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The goal of this first lecture is modest . ..
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Generalize completeness theorem for CFOL

Classical first-order logic CFOL: FcpoL its provability relation
EcroL the semantical consequence
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Generalize completeness theorem for CFOL

Classical first-order logic CFOL: FcpoL its provability relation
EcroL the semantical consequence

Problem of completeness of CFOL: formulated by Hilbert and
Ackermann (1928) and solved by Gédel (1929):

Theorem 1 (Gddel’s completeness theorem)

For every set of first-order formulae T U {p}:

T FcroL ¢ iff T =croL ¢
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Generalize completeness theorem for CFOL

Classical first-order logic CFOL: FcpoL its provability relation
EcroL the semantical consequence

Problem of completeness of CFOL: formulated by Hilbert and
Ackermann (1928) and solved by Gédel (1929):

Theorem 1 (Gddel’s completeness theorem)

For every set of first-order formulae T U {p}:

T FcroL ¢ iff T =croL ¢

First we have to define ‘fuzzy’ analogs of FcrorL and =croL - - -
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1947 Henkin: alternative proof of Gédel’'s completeness theorem

1961 Mostowski: interpretation of existential (resp. universal)
quantifiers as suprema (resp. infima)

1963 Rasiowa, Sikorski: first-order intuitionistic logic
1963 Hay: infinitary standard tukasiewicz first-order logic
1969 Horn: first-order G6del-Dummett logic

1974 Rasiowa: first-order implicative logics

1990 Novak: first-order Pavelka logics

1992 Takeuti, Titani: first-order Gédel-Dummett logic with
additional connectives

1998 Hajek: first-order axiomatic extensions of HL
2005 Cintula, Hajek: first-order core fuzzy logics
2011 Cintula, Noguera: first-order semilinear logics
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Any lecture about first-order fuzzy logics has to start with . . .
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Propositional fuzzy logics
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Propositional fuzzy logics

LrL,: propositional language (—, &, A, V,0,1, T, 1)

FL.: Full Lambek logic with exchange
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Propositional fuzzy logics

LrL,: propositional language (—, &, A, V,0,1, T, 1)

FL.: Full Lambek logic with exchange has axioms:

(id) ©—¢ (identity)
Ph) (o =) = ((x = ) = (x = ¥)) (prefixing)
(per) (¢ — @ —=x) = @ = (¢ X)) (permutation)
(&N) (oA AL = (9 AY) (fusion conjunction)
(A=) (pAY) = (conjunction implication)
(A=) (pAY) = (conjunction implication)
(=A) [(e—=V)A(p—=Xx)]—[e— WAx)] (implication conjunction)
(=V) o= (V) (implication disjunction)
(=V) Y= (pV) (implication disjunction)
(V=) [(¢ = X)A@W = x)] = [(¢VY) = x] (disjunction implication)
(=&) Y= (p—= &) (division fusion)
&—=) W= (e—=x)] = (& —x) (fusion implication)
m 1 (unit)
(1=) T—=(p—=9) (unit implication)
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Propositional fuzzy logics

LrL,: propositional language (—, &, A, V,0,1, T, 1)
FL.: Full Lambek logic with exchange has rules:

(mp) o, =1 (modus ponens)
@di) ¢FeAl (adjunction unit)
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Propositional fuzzy logics

LrL,: propositional language (—, &, A, V,0,1, T, 1)
FL.: Full Lambek logic with exchange
UL: Uninorm logic (also denoted as FLY), extension of FL. by:

(pre) (¢ =)V (Y — ) (prelinearity)
(1-distr) (@VU)AT = (@ AT)V (W AT) (1-distributivity)

Let L be either FL. or UL: we write T . ¢ if there is proof of ¢
in logic L from theory T
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Algebraic semantics

A bounded pointed commutative residuated lattice, or an
FL.-algebra, is an algebra A = (A, &, —, A, V,0,1, L, T) s.t.:
Q@ (A, AV, L, T)is abounded lattice
Q (A, &, 1) is a commutative monoid

© — is the residuum of &, i.e., for each x,y,z € A holds:
x&y<ziffx<y—>z

A FL.-algebra A is a UL-algebra if for all x,y € A:

x=y)VH—=x)>1 and (xVy)AT=xAI)V (AL

Note that B
x<y iff xAy=x iff x—>y>1
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Completeness

Let L be either FL, or UL and L. be class of all L-algebras and
IL* the class of linearly ordered L-algebras

Let K C L, we write T =k ¢, if for each A € K and each B
A-evaluation e s.t. e(y)) > 1 for each v € T we have e(y) > 1.

Theorem 3 (General completeness of FL. and UL)

T"L(p iff TIZ]LSO

Theorem 4 (Linear completeness of UL)
T l_UL (2] iff T ):[UILE (%2

Note that FLL = UL’ and Theorem 3 is not valid for FL,
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‘Basic’ semilinear logic SL'

An SL-algebra, is an algebra A = (A, &, —, ~, A, V,0,1, L, T):
Q@ (A A,v, 1, T)is abounded lattice
Q (A, &, 1) is a unital groupoid
© — is the left residuum of & and ~ is the right one, i.e., for
each x,y,z € A holds:

x&y<ziff y<x—ziff x<y~z

Definition 6

The logics SL and SL' are the logics of SL-algebras or linearly
ordered SL-algebras respectively, i.e., the logics for which:

T l_SL 2] iff T ):S]L %) T l_SLZ (2 iff T ):S]LZ Y2
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Core semilinear logics — 1

A logic L expands the logic SL if for each set formulae T U {¢}
in the language of SL we have:

TtsLp implies ThHp o

For any such logic we define the class of (linearly ordered)
L-algebras (denoted as L or L! resp.) such that if define the
semantical consequence =k as before we get:

ThHLe iff TELe
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Core semilinear logics — 1

A logic L expands the logic SL if for each set formulae T U {¢}
in the language of SL we have:

TtsLp implies ThHp o

For any such logic we define the class of (linearly ordered)
L-algebras (denoted as L or L! resp.) such that if define the
semantical consequence =k as before we get:

ThHLe iff TELe

Definition 7
A logic L is core semilinear logic whenever:
@ L expands the logic SL
@ L is complete w.r.t. linearly ordered L-algebras, i.e.,

Thoo iff Tl
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Core semilinear logics — 2

Theorem 8 (Central characterization theorem)

LetL be a logic expanding SL. TFAE:
@ L is core semilinear logic
@ L= Lgpst

@ whenever T /. o then there is linearT' D T s.t. T' t/L ¢
T is linear if for each p,): T+ o — Y orT - — ¢

@ L enjoys the Semilinearity Property
T,o— YL xand T,W — ot x implies Ty x  (SLP)

@ L proves (pre) and enjoys the Proof by Cases Property
T,pbFL xand T,v - x implies T, oV 1 x (PCP)

@ L proves (pre) and T b ¢ implies TV x FL ¢ V x
whereTV x ={¢Y Vx| ¢ €T}
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Let us fix a semilinear logic L in a language L ...
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Predicate languages, formulas, etc.

Predicate language: P = (P, F,ar)
Object variables: denumerable set OV
P-terms, atomic P-formulae, (£, P)-formulae: as in CFOL

free/bounded variables, substitutable terms, sentences:
as in CFOL

‘P-theory: set of P-formulae
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First-order semantics — 1

P-structure Mt: a pair (A, M) where
@ AclL

© M= (M, (Pwm)pcp; (fm)ser) (M # 0)
@ Py: M" — A, foreachn-ary P € P
@ fym: M" — M for each n-ary f € F.

M-evaluation v: a mapping v: OV — M

For x € OV, m € M, and 9M-evaluation v, we define v[x—m] as

v[x—m](x) = m and v[x—m](y) = v(y) fory # x
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First-order semantics — 2

Definition 9 (Tarski style truth definition)

I = v(x) for x € OV
(-l = Ul o a7 forfeF
1Pt = PsCnll - [1l7) for P € P

lo(pt,- @)l = Aledl™, ..., leallT)  foroer
(vl = infe, {|lol3n | m € M}
1@l = supe, {lllSm | m € M}
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First-order semantics — 2

Definition 9 (Tarski style truth definition)

I = v(x) for x € OV
(-l = Ul o a7 forf €F
1Pt = PsCnll - [1l7) for P € P

lo(et, .ol = Allelld, .., leally)  foroer
(vl = infe, {|lol3n | m € M}
1@l = supe, {Illifsm | m € M}

If the infimum/supremum does not exist, the value is undefined.
A P-structure 9t is safe if ngHiﬁ is defined for each ¢ and v.
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First-order semantics — 3
Definition 10 (Model)

A safe structure M = (A, M) is a P-model of T, M = T in
symbols, if ||| > T for each ¢ € T and each Mi-evaluation v.

V.

Definition 11 (Semantical consequence)

A P-formula ¢ is a semantical consequence of a P-theory T
w.r.t. the class K of L-algebras, T =x ¢ in symbols, if for each
A € K and each P-model 9t = (A, M) of T we have M |~ ¢

Proposition 12 (Assume that x is not free in ¢ ...)
¢ L (Vx)p  thus ¢ Fx (Vx)p

eV e (W)e) Ve BUT oV g ((Vx)p) VY
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First-order semantics — 3
Definition 10 (Model)

A safe structure M = (A, M) is a P-model of T, M = T in
symbols, if ||| > T for each ¢ € T and each Mi-evaluation v.

V.

Definition 11 (Semantical consequence)

A P-formula ¢ is a semantical consequence of a P-theory T
w.r.t. the class K of L-algebras, T =x ¢ in symbols, if for each
A € K and each P-model 9t = (A, M) of T we have M |~ ¢

Proposition 12 (Assume that x is not free in ¢ ...)
¢ L (Vx)p  thus ¢ Fx (Vx)p

eV e (W)e) Ve BUT oV g ((Vx)p) VY

Thus =1, € ;. even though in propositional logic: Ep, = e
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Axiomatization: two first-order logics

Minimal predicate logic LV™:

(P) first-order substitutions of axioms and rules of L

(V1) Fprwm (Vx)o(x,2) — ©(t,7) ¢ substitutable for x in ¢
(31)  Fpowm o(t,2) — (3x)e(x,2) ¢ substitutable for x in ¢
(V2)  Fpwm (V) (x = ¢) = (x = (Vx)p) x not free in x
(F2)  Fpwm (Yx) (@ = x) = (F)p — x) x not free in x

(gen) by (Vx)p

Predicate logic LV: an the extension of LV™ by:

(V3) kv (Vx) (e V x) = (VX)) V x x not free in x
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Theorems (for x not free in x)

The logic proves:
x < (Vx)x (Fx)x ¢ x
(Vx)(p = ) = (Vx)p — (Vx)1p)  (Vx)(Vy)p <> (V) (V)
(Vx)(p = ) = (F)e — F)Y)  (F)(Fy)e < (Fy)(F)e
(V) (x = ¢) < (x = (Vx)p) (Vx) (e = x) < ((3x)p — Xx)
()X = ) = (x = (Ix)p) () (e = x) = ((YxX)p — Xx)
(F)(p V) < (FEx)e Vv (Ex)y () (p & x) < (F)p & x )
If L is associative, then proves:

Frvm (36) (") < ((F)e)"

The logic  furthermore proves:
(Vx)e V x ¢ (Vx) (¢ V X) F)(eAx) < @E)eAx
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Syntactical properties of Fyy» and Fpy

Let + be either Fyym Or Fry

Theorem 13 (Congruence Property)

Let ¢, be sentences, x a formula, and x a formula resulting
from x by replacing some occurrences of ¢ by 1. Then

Fpse  povbEdop

pevEx X P 6 p e

Theorem 14 (Constants Theorem)

LetT U {p(x,7)} be a theory and ¢ a constant not occurring
there. Then X+ ¢(c,?) iff ¥ F ¢(x,72)
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Syntactical properties of iy

Theorem 15 (Proof by Cases Property)

For a P-theory T and P-sentences ¢, v, x:

T,pbLy X T,y Ly X

PCP
Tv ® \ 77/) }_LV X ( )
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Syntactical properties of iy

Theorem 15 (Proof by Cases Property)
For a P-theory T and P-sentences p, 1, x:

T,pbLv x T,y Ly X (PCP)
T,oVlry x

Proof.

We show by induction TV x - ¢ VV x whenever T F : trivial if

@ € T or ¢ is an axiom; assume that ¢ follows using rule T" i ¢;
using IH we have T v x - v Vv x for each ~ € T'; to finish this part
of the proof we show I' V x - ¢ V x: for propositional rules using
Theorem 8, for (gen) using (gen), (V3), and (mp).

Now: from T, ¢ Fry x we get TV x, ¢ V x Fry x and from
T,(PI_vawegetT\/’l,Z),QO\/wl—Lv YV X

Thus TV ¢, TV x,pVipExandsoT,pViyE x O
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Syntactical properties of Fy
Theorem 15 (Proof by Cases Property)

For a P-theory T and P-sentences ¢, v, x:

T,pbLy X T,y Ly X
T,pVhlry x

Theorem 16 (Semilinearity Property)

For a P-theory T and P-sentences v, 1, x:

T, =YLy x T,v = plkry x
Ty x

(PCP)

(SLP)

Easy using PCP and Fpry (¢ — ¢) V (¢ — @) O
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Soundness

It is straightforward to check that:
FLvm C L and FLv € e

However recall that in general: -y Z =1
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Failure of certain classical theorems (for x not free in y)

Recall:

Fry (Vx)e V x < (Vx) (e V ) Fry (3x) (e A x) < (Fx)e A x
Frym (VX)(x = @) < (x = (¥X)p)  Frvs (V) (¢ = x) < ((Bx)p — X)
Frys () (x = @)= (x = 3x)p)  Frws (3x) (@ = x) = () — X)

But we have:
@ the first row’s formulas are not provable in Lv™
(except for extensions of Lukasiewicz logic)

@ the converse directions of the last row’s formulas are not
provable in LV (except for extensions of tukasiewicz logic)
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Towards completeness — Lindenbaum—Tarski algebra

Let + be either Fpym Or Frv
Lindenbaum—Tarski algebra of T (LindT7):

@ domain Lr = {[¢]r | ¢ a P-sentence} where
[plr = {¢ | v aP-sentenceand T + ¢ +> ¢ }.

@ operations:

OLindTT([(-p]}Ta o lenlr) = [o(er, .y on)lr
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Towards completeness — Lindenbaum—Tarski algebra

Let + be either Fpym Or Frv
Lindenbaum—Tarski algebra of T (LindT7):

@ domain Lr = {[¢]r | ¢ a P-sentence} where
[plr = {¢ | v aP-sentenceand T + ¢ +> ¢ }.

@ operations:

OLindTT([(-p]}Ta o lenlr) = [o(er, .y on)lr

Proposition 17

@ LindT7 € L

@ [¢]r <vindar, [Ylr iff T+ — 9
@ LindT; € L' if, and only if, T is linear.
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Towards completeness — Canonical model 1

Canonical model (€M17) of a P-theory T (in I): P-structure
(LindT7, M) such that

@ domain of M: the set CT of closed P-terms
® fm(t,...,t,) =f(t1,...,t,) for each n-ary f € F, and

@ Pm(ty,... t,) = [P(t1,...,ty)]r for each n-ary P € P.

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Towards completeness — Canonical model 2

A P-theory T is V-Henkin if for each P-formula « such that
T ¥ (Vx)i(x) there is a constant ¢ in P such that 7 ¢ (¢)

Proposition 18

Let T be aV-Henkin P-theory. Then for each P-sentence o we

have ||¢||*™" = [¢]r and s0 €M7 = @ iff T Frm .

Let v be evaluation s.t. v(x) = * for some 7, € CT. We show by
induction that || (x1, ..., %) [|S7 = [p(#, ..., 5)]7.
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Towards completeness — Canonical model 2

A P-theory T is V-Henkin if for each P-formula « such that
T ¥ (Vx)i(x) there is a constant ¢ in P such that 7 ¢ (¢)

Proposition 18

Let T be aV-Henkin P-theory. Then for each P-sentence » we
have ||¢||*™" = [¢]r and s0 €M7 = @ iff T Frm .

Let v be evaluation s.t. v(x) = * for some 7, € CT. We show by

induction that || (x1, ..., %) [|S7 = [p(#, ..., 5)]7.
The base case and the induction step for connectives are just

the definition.
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Towards completeness — Canonical model 2

A P-theory T is V-Henkin if for each P-formula « such that
T ¥ (Vx)i(x) there is a constant ¢ in P such that 7 ¢ (¢)

Proposition 18

Let T be aV-Henkin P-theory. Then for each P-sentence » we
have ||¢||*™" = [¢]r and s0 €M7 = @ iff T Frm .

Let v be evaluation s.t. v(x) = * for some 7, € CT. We show by
induction that || (x1, ..., %) [|S7 = [p(#, ..., 5)]7.

Quantifiers: [(Vx)elr = [|(¥x) ] = infe, e, {l0()]r | £ € CT}
From T + (Vx)¢ — ¢(t) we get that [(Vx)y]7 is a lower bound.
We show it is the largest one: take any x s.t. [x]r Zvindr,
[(Vx)¢]r; thus T x — (Vx)p, and so T t (Vx)(x — ¢). So
thereisce CT st. T b/ (X — (,D(C)), i.e., [X]T gLindTT [@(I)]T
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Completeness of Lv™

Theorem 19 (Completeness theorem for Lv™)

LetL be a logic and T U {¢} a P-theory. Then

Thum o iff T L
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Completeness of Lv™

Theorem 19 (Completeness theorem for Lv™)

LetL be a logic and T U {¢} a P-theory. Then
Thum o iff TELe

All we need is to prove this theorem is to show that:

Proposition 20

LetT U {y} be a P-theory such thatT ¥ ym . Then there is a
predicate language P’ > P and a V-Henkin P’-theory
T" O T such that T' 1 y» .
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Completeness of Lv™

Theorem 19 (Completeness theorem for Lv™)
LetL be a logic and T U {¢} a P-theory. Then

Thum o iff T L

All we need is to prove this theorem is to show that:

Proposition 20

LetT U {y} be a P-theory such thatT ¥ ym . Then there is a
predicate language P’ O P and a V-Henkin P’-theory
T/ 2 T SUCh that T/ J’LLVm (28

P’ = P + countably many new object constants. Let 77 be T as
P’-theory. Take any P’-formula ¢ (x), such that 77" ¥ ym (Vx)(x).
Thus T’ #pym ¢(x) and so T’ ¥#pym 9(c) for some ¢ € P’ not
occurring in 7" U {¢)} (by Constants Theorem). O
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Completeness of LY

Theorem 21 (Completeness theorem for LV)

LetL be a logic and T U {¢} a P-theory. Then

Thiwe iff T
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Completeness of LY

Theorem 21 (Completeness theorem for LV)

LetL be a logic and T U {¢} a P-theory. Then

Thiwe iff T

All we need is to prove this theorem is to show that:

Proposition 22

LetT U {y} be a P-theory such thatT ¥,y ¢. Then there is a
predicate language P’ © P and a linear /-Henkin P’-theory
T' O T such that T' ¥y .
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The proof of Proposition 22, part 1

Let P’ be the expansion of P by countably many new constants.
We enumerate all P’-formulae with one free variable.

We construct a sequence of P’-formulas ; and increasing
chain of P’-theories T; s.t. T; ¥ ; for each j < i.

Take To = T and ¢y = ¢, which fulfils our conditions.

In the induction step we distinguish two possibilities and show
that the required conditions are met ...
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The proof of Proposition 22, part 2

(H1) B T; = ¢; V (Vx)xi+1(x): then we define ¢, = ¢; and
Tiv1 = T; U{(Vx)xi41(x)}

(H2) If T; t/ @i V (Vx)xit1(x), then we define T, = T; and
wir1 = i V xit+1(c)) for some ¢ not oceurring in T; U {; | j < i}.

Assume, for a contradiction, that 71, I ¢; for some j < i+ 1.
Then also Tiy1 F it

Thus in case (H1) we have T; U {(Vx)xi+1(x)} F ¢;. Because
trivially 7; U {¢;} - ¢; we obtain by Proof by Cases Property that
T; U{p: V (Vx)xit1(x)} F ;i and so T; - ¢;, a contradiction.
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The proof of Proposition 22, part 2

(H1) B T; = ¢; V (Vx)xi+1(x): then we define ¢, = ¢; and
Tiv1 = T; U{(Vx)xi41(x)}

(H2) If T; t/ @i V (Vx)xit1(x), then we define T, = T; and
wir1 = i V xit+1(c)) for some ¢ not oceurring in T; U {; | j < i}.

Assume, for a contradiction, that 71, I ¢; for some j < i+ 1.
Then also Tiy1 F it

Thus in case (H2) we have T; F ¢; V xi+1(c). Using Constants
Theorem we obtain 7; - ¢; V xi+1(x) and thus by (gen), (V3), and
(mp) we obtain T, - ¢; v (¥x)x,+1(x), a contradiction.
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The proof of Proposition 22, part 3

Let 7" be a maximal theory extending | 7; s.t. T' ¥ ; for each i
Such T’ exists due to Zorn’s lemma: let 7 be a chain of such
theories then clearly so is | J 7.

T’ is linear: assume that (v» — x) € T" and (x — ¢) € T'. Then
there are i,js.t. T',¢ — x - p;and T', x — ¢ - ¢; Thus also

T/, Y= Xk Pmax{i,j} and T/v X~k Pmax{i,j}

Thus by Semilinearity property also 7’ F ¢y gijy»
a contradiction

T"is V-Henkin: if T' ¥ (Vx)xi+1(x), then we must have used
case (H2); because T’ t/ ;11 we also have T I/ xi1+1(c)
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