzzy setF .
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Generalization of the classification problem:A set
{ω1, ..., ωN} of possible elementary classes is finite
and we can observe some classA ⊆ {ω1, ..., ωN}.
Then it can be characterized by the density

f(x|A) =

∑

ωi∈A

p(ωi)f(x|ωi)

∑

ωi∈A

f(ωi)
.

If we minimize the probability of wrong classification,
then we come to the following classification rule:

x ∈ A if P (A)f(x|A) > P (Ā)f(x|Ā),
whereP (A) =

∑

ωi∈A

p(ωi).
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Let us introduce a function

f(x) = P (A)f(x|A) + P (Ā)f(x|Ā)

that is obviously the density of all possible observed
patterns. Then the above classification rule is
transformed to the following

x ∈ A if f(x|A)/f(x) > 1/(2P (A)).

Let us assume that we observe non-elementary classes
and we can evaluate functionsf(x|A) andf(x). Then
we can describe any classA with the help of a fuzzy
set such that its strict cuts correspond to optimal
classifiers.
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We describe next the classification scheme based on
so called statistical classes. In this scheme

1. It may be potentially infinite number of classes.

2. The observed classes are not disjoint.

3. There are may be fuzzy boundaries between
classes.

X is a measurable space with aσ-algebraA
V is volume measure (an additive measure) onA.
Any statistical class is described by a probability
measureP onA andP has to be absolutely
continuous w.r.t.V , i.e. there is a densityh(x) such
thatP (A) =

∫

A

h(x)dV (x).
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Remark. If we consider previous scheme, then a
measureV can be understood as

V (A) =

∫

A

f(x)dx

and probability measureP describes the occurrence
of patterns in the class. In this case density

h(x) =
f(x|A)

f(x)
.

If it is hard to evaluateh(x), then we can choose the
Lebesgue measure asV for all measurable subsets of
R

n.
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Each statistical class is described by the set of its
minimal elements.

Let F be a statistical class. A setA ∈ A is called
minimal for F if it has the minimum volume among
all equiprobable events, i.e
letA(p) = {A ∈ A|P (A) = p}, thenB ∈ A(p) is a
minimal event if

V (B) = min
A∈A(p)

V (A).

In some cases it is possible to describe the set of all
minimal elements for the classF . For example, for
the case, whenP is continuous in its values.
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P is continuous in its values if for any setsA ⊆ B in
A and anyp ∈ [P (A), P (B)] there is a setC ∈ A

such thatP (C) = p.

Definitions:
1)A ⊆ B in measureV iff V (A\B) = 0;
2)A = B in measureV iff V (A\B) = V (B\A) = 0.

Theorem. Let F be a statistical class with a
corresponding probability measureP and densityh,
and letP be continuous in its values. Then for each
minimal eventB there ist ∈ [0,∞) such that

{x ∈ X|h(x) > t} ⊆ B ⊆ {x ∈ X|h(x) > t}

in measureV .
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A statistical class is calledregular if any of its
minimal event is defined uniquely in measureV by its
probability.

Remark. 3 cases are possible:
1) A minimal event with a given probabilityp ∈ [0, 1]
does not exist;
2) It is defined uniquely;
3) It is not defined uniquely.

Theorem. Let F be a statistical class with the
probability measureP and densityh, and letP be
continuous in its values. ThenF is regular iff
P ({x ∈ X|h(x) = t}) = 0 for anyt ∈ [0,∞).
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Remark. If conditions of above theorem are fulfilled,
then any minimal event can be represented as
{x ∈ X|h(x) > t}.

Inclusion relation for regular statistical classes

Let Fi, i = 1, 2, be regular statistical classes, and let
Ai(p) be the corresponding minimal event with
probabilityp ∈ [0, 1]. Then by definition
1) F1 ⊆ F2 iff A1(p) ⊆ A2(p) for all p ∈ [0, 1];
2) F1 = F2 iff A1(p) = A2(p) for all p ∈ [0, 1].

Theorem. Let Fi, i = 1, 2, be regular statistical
classes andF1 = F2. Then they generated by the same
probability measure.
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Local inclusion measure of regular statistical
classes

Let F1 andF2 be regular statistical classes, then the
conditional probability

ϕp(F1 ⊆ F2) = P1(A2(p)|A1(p)) =
P1(A2(p) ∩ A1(p))

P1(A1(p))

characterizes the probability of observation of class
F2 givenF1. Obviously,

ϕp(F1 ⊆ F2) = 1 if F1 ⊆ F2.

Therefore, we callϕp(F1 ⊆ F2) thelocal inclusion
measure.
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Integral inclusion measure of regular statistical
classes

The integral inclusion measure is defined as follows

ϕ(F1 ⊆ F2) =
1
∫

0

w(p)ϕp(F1 ⊆ F2)dp =

1
∫

0

w(p)P1(A1(p) ∩ A2(p))dp.

wherew is a non-negative weight function such that
1
∫

0

w(p)dp = 1.
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In the sequel we assume thatw(p) = 2p. Then

ϕ(F1 ⊆ F2) = 2
1
∫

0

P1(A1(p) ∩ A2(p))dp,

Theorem. Let F1 andF2 be regular statistical classes.
Thenϕ(F1 ⊆ F2) = 1 iff F1 ⊆ F2.

Let F be a regular statistical class with densityh(x)
and corresponding probability measureP . Introduce
the function

µ(x) = P ({y ∈ X|h(y) 6 h(x)}) .

This is themembership function of the statistical class
F , i.e. it gives its fuzzy representation.
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Proposition 1. Any regular statistical class is defined
by its membership functionµ uniquely. In addition,
{x ∈ X|µ(x) > 1− p} is a minimal event with
probabilityp ∈ (0, 1].

Corollary. Let F1 andF2 be regular statistical classes
with membership functionsµ1 andµ2. Then
1. F1 ⊆ F2 iff µ1 6 µ2 in measureV ;
2. ϕ(F1 ⊆ F2) = 2

∫

X

min{µ1(x), µ2(x)}dP1.
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Remark. Formula 2 in the corollary has the following
interpretation through fuzzy sets. LetF1 andF2 be
fuzzy sets with membership functionsµ1 andµ2.
Then

ϕ(F1 ⊆ F2) = P1(F2|F1) =
P1(F1∩F2)
P1(F1)

.

If we accept probabilities of fuzzy events, proposed
by L. Zadeh:

P1(F1 ∩ F2) =
∫

X

min{µ1(x), µ2(x)}dP1,

P1(F1) =
∫

X

µ1(x)dP1 = 0.5.
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Classification of statistical classes

In this case we have the set of etalon statistical classes
{S1, ..., Sn}. The classification of observed statistical
classF consists in computing the following
classifying vector:

(ϕ(F ⊆ S1), ..., ϕ(F ⊆ Sn)) .

The description ofSi is obtained using learning
samples. It is sufficient to know only fuzzy
representations ofSi.
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The computation ofϕ(F ⊆ Si) is produced by the
following steps:

1. Estimation ofµF (membership function ofF ).

2. ϕ(F ⊆ Si) ≈
2
N

N
∑

i=1

min {µF (xi), µSi
(xi)}, where

{x1, ..., xN} is an independent sample from the class
F .
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Decision making in case of unknown utility
function

Classical scheme of decision making:Assume that
any decisiondi is associated with a probability
measurePi on a measurable space(X,B) and
evaluation ofdi is based on computing the expected
utility

u(di) =

∫

X

u(x)dPi,

whereu : X → R is the utility function.
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If utility is measured in order scale

Sometimes it is hard to evaluate decisions using real
numbers. In this case we assume thatu : X → R,
whereR is a linearly ordered set.

In the sequel, it is more convenient to range decisions
considering probability measures on the algebraA of
spaceR. Evidently, this algebra is generated as
follows

A ∈ B⇒ u(A) = {u(x)|x ∈ A} ∈ A,

and probability measureP onB generates probability
measure onA in a way that setsA ∈ B andu(A)
have the same probabilities.
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Therefore, we will describe decisions with the help of
probability measures on the measurable space(R,A).
We denote the order onR by4 and use symbol≺ if
ri 4 rj andri 6= rj.
We assume also that algebraA is the minimalσ
-algebra generated by sets

[r,+∞) ⊆ {x ∈ R|r 4 x}.

For simplicity, assume thatR is a real line, thenA is
the Borel algebra, and we can extend the order on
incomesri ∈ R to the order on probability measures
as follows:

P1 4 P2 iff P1[r,+∞) 6 P2[r,+∞) for all r ∈ R.
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Evidently, the functionFi(r) = Pi[r,+∞) is the
cumulative distribution function and such a partial
order defined on probability distributions (when
R = R) is calledstochastic dominance.

We will next express stochastic dominance through
fuzzy sets assuming that such functions are fuzzy sets.

Notation. Mpr is the set of all probability measures
onA.

Property 1. Let P1 andP2 be probability measures on
A, F1 andF2 be their corresponding cumulative
distribution functions. ThenP1 4 P2 iff F1 ⊆ F2.
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Property 2. The setMpr of all probability measures
onA is a distributive lattice, and this lattice is
isomorphic to the lattice of corresponding fuzzy sets,
i.e.

1) if P1 ∧ P2 ∈Mpr is the exact lower bound of
{P1, P2}, then its cumulative distribution function is
F1 ∩ F2 = min(F1, F2);

2) if P1 ∨ P2 ∈Mpr is the exact upper bound of
{P1, P2}, then its cumulative distribution function is
F1 ∪ F2 = min(F1, F2).

– p. 24/46



Remark. Notice that the set of all cumulative
distribution functions does not cover all possible
fuzzy subsets ofR. It contains only so called
comonotone fuzzy sets.

Fuzzy setsF1 andF2 are calledcomonotone, if for
anyt1, t2 one of the next two inclusions

{F1 > t1} ⊇ {F1 > t1} or {F1 > t1} ⊆ {F2 > t2}

is necessarily true.
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Possibilistic inclusion

Obviously, each cumulative distribution functionFi is
a normal fuzzy set, i.e.sup

x∈R
Fi(x) = 1. It allows us to

consider corresponding necessity and possibility
measures:

Ni(A) = inf
x/∈A

(1− Fi(x)) for A ∈ A such thatA 6= R

(Ni(R) = 1);

Πi(A) = sup
x∈A

Fi(x), forA ∈ A such thatA 6= ∅.
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Theorem. Let P1 andP2 be probability measures on
A. ThenP1 4 P2 if N2(A) 6 P1(A) 6 Π2(A) for all
A ∈ A.

The above probabilistic interpretation allows us to use
inclusion indices introduced for statistical classes for
ranging decisions.

Regular case (cumulative distribution functions
are continuous

Property. Let a cumulative distribution functionFi is
continuous, thenPi({F > 1− p} = p.
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Based on the above property, consider the integral
inclusion index for decisions if they are described by
continuous distribution functions.

ϕ(F1 ⊆ F2) = 2

1
∫

0

P1(A1(p) ∩ A2(p))dp,

whereAi(p) = {x ∈ R|Fi(x) > 1− p}, p ∈ [0, 1].
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Preference function

Extension of inclusion index to the irregular case is
based on analyzing behavior of thepreference
function

ψ(F1, F2) =

1
∫

0

P1(A2(p))dp.

Obviously, for regular case:

ϕ(F1 ⊆ F2) = 2ψ(F1, F1 ∩ F2).
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Properties ofψ for regular case

1. ψ (F1, F2) = 1− ψ (F2, F1).
2. ψ (F1, F2) = 0.5 if F1 = F2; ψ (F1, F2) < 0.5 if
F1 ⊃ F2; ψ (F1, F2) > 0.5 if F1 ⊂ F2.
3. ψ (aF1 + (1− a)F2, F3) =
aψ (F1, F3) + (1− a)ψ (F2, F3), a ∈ [0, 1].
4. ψ (F1 ⊆ F2)− ψ (F2 ⊆ F1) =
ψ (F1, F2)− ψ (F2, F1) = 1− 2ψ (F2, F1) .

5. ψ (F1 ⊆ F2) = 2ψ (F1 ∪ F2, F2) =
ψ (F1, F1 ∩ F2) + ψ (F1 ∪ F2, F2).
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Theorem. Let the functionalψ (F1, F2) be continuous
and obey properties 1-3. In addition,ψ (F1, F2) = 0 if
F1 ⊃ F2; ψ (F1, F2) = 1 if F1 ⊂ F2 for crisp
sets.Then it is defined uniquely and can be computed
as

ψ(F1, F2) =

0.5

(

1
∫

0

P1 {A2(p)} dp+ 1−
1
∫

0

P2 {A1(p)} dp

)

,

wherePi is a probability measure that corresponds to
the cumulative distribution functionFi and
Ai(p) = {x ∈ R|Fi(x) > 1− p}.
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To preserve property 4, using preference function we
can define the inclusion index as

ψ (P1 4 P2) = ψ (F1 ⊆ F2) =

ψ̃ (F1, F1 ∩ F2) + ψ̃ (F1 ∪ F2, F2) .

Probabilistic interpretation of preference function

Assume that probability measuresP1 andP2 describe
random valuesξ1 andξ2. If we additionally assume
that these variables are independent, then

ψ(P1, P2) = 0.5 (Pr {ξ1 4 ξ2}+ Pr {ξ1 ≺ ξ2}) .
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Decision making by inclusion index

LetD = {d1, d2, ..., dm} be the set of possible
decisions, and to each decisiondi corresponds a
probability measurePi ∈Mpr.

Obviously, we can recover stochastic dominance,
computingψ (P1 4 P2), sinceP1 4 P2 iff
ψ (P1 4 P2) = 1.

Let us analyze what happens if we extend4 to the
relationΨ ⊆ D ×D, such that(di, dj) ∈ Ψ, if
ψ(Pi 4 Pj) > ψ(Pj 4 Pi).
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Then we can get the following properties:

Property 1. (di, dj) ∈ Ψ iff ψ̃(Pi, Pj) > 0.5.

Property 2. Ψ is non-transitive in general.

Example. LetR = {r1, ..., rN}, A = 2R, and
r1 ≺ r2 ≺ ... ≺ rN . Then

ψ (P1, P2) =

0.5
N
∑

i=1

P1({ri})P2({ri})+
N−1
∑

i=1

P1({ri})
N
∑

j=i+1

P2({ri}).
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LetN = 4 and probability measuresP1, P2, P3, P4 are
defined in the following table.

{r1} {r2} {r3} {r4}

P1 0.35 0 0.4 0.25
P2 0.2 0.2 0.4 0.2
P3 0.32 0 0.48 0.2

ψ̃ (P1, P2) = 0.5, ψ̃ (P2, P3) = 0.5,
ψ̃ (P1, P3) = 0.495,

(d1, d2) ∈ Ψ, (d2, d3) ∈ Ψ, (d1, d3) /∈ Ψ: Ψ is a
non-transitive relation.
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Logical inference in possibility theory based on
upper and lower probabilities

Notation.
X is a measurable space withσ-algebraA;

Ãi are fuzzy subsets ofX whose measurable
membership functionsµi are normal, i.e.
sup
x∈X

µi(x) = 1.

ξ ∈ Ãi is a fuzzy value.
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Probabilistic interpretation

ξ is a random value, and the fuzzy setÃi is the
imprecise description ofξ. This imprecise description
is given by
possibility measure:Πi(A) = sup

x∈A
µi(x), A ∈ A,

A 6= ∅ (Πi(∅) = 0);

necessity measure:Ni = Πd
i ;

and by inequalities

Ni(A) 6 Pr {ξ ∈ A} 6 Πi(A), A ∈ A.
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In other words,ξ is described by the family of
probability measures

Ξi = {P ∈Mpr |Ni(A) 6 P (A) 6 Πi(A), A ∈ A} .

Conditions of propositions inconsistency

In probabilistic setting propositions
ξ ∈ Ã1, ..., ξ ∈ Ãm are inconsistent if

⋂m
i=1 Ξi 6= ∅.

Notation: Ak(pk) = {x ∈ X |1− µk(x) < pk} is the
strict (1− pk)-cut of Ãk.
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Proposition 1. Propositionsξ ∈ Ã1 andξ ∈ Ã2 are
inconsistent iff∃p1, p2 ∈ [0, 1] such
thatA1(p1) ∩ A2(p2) = ∅, p1 + p2 > 1.

Proposition 2. Propositionsξ ∈ Ã1, ..., ξ ∈ Ãm are
inconsistent if∃p1, ..., pm ∈ [0, 1] such thatAi(pi),
i = 1, ...,m, are pairwise disjoint sets and
∑m

i=1 pi > 1.
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Logical inference

ξ ∈ Ã1, ..., ξ ∈ Ãm ⇒ ξ ∈ Ã means that
⋂m

i=1 Ξi ⊆ Ξ,
whereΞi, i = 1, ...,m, Ξ are families of probability
measures that correspond toξ ∈ Ãi, ξ ∈ Ã.

Question: Is it possible to use usual operationmin,
used for finding intersection of fuzzy sets? The
answer is no. It is possible in case iff fuzzy sets
Ã1, ..., Ãm are comonotone. In this case the set
⋂m

i=1 Ξi is described by possibility distribution
Π(A) = min

i
Πi(A). In other cases we should

construct other rules of inference.
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Other rules of inference are based on the following
lemma.

Lemma. Let {Ak}
n
k=1 ⊆ A and non-empty set

Ξ ⊆Mpr is given byP ∈ Ξ ⇔ P {Ak} > pk,
pk ∈ [0, 1], k = 1, ..., n. Then

P

{

n
⋂

i=1

Ai

}

>

(

n
∑

i=1

pi

)

− (n− 1), P ∈ Ξ

and the above estimate cannot be improved without

additional information if

(

n
∑

i=1

pi

)

− (n− 1) > 0 and

Ak ∩
⋂

i|i6=k

Ai 6= ∅ for all k ∈ {1, ..., n}.
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Proposition. Let ϕk : [0,+∞) → [0,+∞), k = 1, 2,
be continuous strictly increasing functions, in
addition,∀λ ∈ [0,+∞) : ϕ1(λ) + ϕ2(λ) = λ.

Then for consistent propositionsξ ∈ Ã1, ξ ∈ Ã2 is
valid

ξ ∈ Ã1, ξ ∈ Ã2 ⇒ ξ ∈ Ã,

whereµ(x) = 1 ∧ ϕ−1
1 (µ1(x)) ∧ ϕ

−1
2 (µ2(x)), x ∈ X.

Example.µ(x) = 1 ∧ 2µ1(x) ∧ 2µ2(x) if
ϕ1(λ) = ϕ2(λ) = λ/2.
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Imprecision characteristics of fuzzy interval

µ(x) =















0, x 6 a or x > d,

µ1(x), a < x < b,

1, b 6 x 6 c,

µ2(x), c < x < d.
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µ1 is strictly increasing on[a, b];
µ2 is strictly decreasing on[c, d];
µ is continuous;

ξ ∈ Ã⇔ Ni(A) 6 Pr {ξ ∈ A} 6 Πi(A).

E
[

Ã
]

= inf
ξ∈Ã

E [ξ] is the exact lower bound of

expectation.

E
[

Ã
]

= sup
ξ∈Ã

E [ξ] is the exact upper bound of

expectation.
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D
[

Ã
]

= sup
ξ∈Ã

D [ξ] is the maximal variance.

It possible to show thatE
[

Ã
]

−E
[

Ã
]

=
+∞
∫

−∞

µ(x)dx.
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