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The goal of this first lecture is modest . . .
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Generalize completeness theorem for CFOL

Classical first-order logic CFOL: `CFOL its provability relation
|=CFOL the semantical consequence

Problem of completeness of CFOL: formulated by Hilbert and
Ackermann (1928) and solved by Gödel (1929):

Theorem 1 (Gödel’s completeness theorem)

For every set of first-order formulae T ∪ {ϕ}:

T `CFOL ϕ iff T |=CFOL ϕ

First we have to define ‘fuzzy’ analogs of `CFOL and |=CFOL . . .
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Some history

1947 Henkin: alternative proof of Gödel’s completeness theorem
1961 Mostowski: interpretation of existential (resp. universal)

quantifiers as suprema (resp. infima)
1963 Rasiowa, Sikorski: first-order intuitionistic logic
1963 Hay: infinitary standard Łukasiewicz first-order logic
1969 Horn: first-order Gödel–Dummett logic
1974 Rasiowa: first-order implicative logics
1990 Novák: first-order Pavelka logics
1992 Takeuti, Titani: first-order Gödel–Dummett logic with

additional connectives
1998 Hájek: first-order axiomatic extensions of HL
2005 Cintula, Hájek: first-order core fuzzy logics
2011 Cintula, Noguera: first-order semilinear logics
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Any lecture about first-order fuzzy logics has to start with . . .
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Propositional fuzzy logics

LFLe : propositional language (→,&,∧,∨, 0, 1,>,⊥)
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LFLe : propositional language (→,&,∧,∨, 0, 1,>,⊥)

FLe: Full Lambek logic with exchange
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Propositional fuzzy logics

LFLe : propositional language (→,&,∧,∨, 0, 1,>,⊥)

FLe: Full Lambek logic with exchange has axioms:

(id) ϕ→ ϕ (identity)
(pf) (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)) (prefixing)

(per) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) (permutation)
(&∧) [(ϕ ∧ 1)(ψ ∧ 1)]→ (ϕ ∧ ψ) (fusion conjunction)
(∧→) (ϕ ∧ ψ)→ ϕ (conjunction implication)
(∧→) (ϕ ∧ ψ)→ ψ (conjunction implication)
(→∧) [(ϕ→ ψ) ∧ (ϕ→ χ)]→ [ϕ→ (ψ ∧ χ)] (implication conjunction)
(→∨) ϕ→ (ϕ ∨ ψ) (implication disjunction)
(→∨) ψ → (ϕ ∨ ψ) (implication disjunction)
(∨→) [(ϕ→ χ) ∧ (ψ → χ)]→ [(ϕ ∨ ψ)→ χ] (disjunction implication)
(→&) ψ → (ϕ→ ϕ& ψ) (division fusion)
(&→) [ψ → (ϕ→ χ)]→ (ϕ& ψ → χ) (fusion implication)

(1) 1 (unit)
(1→) 1→ (ϕ→ ϕ) (unit implication)
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Propositional fuzzy logics

LFLe : propositional language (→,&,∧,∨, 0, 1,>,⊥)

FLe: Full Lambek logic with exchange has rules:

(mp) ϕ,ϕ→ ψ ` ψ (modus ponens)
(adju) ϕ ` ϕ ∧ 1 (adjunction unit)

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Propositional fuzzy logics

LFLe : propositional language (→,&,∧,∨, 0, 1,>,⊥)

FLe: Full Lambek logic with exchange

UL: Uninorm logic (also denoted as FL`e), extension of FLe by:

(pre) (ϕ→ ψ) ∨ (ψ → ϕ) (prelinearity)
(1-distr) (ϕ ∨ ψ) ∧ 1→ (ϕ ∧ 1) ∨ (ψ ∧ 1) (1-distributivity)

Let L be either FLe or UL: we write T `L ϕ if there is proof of ϕ
in logic L from theory T
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Algebraic semantics

Definition 2
A bounded pointed commutative residuated lattice, or an
FLe-algebra, is an algebra A = 〈A,&,→,∧,∨, 0, 1,⊥,>〉 s.t.:

1 〈A,∧,∨,⊥,>〉 is a bounded lattice
2 〈A,&, 1〉 is a commutative monoid
3 → is the residuum of &, i.e., for each x, y, z ∈ A holds:

x & y ≤ z iff x ≤ y→ z

A FLe-algebra A is a UL-algebra if for all x, y ∈ A:

(x→ y) ∨ (y→ x) ≥ 1 and (x ∨ y) ∧ 1 = (x ∧ 1) ∨ (y ∧ 1)

Note that
x ≤ y iff x ∧ y = x iff x→ y ≥ 1
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Completeness

Let L be either FLe or UL and L be class of all L-algebras and
L` the class of linearly ordered L-algebras

Let K ⊆ L, we write T |=K ϕ, if for each A ∈ K and each
A-evaluation e s.t. e(ψ) ≥ 1 for each ψ ∈ T we have e(ϕ) ≥ 1.

Theorem 3 (General completeness of FLe and UL)

T `L ϕ iff T |=L ϕ

Theorem 4 (Linear completeness of UL)

T `UL ϕ iff T |=UL` ϕ

Note that FL`e = UL` and Theorem 3 is not valid for FLe
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‘Basic’ semilinear logic SL`

Definition 5

An SL-algebra, is an algebra A = 〈A,&,→, ,∧,∨, 0, 1,⊥,>〉:
1 〈A,∧,∨,⊥,>〉 is a bounded lattice
2 〈A,&, 1〉 is a unital groupoid
3 → is the left residuum of & and is the right one, i.e., for

each x, y, z ∈ A holds:

x & y ≤ z iff y ≤ x→ z iff x ≤ y z

Definition 6

The logics SL and SL` are the logics of SL-algebras or linearly
ordered SL-algebras respectively, i.e., the logics for which:

T `SL ϕ iff T |=SL ϕ T `SL` ϕ iff T |=SL` ϕ
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Core semilinear logics – 1

A logic L expands the logic SL if for each set formulae T ∪ {ϕ}
in the language of SL we have:

T `SL ϕ implies T `L ϕ

For any such logic we define the class of (linearly ordered)
L-algebras (denoted as L or L` resp.) such that if define the
semantical consequence |=K as before we get:

T `L ϕ iff T |=L ϕ

Definition 7
A logic L is core semilinear logic whenever:

L expands the logic SL

L is complete w.r.t. linearly ordered L-algebras, i.e.,

T `L ϕ iff T |=L` ϕ
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Core semilinear logics – 2

Theorem 8 (Central characterization theorem)

Let L be a logic expanding SL. TFAE:
L is core semilinear logic
L` = LRFSI

whenever T 6`L ϕ then there is linear T ′ ⊇ T s.t. T ′ 6`L ϕ
T is linear if for each ϕ,ψ: T ` ϕ→ ψ or T ` ψ → ϕ

L enjoys the Semilinearity Property

T, ϕ→ ψ `L χ and T, ψ → ϕ `L χ implies T `L χ (SLP)

L proves (pre) and enjoys the Proof by Cases Property

T, ϕ `L χ and T, ψ `L χ implies T, ϕ ∨ ψ `L χ (PCP)

L proves (pre) and T `L ϕ implies T ∨ χ `L ϕ ∨ χ
where T ∨ χ = {ψ ∨ χ | ψ ∈ T}
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Let us fix a semilinear logic L in a language L . . .
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Predicate languages, formulas, etc.

Predicate language: P = 〈P,F, ar〉

Object variables: denumerable set OV

P-terms, atomic P-formulae, 〈L,P〉-formulae: as in CFOL

free/bounded variables, substitutable terms, sentences:
as in CFOL

P-theory: set of P-formulae

Petr Cintula Mathematical fuzzy logic: first-order and beyond



First-order semantics – 1

P-structure M: a pair 〈A,M〉 where
A∈L
M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 (M 6= ∅)
PM : Mn → A, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define v[x→m] as

v[x→m](x) = m and v[x→m](y) = v(y) for y 6= x
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First-order semantics – 2

Definition 9 (Tarski style truth definition)

‖x‖Mv = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖Mv = fS(‖t1‖Mv , . . . , ‖tn‖
M
v ) for f ∈ F

‖P(t1, . . . , tn)‖Mv = PS(‖t1‖Mv , . . . , ‖tn‖
M
v ) for P ∈ P

‖◦(ϕ1, . . . , ϕn)‖Mv = ◦A(‖ϕ1‖Mv , . . . , ‖ϕn‖Mv ) for ◦ ∈ L
‖(∀x)ϕ‖Mv = inf≤A{‖ϕ‖

M
v[x→m] | m ∈ M}

‖(∃x)ϕ‖Mv = sup≤A
{‖ϕ‖Mv[x→m] | m ∈ M}

If the infimum/supremum does not exist, the value is undefined.
A P-structure M is safe if ‖ϕ‖Mv is defined for each ϕ and v.
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First-order semantics – 3

Definition 10 (Model)

A safe structure M = 〈A,M〉 is a P-model of T, M |= T in
symbols, if ‖ϕ‖Mv ≥ 1A for each ϕ ∈ T and each M-evaluation v.

Definition 11 (Semantical consequence)
A P-formula ϕ is a semantical consequence of a P-theory T
w.r.t. the class K of L-algebras, T |=K ϕ in symbols, if for each
A ∈ K and each P-model M = 〈A,M〉 of T we have M |= ϕ

Proposition 12 (Assume that x is not free in ψ . . . )

ϕ |=L (∀x)ϕ thus ϕ |=K (∀x)ϕ

ϕ ∨ ψ |=L` ((∀x)ϕ) ∨ ψ BUT ϕ ∨ ψ 6|=G ((∀x)ϕ) ∨ ψ

Thus |=L ( |=L` even though in propositional logic: |=L = |=L`
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Axiomatization: two first-order logics

Minimal predicate logic L∀m:

(P) first-order substitutions of axioms and rules of L

(∀1) `L∀m (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∃1) `L∀m ϕ(t,~z)→ (∃x)ϕ(x,~z) t substitutable for x in ϕ

(∀2) `L∀m (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ) x not free in χ

(∃2) `L∀m (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ) x not free in χ

(gen) ϕ `L∀m (∀x)ϕ

Predicate logic L∀: an the extension of L∀m by:

(∀3) `L∀ (∀x)(ϕ ∨ χ)→ ((∀x)ϕ) ∨ χ x not free in χ
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Theorems (for x not free in χ)

The logic L∀m proves:

χ↔ (∀x)χ (∃x)χ↔ χ

(∀x)(ϕ→ ψ)→ ((∀x)ϕ→ (∀x)ψ) (∀x)(∀y)ϕ↔ (∀y)(∀x)ϕ

(∀x)(ϕ→ ψ)→ ((∃x)ϕ→ (∃x)ψ) (∃x)(∃y)ϕ↔ (∃y)(∃x)ϕ

(∀x)(χ→ ϕ)↔ (χ→ (∀x)ϕ) (∀x)(ϕ→ χ)↔ ((∃x)ϕ→ χ)

(∃x)(χ→ ϕ)→ (χ→ (∃x)ϕ) (∃x)(ϕ→ χ)→ ((∀x)ϕ→ χ)

(∃x)(ϕ ∨ ψ)↔ (∃x)ϕ ∨ (∃x)ψ (∃x)(ϕ& χ)↔ (∃x)ϕ& χ

If L is associative, then L∀m proves:

`L∀m (∃x)(ϕn)↔ ((∃x)ϕ)n

The logic L∀ furthermore proves:

(∀x)ϕ ∨ χ↔ (∀x)(ϕ ∨ χ) (∃x)(ϕ ∧ χ)↔ (∃x)ϕ ∧ χ
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Syntactical properties of `L∀m and `L∀

Let ` be either `L∀m or `L∀

Theorem 13 (Congruence Property)

Let ϕ,ψ be sentences, χ a formula, and χ̂ a formula resulting
from χ by replacing some occurrences of ϕ by ψ. Then

` ϕ↔ ϕ ϕ↔ ψ ` ψ ↔ ϕ

ϕ↔ ψ ` χ↔ χ̂ ϕ↔ δ, δ ↔ ψ ` ϕ↔ ψ

Theorem 14 (Constants Theorem)

Let T ∪ {ϕ(x,~z)} be a theory and c a constant not occurring
there. Then Σ ` ϕ(c,~z) iff Σ ` ϕ(x,~z)

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Syntactical properties of `L∀

Theorem 15 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)
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Syntactical properties of `L∀

Theorem 15 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)

Proof.
We show by induction T ∨ χ ` ϕ ∨ χ whenever T ` ϕ: trivial if
ϕ ∈ T or ϕ is an axiom; assume that ϕ follows using rule Γ ` ϕ;
using IH we have T ∨ χ ` γ ∨ χ for each γ ∈ Γ; to finish this part
of the proof we show Γ∨ χ ` ϕ∨ χ: for propositional rules using
Theorem 8, for (gen) using (gen), (∀3), and (mp).
Now: from T, ψ `L∀ χ we get T ∨ χ, ψ ∨ χ `L∀ χ and from
T, ϕ `L∀ χ we get T ∨ ψ,ϕ ∨ ψ `L∀ ψ ∨ χ
Thus T ∨ ψ,T ∨ χ, ϕ ∨ ψ ` χ and so T, ϕ ∨ ψ ` χ
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Syntactical properties of `L∀

Theorem 15 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)

Theorem 16 (Semilinearity Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ→ ψ `L∀ χ T, ψ → ϕ `L∀ χ

T `L∀ χ
(SLP)

Proof.
Easy using PCP and `L∀ (ϕ→ ψ) ∨ (ψ → ϕ)
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Soundness

It is straightforward to check that:

`L∀m ⊆ |=L and `L∀ ⊆ |=L`

However recall that in general: `L∀ 6⊆ |=L

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Failure of certain classical theorems (for x not free in χ)

Recall:

`L∀ (∀x)ϕ ∨ χ↔ (∀x)(ϕ ∨ χ) `L∀ (∃x)(ϕ ∧ χ)↔ (∃x)ϕ ∧ χ

`L∀m (∀x)(χ→ ϕ)↔ (χ→ (∀x)ϕ) `L∀m (∀x)(ϕ→ χ)↔ ((∃x)ϕ→ χ)

`L∀m (∃x)(χ→ ϕ)→(χ→ (∃x)ϕ) `L∀m (∃x)(ϕ→ χ)→((∀x)ϕ→ χ)

But we have:
the first row’s formulas are not provable in L∀m

(except for extensions of Łukasiewicz logic)

the converse directions of the last row’s formulas are not
provable in L∀ (except for extensions of Łukasiewicz logic)
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Towards completeness – Lindenbaum–Tarski algebra

Let ` be either `L∀m or `L∀

Lindenbaum–Tarski algebra of T (LindTT ):

domain LT = {[ϕ]T | ϕ a P-sentence} where

[ϕ]T = {ψ | ψ a P-sentence and T ` ϕ↔ ψ}.

operations:

◦LindTT ([ϕ1]T , . . . , [ϕn]T) = [◦(ϕ1, . . . , ϕn)]T

Proposition 17
LindTT ∈ L

[ϕ]T ≤LindTT [ψ]T iff T ` ϕ→ ψ

LindTT ∈ L` if, and only if, T is linear.
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Towards completeness – Canonical model 1

Canonical model (CMT ) of a P-theory T (in `): P-structure
〈LindTT ,M〉 such that

domain of M: the set CT of closed P-terms

fM(t1, . . . , tn) = f (t1, . . . , tn) for each n-ary f ∈ F, and

PM(t1, . . . , tn) = [P(t1, . . . , tn)]T for each n-ary P ∈ P.
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Towards completeness – Canonical model 2

A P-theory T is ∀-Henkin if for each P-formula ψ such that
T 0 (∀x)ψ(x) there is a constant c in P such that T 0 ψ(c)

Proposition 18
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we
have ‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T `L∀m ϕ.

Proof.
Let v be evaluation s.t. v(x) = tx for some tx ∈ CT. We show by
induction that ‖ϕ(x1, . . . , xn)‖CMT

v = [ϕ(tx
1, . . . , t

x
n)]T .
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Towards completeness – Canonical model 2

A P-theory T is ∀-Henkin if for each P-formula ψ such that
T 0 (∀x)ψ(x) there is a constant c in P such that T 0 ψ(c)

Proposition 18
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we
have ‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T `L∀m ϕ.

Proof.
Let v be evaluation s.t. v(x) = tx for some tx ∈ CT. We show by
induction that ‖ϕ(x1, . . . , xn)‖CMT

v = [ϕ(tx
1, . . . , t

x
n)]T .

The base case and the induction step for connectives are just
the definition.
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Towards completeness – Canonical model 2

A P-theory T is ∀-Henkin if for each P-formula ψ such that
T 0 (∀x)ψ(x) there is a constant c in P such that T 0 ψ(c)

Proposition 18
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we
have ‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T `L∀m ϕ.

Proof.
Let v be evaluation s.t. v(x) = tx for some tx ∈ CT. We show by
induction that ‖ϕ(x1, . . . , xn)‖CMT

v = [ϕ(tx
1, . . . , t

x
n)]T .

Quantifiers: [(∀x)ϕ]T = ‖(∀x)ϕ‖CMT = inf≤LindTT
{[ϕ(t)]T | t ∈ CT}

From T ` (∀x)ϕ→ ϕ(t) we get that [(∀x)ϕ]T is a lower bound.
We show it is the largest one: take any χ s.t. [χ]T 6≤LindTT

[(∀x)ϕ]T ; thus T 6` x → (∀x)ϕ, and so T 6` (∀x)(χ → ϕ). So
there is c ∈ CT s.t. T 6` (χ→ ϕ(c)), i.e., [χ]T 6≤LindTT [ϕ(t)]T .

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Completeness of L∀m

Theorem 19 (Completeness theorem for L∀m)

Let L be a logic and T ∪ {ϕ} a P-theory. Then

T `L∀m ϕ iff T |=L ϕ

All we need is to prove this theorem is to show that:

Proposition 20

Let T ∪ {ϕ} be a P-theory such that T 0L∀m ϕ. Then there is a
predicate language P ′ ⊇ P and a ∀-Henkin P ′-theory
T ′ ⊇ T such that T ′ 0L∀m ϕ.

Proof.
P ′ = P + countably many new object constants. Let T ′ be T as
P ′-theory. Take any P ′-formula ψ(x), such that T ′ 0L∀m (∀x)ψ(x).
Thus T ′ 0L∀m ψ(x) and so T ′ 0L∀m ψ(c) for some c ∈ P ′ not
occurring in T ′ ∪ {ψ} (by Constants Theorem).

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Completeness of L∀m

Theorem 19 (Completeness theorem for L∀m)

Let L be a logic and T ∪ {ϕ} a P-theory. Then

T `L∀m ϕ iff T |=L ϕ

All we need is to prove this theorem is to show that:

Proposition 20

Let T ∪ {ϕ} be a P-theory such that T 0L∀m ϕ. Then there is a
predicate language P ′ ⊇ P and a ∀-Henkin P ′-theory
T ′ ⊇ T such that T ′ 0L∀m ϕ.

Proof.
P ′ = P + countably many new object constants. Let T ′ be T as
P ′-theory. Take any P ′-formula ψ(x), such that T ′ 0L∀m (∀x)ψ(x).
Thus T ′ 0L∀m ψ(x) and so T ′ 0L∀m ψ(c) for some c ∈ P ′ not
occurring in T ′ ∪ {ψ} (by Constants Theorem).
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Completeness of L∀m

Theorem 19 (Completeness theorem for L∀m)

Let L be a logic and T ∪ {ϕ} a P-theory. Then

T `L∀m ϕ iff T |=L ϕ

All we need is to prove this theorem is to show that:

Proposition 20

Let T ∪ {ϕ} be a P-theory such that T 0L∀m ϕ. Then there is a
predicate language P ′ ⊇ P and a ∀-Henkin P ′-theory
T ′ ⊇ T such that T ′ 0L∀m ϕ.

Proof.
P ′ = P + countably many new object constants. Let T ′ be T as
P ′-theory. Take any P ′-formula ψ(x), such that T ′ 0L∀m (∀x)ψ(x).
Thus T ′ 0L∀m ψ(x) and so T ′ 0L∀m ψ(c) for some c ∈ P ′ not
occurring in T ′ ∪ {ψ} (by Constants Theorem).
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Completeness of L∀

Theorem 21 (Completeness theorem for L∀)
Let L be a logic and T ∪ {ϕ} a P-theory. Then

T `L∀ ϕ iff T |=L` ϕ

All we need is to prove this theorem is to show that:

Proposition 22

Let T ∪ {ϕ} be a P-theory such that T 0L∀ ϕ. Then there is a
predicate language P ′ ⊇ P and a linear ∀-Henkin P ′-theory
T ′ ⊇ T such that T ′ 0L∀ ϕ.
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Completeness of L∀

Theorem 21 (Completeness theorem for L∀)
Let L be a logic and T ∪ {ϕ} a P-theory. Then

T `L∀ ϕ iff T |=L` ϕ

All we need is to prove this theorem is to show that:

Proposition 22

Let T ∪ {ϕ} be a P-theory such that T 0L∀ ϕ. Then there is a
predicate language P ′ ⊇ P and a linear ∀-Henkin P ′-theory
T ′ ⊇ T such that T ′ 0L∀ ϕ.
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The proof of Proposition 22, part 1

Let P ′ be the expansion of P by countably many new constants.

We enumerate all P ′-formulae with one free variable.

We construct a sequence of P ′-formulas ϕi and increasing
chain of P ′-theories Ti s.t. Ti 0 ϕj for each j ≤ i.

Take T0 = T and ϕ0 = ϕ, which fulfils our conditions.

In the induction step we distinguish two possibilities and show
that the required conditions are met . . .
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The proof of Proposition 22, part 2

(H1) If Ti ` ϕi ∨ (∀x)χi+1(x): then we define ϕi+1 = ϕi and
Ti+1 = Ti ∪ {(∀x)χi+1(x)}

(H2) If Ti 6` ϕi ∨ (∀x)χi+1(x), then we define Ti+1 = Ti and
ϕi+1 = ϕi ∨ χi+1(c)) for some c not occurring in Ti ∪ {ϕj | j ≤ i}.

Assume, for a contradiction, that Ti+1 ` ϕj for some j ≤ i + 1.
Then also Ti+1 ` ϕi+1

Thus in case (H1) we have Ti ∪ {(∀x)χi+1(x)} ` ϕi. Because
trivially Ti ∪ {ϕi} ` ϕi we obtain by Proof by Cases Property that
Ti ∪ {ϕi ∨ (∀x)χi+1(x)} ` ϕi and so Ti ` ϕi, a contradiction.
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The proof of Proposition 22, part 2

(H1) If Ti ` ϕi ∨ (∀x)χi+1(x): then we define ϕi+1 = ϕi and
Ti+1 = Ti ∪ {(∀x)χi+1(x)}

(H2) If Ti 6` ϕi ∨ (∀x)χi+1(x), then we define Ti+1 = Ti and
ϕi+1 = ϕi ∨ χi+1(c)) for some c not occurring in Ti ∪ {ϕj | j ≤ i}.

Assume, for a contradiction, that Ti+1 ` ϕj for some j ≤ i + 1.
Then also Ti+1 ` ϕi+1

Thus in case (H2) we have Ti ` ϕi ∨ χi+1(c). Using Constants
Theorem we obtain Ti ` ϕi∨χi+1(x) and thus by (gen), (∀3), and
(mp) we obtain Tµ ` ϕi ∨ (∀x)χi+1(x), a contradiction.
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The proof of Proposition 22, part 3

Let T ′ be a maximal theory extending
⋃

Ti s.t. T ′ 0 ϕi for each i
Such T ′ exists due to Zorn’s lemma: let T be a chain of such
theories then clearly so is

⋃
T .

T ′ is linear: assume that (ψ → χ) 6∈ T ′ and (χ→ ψ) 6∈ T ′. Then
there are i, j s.t. T ′, ψ → χ ` ϕi and T ′, χ→ ψ ` ϕj Thus also

T ′, ψ → χ ` ϕmax{i,j} and T ′, χ→ ψ ` ϕmax{i,j}

Thus by Semilinearity property also T ′ ` ϕmax{i,j},
a contradiction

T ′ is ∀-Henkin: if T ′ 0 (∀x)χi+1(x), then we must have used
case (H2); because T ′ 6` ϕi+1 we also have T ′ 6` χi+1(c)
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