ROUGH SETS: FROM RUDIMENTS TO CHALLENGES

Andrzej Skowron Institute of Mathematics The University of Warsaw skowron@mimuw.edu.pl

Andrzej Jankowski
Institute of Computer Science
Warsaw University of Technology
Andrzej.AdgaM@gmail.com

AGENDA

RUDIMENTS OF ROUGH SETS ***

CHALLENGES FOR INTERACTIVE
COMPUTATIONAL SYSTEMS (ICS):
GRANULARITY OF INFORMATION
VAGUENESS
INTERACTIONS
ADAPTIVE JUDGMENT HIERARCHICAL LEARNING
CONTROL \& RISK MANAGEMENT IN ICS LIST OF CHALLENGES

RUDIMENTS OF ROUGH SETS

Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11 (1982)
Pawlak, Z.: Rough sets. Theoretical Aspects of Reasoning About Data. Kluwer (1991)

Now thousands of papers http://rsds.univ.rzeszow.pl/

VAGUENESS IN PHILOSOPHY

Discussion on vague (imprecise) concepts includes the following:

1. The presence of borderline cases.
2. Boundary regions of vague concepts are not crisp.
3. Vague concepts are susceptible to sorites paradoxes.

Keefe, R. (2000) Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge, UK)

RUDIMENTS OF ROUGH SETS

- One of the main goals of the rough set analysis is construction of concept descriptions and induction of concept approximations.
- In particular, rough set theory constitutes a sound basis for KDD. It offers methods for:
- discovering patterns hidden in data
- for feature selection, feature extraction, data reduction, decision rule generation, pattern extraction (templates, association rules) etc.
- extraction partial or total dependencies from data elimination of redundant data
- dealing with null values, missing data
- dealing with incremental data and others.

RUDIMENTS OF ROUGH SETS

- Basic Concepts of Rough Sets
- Relationships with other approaches
- Rough Sets and Boolean Reasoning

BASIC CONCEPTS OF ROUGH SETS

- Information/Decision Systems (Tables)
- Indiscernibility and Discernibility
- Set Approximation
- Reducts and Core
- Rough Membership
- Dependency of Attributes
- Decision Rules

INDISCERNIBILITY RELATIONS

infromation system
(data table)

$$
N(x)=\left(\operatorname{Inf} f_{A}\right)^{-1}(u)
$$

information signature of \boldsymbol{x}

tolerance or similarity

DISCERNIBILITY

$$
x D I S_{I S}(B) y \text { iff non }\left(x I N D_{I S}(B)\right) y
$$

However, this is only the simplest case!

LOWER AND UPPER APROXIMATION

$$
\underline{B} X=\bigcup\{Y \in U / B: Y \subseteq X\}
$$

$$
\bar{B} X=\bigcup\{Y \in U / B: Y \cap X \neq 0\}
$$

PROPERTIES OF APPROXIMATIONS

$\underline{B}(X) \subseteq X \subseteq \bar{B} X$
$\underline{B}(\phi)=\bar{B}(\phi)=\phi, \underline{B}(U)=\bar{B}(U)=U$
$\bar{B}(X \cup Y)=\bar{B}(X) \bigcup \bar{B}(Y)$
$\underline{B}(X \cap Y)=\underline{B}(X) \cap \underline{B}(Y)$
$X \subseteq Y$ implies $\underline{B}(X) \subseteq \underline{B}(Y)$ and $\bar{B}(X) \subseteq \bar{B}(Y)$

PROPERTIES OF APPROXIMATIONS

$$
\begin{aligned}
& \underline{B}(X \cup Y) \supseteq \underline{B}(X) \cup \underline{B}(Y) \\
& \bar{B}(X \cap Y) \subseteq \bar{B}(X) \cap \bar{B}(Y)
\end{aligned}
$$

$$
\underline{B}(-X)=-\bar{B}(X)
$$

$$
\bar{B}(-X)=-\underline{B}(X)
$$

$$
\underline{B}(\underline{B}(X))=\bar{B}(\underline{B}(X))=\underline{B}(X)
$$

$$
\bar{B}(\bar{B}(X))=\underline{B}(\bar{B}(X))=\bar{B}(X)
$$

where $-X$ denotes $U-X$.

GENERALIZED APPROXIMATION SPACES

A. Skowron, J. Stepaniuk, Generalized Approximation Spaces 1994

$$
\begin{aligned}
& A S=(U, N, v) \\
& N: U \rightarrow P(U) \text { neighborhood function }
\end{aligned}
$$

$v: P(U) \times P(U) \rightarrow[0,1]$ rough inclusion partial function

$$
x \rightarrow \operatorname{Inf}(x) \rightarrow N(x)=\operatorname{Inf}^{-1}(\operatorname{Inf}(x))
$$

neighborhood of x

APPROXIMATION SPACE

$$
A S=(U, N, v)
$$

$\operatorname{LOW}(A S, X)=\{x \in U: v(N(x), X)=1\}$
$U P P(A S, X)=\{x \in U: v(N(x), X)>0\}$

ROUGH MEREOLOGY

> MEREOLOGY St. LESNNIEWSKI (1916) x is_a_ part_of y ROUGH MEREOLOGY

L. Polkowski and A. Skowron (1994-...)

x is_a_ part_of y in a degree

L. Polkowski, A. Skowron, Rough mereology, ISMIS'94, LNAI 869, Springer, 1994, 85-94
L. Polkowski, Reasonng by parts: An outline of rough mereology, Warszawa 2011

EXTENSIONS OF APPROXIMATIONS

 CLASSIFIERS

ACCURACY OF APPROXIMATION

$$
\alpha_{B}(X)=\frac{|\underline{\underline{B}}(X)|}{|\bar{B}(X)|}
$$

where $|X|$ denotes the cardinality of $X \neq 0$.
Obviously $0 \leq \alpha_{B} \leq 1$.
If $\alpha_{B}(X)=1, \quad X$ is crisp with respect to B.
If $\alpha_{B}(X)<1, \quad X$ is rough with respect to B.

POSITIVE REGION OF DECISION SYSTEM $T=(U, A, d)$

For any $\mathrm{C} \subseteq \mathrm{A}$ we define the C-positive region of d :

$$
\operatorname{POS}_{C}(d)=\bigcup_{X \in U / d} \underline{C} X
$$

Remark: Analogously one can define C-positive region of D if we have a set D of decisions instead of one decision.

POSITIVE REGION OF DECISION SYSTEM
 $$
T=(U, A, d)
$$

Decision classes:
$U / d=\left\{X_{1}, X_{2}, X_{3}\right\}$

ROUGH MEMBERSHIP

- The rough membership function quantifies the degree of relative overlap between the set X and the equivalence class $[x]_{B}$ to which x belongs.

$$
\mu_{X}^{B}: U \rightarrow[0,1] \quad \mu_{X}^{B}(x)=\frac{\left|[x]_{B} \cap X\right|}{\left|[x]_{B}\right|}
$$

- The rough membership function can be interpreted as a frequency-based estimate of $P(x \in X \mid u)$, where $u=[x]_{B}$ is the equivalence relation of $I N D(B)$.

DEPENDENCY OF ATTRIBUTES

Let D and C be subsets of A. D depends on C in a degree $k \quad(0 \leq k \leq 1)$,

$$
C \Rightarrow_{k} D,
$$

where $\quad k=\gamma(C, D)=\frac{\left|\operatorname{POS}_{C}(D)\right|}{|U|}$

DESCISION RULES

$$
T=(U, A, d)-\text { decision system }
$$

Decision rule

$$
a_{i_{1}}=v_{i_{1}} \wedge \ldots \wedge a_{i_{k}}=v_{i_{k}} \Rightarrow d=v \in V_{d}
$$

Generalized decision rule

$$
a_{i_{1}}=v_{i_{1}} \wedge \ldots \wedge a_{i_{k}}=v_{i_{k}} \Rightarrow \partial_{A}=V \subseteq V_{d}
$$

MINIMAL SETS OF CONDITION ATTRIBUTES PRESERVING DISCERNIBILITY CONSTRAINTS: REDUCTS

- between discernible objects in a given information system \rightarrow reducts in information systems
- between objects from different decision classes \rightarrow decision reducts
- between a given object x with a decision i and other objects with a decision different from i \rightarrow local reducts relative to the object x

REDUCTS IN INFORMATION SYSTEMS

- For a given information system $I S=(U, A)$ we are searching for minimal subsets $B \subseteq A$ such that

$$
I N D_{I S}(B)=I N D_{I S}(A)
$$

- RED(IS) or RED(A) - the set of all reducts in IS.
- $\operatorname{CORE}(I S)=/$ RED(IS).

PROBLEMS WITH REDUCTS

- The number of reducts can be large, e.g., in case if reducts of information systems some information systems can have exponential number of reducts with respect to the number of attributes
- Problems of computing minimal reducts are of high complexity, usually they are NP-hard.

Fortunately there have been developed efficient heuristics for computing relevant reducts or sets of reducts based on BOOLEAN REASONING.

RELATIONSHIPS WITH OTHER APPROACHES

- Fuzzy sets
- Dempster-Shafer Theory
- Boolean Reasoning
- Statistics
- Mereology
- Mathematical Morphology

RELATIONSHIPS OF ROUGH SETS WITH BOOLEAN REASONING

BOOLEAN REASONING
 George Boole (1815-1864)

 PROBLEM P

BOOLEAN PROCESSOR $a \bar{b} c=1 \rightarrow f_{P}(a, b, c, \ldots)=1$ PRIME IMPLICANTS $f_{\boldsymbol{p}}$

INTERPRETATION
SOLUTIONS FOR P

BOOLEAN REASONING

- Rough Sets and Boolean Reasoning
- Reducts in information systems
- Decision reducts
- Local reducts relative to objects
- Discretization
- Symbolic value grouping
- Approximate reducts and association rules

BOOLEAN REASONING

DISCERNIBILITY CONSTRAINTS TO BE PRESERVED

CAN BE ENCODED BY MEANS OF BOOLEAN FUNCTIONS

RELEVANT
FOR BOOLEAN REASONING

BOOLEAN REASONING FOR COMPUTING REDUCTS IN INFORMATION SYSTEMS

REDUCTS IN IS

$$
I S=(U, A)
$$

Discernibility matrix

$$
M(I S)=\left(c_{i j}\right)_{n \times n}: c_{i j}=\left\{a \in A: a\left(x_{i}\right) \neq a\left(x_{j}\right)\right\}
$$

Discernibility function

$$
f_{I S}\left(a_{1}, \ldots, a_{m}\right)=\wedge\left\{\vee c_{i j}: 1 \leq i<j \leq n, c_{i j} \neq \varnothing\right\}
$$

$a_{i_{1}} \wedge \ldots \wedge a_{i_{k}}$ is a primeimplicant of $f_{\text {IS }}$

$$
\text { iff }\left\{a_{i_{i}}, \ldots, a_{i_{*}}\right\} \in \operatorname{RED}(I S)
$$

REDUCTS IN IS

CHALLENGES

for making progress in constructing of the high quality intelligent systems

AGENDA

- MOTIVATION
- INTERACTIVE ROUGH GRANULAR COMPUTING
- CONTRUCTION OF GRANULES
- HIERARCHICAL LEARNING AND ONTOLOGY APPROXIMATION
- ROLE OF DOMAIN KNOWLEDGE
- CASE STUDIES
- INTERACTIVE COMPUTATIONS AND DECISION SUPPORT IN PROBLEM SOLVING
- CONTROL
- ADAPPTIVE JUDGMENT
- REASONING ABOUT CHANGES - ROUGH CALCULUS
- BEYOND ONTOLOGIES: EVOLVING COMMUNICATION LANGUAGES
- RISK MANAGEMENT IN INTERACTIVE COMPUTATIONAL SYSTEMS
- CASE STUDY: ALGORITHMIC TRADING
- CHALLENGES

MOTIVATION

- Making progress in constructing of the high quality intelligent systems
- Examples: approximation of complex vague concepts such as guards of actions or behavioral patterns
- Reasoning about vague concepts

ROBO-CUP

REAL-LIFE PROJECTS

UAV control of unmaned helicopter (Wallenberg Foundation, Linkoeping University)

Medical decision support (glaucoma attacs, respiratory failure,...)
Fraud detection (Bank of America)
Logistics (Ford GM)
Dialog Based Search Engine (UNCC, Excavio)
Algorithmic trading (Adgam)
Semantic Search (SYNAT) (NCBiR)
Firefighter Safty (NCBiR)

Plays a key role in
Editors
Witold Pedrycz I Andrzej Skowron | Vladik Kreinovich

Handbook of

Granular Computing

Zadeh, L. A. (1979) Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.), Advances in Fuzzy
Set Theory and Applications,
Amsterdam: North-Holland Publishing
Co., 3-18

Zadeh, L.A. (2001) A new direction in Al-toward a computational theory of perceptions. Al Magazine 22(1): 73-84

LESLIE VALIANT: TURING AWARD 2010

March 10, 2011:
Leslie Valiant, of Harvard University, has been named the winner of the 2010
Turing Award for his efforts to develop computational learning theory. http://www.techeye.net/software/leslie-valiant-gets-turing-award\#ixzz1HVBeZWQL

Current research of Professor Valiant
http://people.seas.harvard.edu/~valiant/researchinterests.htm
A fundamental question for artificial intelligence is to characterize the
computational building blocks that are
necessary
ORMATION GRANULES

INDISCERNIBILITY GRANULES

$$
\begin{aligned}
& \begin{array}{c}
\text { infromation system } \\
\text { (data table) }
\end{array} \longrightarrow \begin{array}{|c|c|c|c|c|c|}
\hline & a_{1} & a_{2} & \cdots & a_{m} & d \\
\hline x_{1} & v_{1} & v_{2} & \ldots & v_{m} & 1 \\
\hline & \cdots & f(x)=\left(\operatorname{Inf}_{A}\right)^{-1}(u) & \cdots & \cdots & \cdots \\
\hline & & & & & \\
\text { information signature of } x
\end{array} \\
& u=\operatorname{Inf}_{A}(x)
\end{aligned}
$$

neighborhood of x

tolerance or similarity

ELEMENTARY GRANULES

 +INTERACTIVE
CALCULULI OF GRANULES

JOIN WITH CONSTRAINTS

Objects (granules) in IS are composed out of attribute value vectors from $I S_{1} \ldots I S_{\mathrm{k}}$ satisfying W

INTERACTIVE HIERARCHICAL STRUCTURES

STRUCTURAL OBJECTS

SEARCHING FOR RELEVANT FEATURES

GENERALIZATIONS OF GRANULES: TOLERANCE GRANULES

invariants over tolerance classes; compare invariants in the Gibson approach

GRANULES REPRESENTING STRUCTURES OF OBJECTS

properties of time windows

COMPLEX ATTRIBUTES

STRUCTURAL GRANULES SEARCHING FOR RELEVANT FEATURES

DEFINABLE GRANULES

ROUGH GRANULES

APPROXIMATION OF GRANULES

INTERACTIONS

INTERACTIONS

[...] interaction is a critical issue in the

 understanding of complex systems of any sorts: as such, it has emerged in several wellestablished scientific areas other than computer science, like biology, physics, social and organizational sciences.Andrea Omicini, Alessandro Ricci, and Mirko Viroli, The Multidisciplinary Patterns of Interaction from Sciences to Computer

Science. In: D. Goldin, S. Smolka, P. Wagner (eds.): Interactive computation: The new paradigm, Springer 2006

INTERACTIONS

[...] One of the fascinating goals of natural computing is to understand, in terms of information processing, the functioning of a living cell. An important step in this direction is understanding of interactions between biochemical reactions. ..
the functioning of a living cell is determined by interactions of a huge number of biochemical reactions that take place in living cells.

A human dendritic cell (blue pseudocolor) in close interaction with a lymphocyte (yellow pseudo-color). This contact may lead to the creation of an immunological synapse.

The Immune Synapse by Olivier Schwartz and the Electron Microscopy Core Facility, Institut Pasteur
http://www.cell.com/Cell Picture Show

Andrzej Ehrenfeucht, Grzegorz Rozenberg: Reaction Systems: A Model of 55 Computation Inspired by Biochemistry, LNCS 6224, 1-3, 2010

GENERAL SCHEME OF INTERACTION

HIERARCHICAL LEARNING IN INTERACTION WITH DOMAIN EXPERTS

ONTOLOGY APPROXIMATION

UAV

SUNSPOT CLASSIFICATION

close-up (hi-res)
T.T. Nguyen, C.P. Willis, D.J. Paddon, S.H. Nguyen, H.S. Nguyen: Learning Sunspot Classification. Fundamenta Informaticae 72(1-3): 295-309 (2006)

HARD SAMPLES

Nguyen, T.T., Skowron, A.: Rough-granular computing in human-centric information processing. In; Bargiela, A., Pedrycz, W. (eds.), Human-Centric Information Processing Through Granular Modelling, Springer, Heidelberg (2009) 1-30

MEDICAL DIAGNOSIS AND THERAPY SUPPORT RESPIRATORY FAILURE

Jan Bazan et al, Cooperation with Polish-American Pediatric Institute, Jagiellonian University Medical College, Cracow, Poland

SCALABILITY

ADAPTIVE JUDGMENT

LESLIE VALIANT: TURING AWARD 2010

A specific challenge is to build on the success of machine learning so as to cover broader issues in intelligence.
This requires, in particular a reconciliation between two contradictory characteristics -- the apparent logical nature of reasoning and the statistical nature of learning.
Professor Valiant has developed a formal system, called robust logics, that aims to achieve such a reconciliation.

INTERACTIVE HIERARCHICAL STRUCTURES

ADAPTIVE JUDGMENT

- Searching for relevant approximation spaces
- new features, feature selection
- rule induction
- measures of inclusion
- strategies for conflict resolution
- Adaptation of measures based on the minimal description length: quality of approximation vs description length
- Reasoning about changes
- Perception (action and sensory) attributes selection
- Adaptation of quality measures over computations relative to agents
- Adaptation of object structures
- Strategies for knowledge representation and interaction with knowledge bases
- Ontology acquisition and approximation
- Language for cooperation development and evolution

REASONING ABOUT CHANGES

ROUGH CALCULUS

PROCESS MODELS AND INTERACTIONS

Example

$$
\begin{aligned}
& x_{i}(t+1)=f\left(x_{i}(t)\right)+\kappa \frac{1}{d_{i}} \sum_{j ; j i j i}\left(f\left(x_{j}(t-\tau)\right)-f\left(x_{i}(t)\right)\right) \\
& \dot{x_{i}}(t)=f\left(x_{i}(t)\right)+\varepsilon \kappa \frac{1}{d_{i}} \sum_{j ; j \approx i}\left(f\left(x_{j}(t-\tau)\right)-f\left(x_{i}(t)\right)\right)
\end{aligned}
$$

Feng, J., Jost, J., Minping, Q.
(eds): Network:
From Biology to
Theory, Springer, Berlin, 2007

FUNCTION APPROXIMATION

Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in roughgranular computing. Fundamenta Informaticae 100 (1-4) (2010) 141-157

EXAMPLE: TRAJECTORY APPROXIMATION

Adaptation must be used to fix the deviation of the model

The actual trajectory P

We have to adapt the underlying model criteria to make it more relevant

BEYOND ONTOLOGIES

EVOLVING COMMUNICATION LANGUAGE

FROM INFORMATION RETRIEVAL TO DECISION SUPPORT

SYNAT
project
H.S.Nguyen et al

BIOLOGY

[...] Tomorrow, I believe, every biologist will use computer to define their research strategy and specific aims, manage their experiments, collect their results, interpret their data, incorporate the findings of others, disseminate their observations, and extend their experimental observations - through exploratory discovery and modeling - in directions completely unanticipated

Bower, J.M., Bolouri, H. (Eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge, MA (2001)

GOTTFRIED WILHELM LEIBNIZ

 [...] If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would suffice to take their pencils in their hands, and say to each other: Let us calculate.[...] Languages are the best mirror of the human mind, and that a precise analysis of the signification of words would tell us more than anything else about the operations of the understanding.

Leibniz, G.W. : Dissertio de Arte Combinatoria (1666).
Leibniz, G.W.: New Essays on Human Understanding (1705), (translated by Alfred Gideon Langley, 1896), (Peter Remnant and Jonathan Bennett (eds.)). Cambridge University Press (1982).

JUDEA PEARL- TURING AWARD 2011

for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning.

Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample.
Causal inference requires two additional ingredients:

- a science-friendly language for articulating causal knowledge,
and
- a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon.

COMPUTING WITH WORDS LOTFI A. ZADEH

[...] Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions - a theory which may have an important bearing on how humans make - and machines might make perception - based rational decisions in an environment of imprecision, uncertainty and partial truth.
[...] computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language.

Lotfi A. Zadeh1: From computing with numbers to computing with words - From manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems 45(1), 105-119 (1999)

INTERACTIVE COMPUTATIONAL SYSTEMS (ICS)

EXAMPLES OF COMPLEX SYSTEMS

SOFTWARE PROJECTS
MEDICAL SYSTEMS ALGORITHMIC TRADING SYSTEMS INTEGRATING TEAMS OF ROBOTS AND HUMANS
TRAFFIC CONTROL SYSTEMS
SYSTEMS IN ACTIVE MEDIA TECHNOLOGY PERCEPTION BASED SYSTEMS

CURRENT PROJECTS

Line?

- 'Interdisciplinary System for Interactive Scientific and Scientific-Technical Information' (www.synat.pl).
- Our task:
- SONCA - an application based on a hybrid database framework, wherein scientific articles are stored and processed in various forms.
- Semantic indexing, classification, grouping and
- Semantic information retrieval
- Aug. 2010 -> Aug. 2013 -> Apr. 2014

- Firefighter safety

- The project aims to improve the safety of firefighters during rescue fire fighting operations, and minimalization of the effects of fire.
- The task is to create a computer system that improves the quality of
- information flow,
- decision-making operations
- and the time of the rescue and fire fighting.
- From June 2013 to June 2016

PERCEPTION BASED COMPUTING

The main idea of this book is that perceiving is a way of acting. It is something we do. Think of a blind person tap-tapping his or her way around a cluttered space, perceiving that space by touch, not all at once, but through time, by skillful probing and movement. This is or ought to be, our paradigm of what perceiving is.

Alva Noë: Action in Perception, MIT Press 2004
interaction: agent \rightarrow sensory and action attributes - only activated by agent attributes $A(t)$ at time t are performing measurements and actions

DISCOVERY OF COMPLEX GAMES OF INTERACTIONS

actions

complex vague concepts initiating actions

THE WITTGENSTEIN IDEA ON LANGUAGE GAMES

Wittgenstein, L.: Philosophical Investigations. (1953) (translated by G. E. M. Anscombe) (3rd Ed), Blackwell Oxford1967

Granules

information granules (infogranules)

physical granules
(hunks)

STATES IN INTERACTIVE COMPUTATIONAL MODELS

\square agent

\squareagent hunks: \bigcirc sensor and action hunks, syntactic hunks (e.g., $\overbrace{-}^{-1}$ artifacts), semantic hunk, control hunk
\square

INFOGRANULE STRUCTURE

scenario of interactive computation including expected properties of I/O/C infogranules and other conditions using links to hunk configurations
possible cases of interpretation (implementation) of interactive computations specified by abstract semantics which could be exressed by algorithms (procedures) for performing computations by control using hunks and other infogranules; computations are influenced by interactions among different hunks
(e.g., during sensory measurements, performing actions, realisation of procedures in computers);
possible cases of interpretation are often defined relative to different universes of infogranules and hunks

SENSORS

ACTION

ACTION

CONFIGURATION

TRANSITION RELATION

Aristotle has dedicated many papers to clarify the relationships between concepts such as thinking, imagination, judgment, perception and psyche issue:

Thinking is different from perceiving and is held to be in part imagination, in part judgment: we must therefore first mark off the sphere of imagination and then speak of judgment.

INTERACTIVE INFORMATION AND DECISION SYSTEMS

links to parts of a structure of hunks in global states defined by the agent control system at time $t_{1}, \ldots, t_{k} \leq t$
using the agent knowledge bases and, in particular, parameters of the (actual at time t_{1}, \ldots, t_{k}) agent mereology, relations on values of control parameters at time t and/or values of conditional attributes at time t;
the structure of hunks in global states is defined by agent control using some constraints over values of conditional attributes and/or control parameters

INTERACTIVE INFORMATION AND

row of decision system
links to parts of a structure of hunks in global states defined by the agent control system at at some moments of time $\leq t$
using the agent knowledge bases and, in particular, parameters of the (actual at at some moments of time $\leq t$) agent mereology, relations on values of control parameters at time t and/or values of conditional attributes at time t; the structure of hunks in global states is defined by agent control using some constraints over values of conditional attributes and/or control parameters

HOW TO CONTROL COMPUTATIONS IN ICS ?
 RISK MANAGEMENT IN ICS

Jankowski, A., Skowron, A., Wasilewski, P.: Interactive Computational Systems. CS\&P 2012
Jankowski, A., Skowron, A., Wasilewski, P.: Risk Management and Interactive Computational Systems. Journal of Advanced Mathematics and Mathematics 2012

THREATS AND VULNERABILITIES

- Threat
- A potential occurrence that can have an undesirable effect on the system assets of resources
- Results in breaches in confidentiality, integrity, or a denial of service, e.g., outsider penetrating a system is an outsider threat
- Need to identify all possible threats and address them to generate security objectives
- Vulnerability
- A weakness that makes it possible for a threat to occur
'vulnerability' refers to the capacity to be wounded, i.e., the degree to which a system is likely to experience harm due to exposure to a hazard Turner II, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X., Luers, A., Martello, M.L., Polsky, C., Pulsipher, A., Schiller, A., 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America 100, 8074-8079. (Turner II et al., 2003)

THREATS AND VULNERABILITIES

THREATS AND VULNERABILITIES

THREATS AND VULNERABILITIES

Threats

Security target

expressed by a value hierarchy of needs and assets

THREATS AND VULNERABILITIES

Threats

Vulnerabilities

Security target
expressed by a value hierarchy of needs and assets
vulnerabilities used by threats

THREATS AND VULNERABILITIES

EXAMPLE OF A PROBABILITY CRITERIA MATRIX

	E	IV	III	11	1	1	I
	D	IV	III	III	II	1	I
	C	v	IV	III	II	II	I
	B	v	IV	III	III	II	I
	A	V	V	IV	III	II	II
		1	2	3	4	5	6

RISK MANAGEMENT PROCESS

EXAMPLE OF BOW TIE DIAGRAM FOR UNWANTED CONSEQUENCES

Sources of risk

ALGORITHMIC TRADING

THE CONCEPT OF TRADING ROBOTS

The trading robots system, is the use of electronic financial markets platforms for entering trading orders with an algorithm deciding on basic aspects of the order such as the asset, timing, price, or quantity of the order, or in many cases initiating the order without human intervention.
The concept of such type of use of software is also known as robo trading or algorithmic trading or automated trading, also algo trading, black-box trading

PEARL'S POSTULATE: a science-friendly language for articulating causal knowledge about market crash \& a mathematical machinery for processing that knowledge combining it with data and drawing new causal conclusions

THE ESSENCE OF ADGAM GROUP TECHNOLGICAL SOLUTIONS FOR ALGORITHMIC TRADING

THE ESSENCE OF ADGAM GROUP TECHNOLGICAL SOLUTIONS FOR ALGORITHMIC TRADING

ADGAM GROUP EFFORTS ON THE DEVOLOPMENT OF ALGORITHMIC TRADING TECHNOLOGY

Project duration [years] 5
man - months

mathematical models implemented

experiments tested on many years

 historical data and many thousands of years of Monte Carlo generated data
REAL-MONEY Account Live Trading by rescaled AdgaM TRADING ROBOTS \& WALLSTREET FOREX ROBOT

| WallStreet Forex Robot REAL | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Gain: 226.63% | Drawdown: 27.95% | Daily: 0.31% | Monthly: 9.64% | | |
| | | | | | |

The essence of algorithmic trading based on AdgaM Group experience

The essence of algorithmic trading

Causal inference supporting market crash forecast is not easy task

S\&P 500 Crashes, Updated oct 30,2008

Causal inference supporting market crash forecast is not easy task

„Those of us who have looked to the self-interest of lending institutions to protect shareholders' equity, myself included, are in a state of shocked disbelief....

The whole intellectual edifice

[of risk-management in financial markets]....

collapsed last summer."

Alan Greenspan
former Fed chairman
at a congressional hearing in October 2008.

THE ESSENCE OF ALGORITHMIC TRADING

Causal inference supporting market crash forecast is not easy task

Pearl's postulate

Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients:

1. a science-friendly language for articulating causal knowledge about market crash
\&
2. a mathematical machinery for processing that knowledge,
combining it with data and drawing new causal conclusions
about a phenomenon.

CHALLENGES SUMMARY

- RS \& INTRACTIVE COMPUTATIONS
- MODELING OF INTERACTIVE COMPUTATIONS
- GENERALIZED INFORMATION SYSTEMS
- INTERACTIVE INFORMATION SYSTEMS
- HIERARCHIES AND NETWORKS OF INFORMATION SYSTEMS
- CONTEXT DEPENDENT INFORMATION SYSTEMS
- DYNAMICAL NETWORKS OF INFORMATION SYSTEMS
- CONTROL OF INTERACTIVE COMPUTATIONS
- RS \& ADAPTIVE JUDGMENT
- LEARNING HIERARCHIES OF INFORMATIOIN SYSTEMS
- LERNING HIERARCHIES OF SATISFIABILITY RELATIONS
- NEW FEATURE DISCOVERY
- REASONING ABOUT CHANGES
- ROUGH CALCULUS
- STRATEGIES FOR ADAPTATION OF APPROXIMATION SPACES
- CONTEXT DISCOVERY
- RS \& EVOLUTION OF COMMUNICATION LANGUAGE
- LEARNING NEW FEATURES, PHRASES, SENTENCES, SITUATION DESCRIPTION
- LEARNING SCHEMES OF REASONING AND COMPOSITIONS OF RULES
- LEARNING INCLUSION RELATION IN INTERACTION WITH USERS (EXPERTS)
- LEARNING OF COALITIONS AND ORGANIZATIONS
- AUTONOMIC LEARNING, SELF ORGANIZATION
- RISK MANAGEMENT IN INTERACTIVE COMPUTATIONAL SYSTEMS
- RS \& SCALABILITY
- PARALLELALGORITHMS
- EMBEDDED HARDWARE
- CLOUD COMPUTING

WISDOM TECHNOLOGY (WisTech)

A. Jankowski, A. Skowron: A wistech paradigm for intelligent systems, Transactions on Rough Sets VI: LNCS Journal Subline, LNCS 4374, 2007, 94-132
A. Jankowski A., Skowron A.: Logic for artificial intelligence: The Rasiowa-Pawlak school perspective, In: Ehrenfeucht, A., Marek V., Srebrny M. (Eds.) Andrzej Mostowski and Foundational Studies, IOS Press, Amsterdam, 2008, 106-143.

WISDOM= INTERACTIONS + ADAPTIVE JUDGMENT + KNOWLEDGE BASES

IRGC = systems based on interactive computations on granules with use of domain (expert) knowledge, process mining and concept learning

APPENDIX

REFERENCES AND FURTHER READINGS

Pawlak, Z.: Rough Sets, International Journal of Computer and Information Sciences 11, 341-356 (1982).

Pawlak, Z.: Rough Sets - Theoretical Aspect of Reasoning about Data, Kluwer Academic Publishers (1991).

Pawlak, Z., Skowron A.: Rudiments of rough sets, Information Sciences 177(1), 327 (2007).

Pawlak, Z., Skowron A.: Rough sets: Some extensions, Information Sciences 177(1), 28-40 (2007).

Pawlak, Z., Skowron A.: Rough sets and Boolean reasoning, Information Sciences 177(1), 41-73 (2007).
Skowron, A., Suraj, Z. (eds.): Rough Sets and Intelligent Systems. Professor Zdzislaw Pawlak in Memoriam. Series Intelligent Systems Reference Library 4243, Springer (2013)

Jankowski, A., Skowron, A.: Wisdom technology: A rough-granular approach. In: M. Marciniak, A. Mykowiecka (eds.) Bolc Festschrift, LNCS 5070, pp. 3--41. Springer, Heidelberg (2009)

International Rough Set Society
http://www.roughsets.org
Group at Warsaw University: http://logic.mimuw.edu.pl
RSES: http://logic.mimuw.edu.pl/~rses/
Rough Set Database System:
http://rsds.univ.rzeszow.pl/
Journal: Transactions on Rough Sets http://roughsets.home.pl/www/index.php?option= com content\&task=view\&id=14\&Itemid=32
http://scholar.google.com/citations?user=fYu9ryIA AAAJ\&hl=en\&oi=ao
http://scholar.google.com/citations?user=zVpMZB kAAAAJ\&hl=en\&oi=ao

