Mathematical fuzzy logic: first-order and beyond Part II

Petr Cintula

Institute of Computer Science Academy of Sciences of the Czech Republic

Petr Cintula Mathematical fuzzy logic: first-order and beyond

→ E → < E →</p>

< 🗇 🕨

Definition 1 (Conservative expansion)

Let $\mathcal{P}_1 \subseteq \mathcal{P}_2$. \mathcal{P}_2 -theory T_2 is a conservative extension of \mathcal{P}_1 -theory T_1 iff for each \mathcal{P}_1 -formula, $T_2 \vdash \varphi$ iff $T_1 \vdash \varphi$.

Definition 2

Let $\mathfrak{M} = \langle A, \mathbf{M} \rangle$ be a \mathcal{P} -model. Then $Alg(\mathfrak{M})$ is the subalgebra of A with the domain

 $\{\|\varphi\|_{v}^{\mathfrak{M}} \mid \varphi \text{ a } \mathcal{P}\text{-formula and } v \text{ an } \mathfrak{M}\text{-evaluation}\}.$

Definition 3 (Exhaustive model)

A model $\mathfrak{M} = \langle \mathbf{A}, \mathbf{M} \rangle$ is *exhaustive* if $\mathbf{A} = Alg(\mathfrak{M})$.

We write:

$$\|\varphi(a_1,\ldots,a_n)\|^{\mathfrak{M}}$$
 instead of $\|\varphi(x_1,\ldots,x_n)\|_{\mathrm{v}}^{\mathfrak{M}}$ for $\mathrm{v}(x_i)=a_i$.

・ロト ・ 理 ト ・ ヨ ト ・

Skolemization

Petr Cintula Mathematical fuzzy logic: first-order and beyond

▲ 臣 ▶ ▲ 臣 ▶ …

< 🗇 🕨

Henkin theories, preSkolem logics, and Skolemization

A theory *T* is Henkin if it is \forall -Henkin and for each φ such that $T \vdash (\exists x)\varphi(x)$ there is a constant such that $T \vdash \varphi(c)$.

(過) (ヨ) (ヨ)

Henkin theories, preSkolem logics, and Skolemization

A theory *T* is Henkin if it is \forall -Henkin and for each φ such that $T \vdash (\exists x)\varphi(x)$ there is a constant such that $T \vdash \varphi(c)$.

L \forall is preSkolem if $T \cup \{\varphi(c)\}$ is a conservative expansion of $T \cup \{(\exists x)\varphi(x)\}$ for each \mathcal{P} -theory $T \cup \{\varphi\}$, and a constant $c \notin \mathcal{P}$

Theorem 4

- L∀ is preSkolem.
- **2** For each \mathcal{P} -theory $T \cup \{\varphi\}$ such that $T \nvDash \varphi$ there is $\mathcal{P}' \supseteq \mathcal{P}$ and a linear Henkin \mathcal{P}' -theory $T' \supseteq T$ such that $T' \nvDash \varphi$.

^S *T* ∪ {($\forall \vec{y}$) $\varphi(f_{\varphi}(\vec{y}), \vec{y}$)} *is a conservative expansion of T* ∪ {($\forall \vec{y}$)($\exists x$) $\varphi(x, \vec{y})$ } *for each* \mathcal{P} *-theory T* ∪ { $\varphi(x, \vec{y})$ *, and a functional symbol* $f_{\varphi} \notin \mathcal{P}$ *of the proper arity.*

The notion of preSkolem logic and Henkin theory could be relativized to a chosen class of formulae while keeping the theorem provable

프 🕨 🗉 프

(A bit of) model theory

Petr Cintula Mathematical fuzzy logic: first-order and beyond

★ E → ★ E →

< 合

э

Definition 5

An *elementary embedding* of a \mathcal{P}_1 -model $\langle B_1, \mathbf{M}_1 \rangle$ into a \mathcal{P}_2 -model $\langle B_2, \mathbf{M}_2 \rangle$ is a pair (f, g) such that:

- f is an embedding of B_1 into B_2 .
- \bigcirc g is a one-one mapping of M_1 into M_2
- $f(\|\varphi(a_1,\ldots,a_n)\|^{\langle B_1,\mathbf{M}_1\rangle}) = \|\varphi(g(a_1),\ldots,g(a_n))\|^{\langle B_2,\mathbf{M}_2\rangle}$ holds for each \mathcal{P}_1 -formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots,a_n \in \mathfrak{M}$.

We use the denotation: $\langle \boldsymbol{B}_1, \mathbf{M}_1 \rangle \stackrel{(f,g)}{\hookrightarrow} \langle \boldsymbol{B}_2, \mathbf{M}_2 \rangle$

If $\langle B_1, M_1 \rangle$ is *exhaustive* than in the condition 1 it is sufficient to assume that *f* is a one-one mapping

ヘロン 人間 とくほ とくほ とう

Lemma 6

Let $L\forall$ is preSkolem, T_2 be a conservative extension of T_1 and \mathfrak{M} an exhaustive model of T_1 . Then there exists a linear Henkin theory T extending T_2 such that \mathfrak{M} can be elementarily embedded into $\mathbf{CM}(T)$.

Theorem 7

Let $L\forall$ is preSkolem. Then the following claims are equivalent:

- \mathcal{P}_2 -theory T_2 is a conservative extension of \mathcal{P}_1 -theory T_1
- each exhaustive model of T_1 can be elementarily embedded into a model of T_2 .

The condition of exhaustiveness cannot be omitted!

ヘロン 人間 とくほ とくほ とう

Witnessed semantics

Petr Cintula Mathematical fuzzy logic: first-order and beyond

코 에 제 코 어

3

In CFOL: predicate logic with two variables has finite model property. Fuzzy logic: not even for one variable (monadic logic).

Example in $(G\forall)$ over standard G-algebra:

$$\varphi = \neg(\forall x) P(x) \& \neg(\exists x) \neg P(x)$$

Evidently φ has no finite model. But consider \mathfrak{M} with domain \mathbb{N} , where $P^{\mathfrak{M}}(n) = \frac{1}{n+1}$. Then clearly for each $i \in \mathbb{N}$: ||P(i)|| > 0 and $\inf ||P(i)|| = 0$, i.e., $\mathfrak{M} \models \varphi$

The infimum is not the minimum, is not *witnessed*.

Definition 8

A \mathcal{P} -model \mathfrak{M} is *witnessed* if for each \mathcal{P} -formula $\varphi(x, \vec{y})$ and for each $\vec{a} \in M$ there are $b_s, b_i \in M$ st.

 $\|(\forall x)\varphi(x,\vec{a})\|^{\mathfrak{M}} = \|\varphi(b_i,\vec{a})\|^{\mathfrak{M}} \qquad \|(\exists x)\varphi(x,\vec{a})\|^{\mathfrak{M}} = \|\varphi(b_s,\vec{a})\|^{\mathfrak{M}}.$

ヘロン ヘアン ヘビン ヘビン

э

Witnessing axioms and witnessed logic

Consider the axiom schemas (Baaz)

$$\begin{array}{ll} (C\exists) & (\exists y)((\exists x)\varphi(x) \to \varphi(y)) \\ (C\forall) & (\exists y)(\varphi(y) \to (\forall x)\varphi(x)) \end{array} \end{array}$$

Note that both $(C\exists)$ and $(C\forall)$ are provable in $\pounds\forall$; only $(C\exists)$ is provable in $\Pi\forall$, and none is provable in $G\forall$

Definition 9

The *witnessed* predicate logic $L \forall^w$ extends $L \forall$ by($C \exists$) and ($C \forall$)

Theorem 10

For each formula φ there is a formula φ' in a prenex form s.t.

 $\vdash_{\mathsf{L}\forall^{\mathsf{w}}}\varphi\leftrightarrow\varphi'$

ヘロト ヘ戸ト ヘヨト ヘヨト

Not each $L \forall^{w}$ -model of *T* is witnessed. But we can prove:

Lemma 11

If $L\forall$ is preSkolem, *T* a theory, and \mathfrak{M} an exhaustive model of *T*. Then \mathfrak{M} is a $L\forall^w$ -model of *T* iff it can be elementarily embedded into a witnessed model of *T*.

Theorem 12 (Completeness of witnessed logics)

If $L\forall$ is preSkolem, T a theory and φ a formula, TFAE:

- $T \vdash_{\mathsf{L}\forall^{\mathsf{w}}} \varphi$.
- $\mathfrak{M} \models \varphi$ for each witnessed linear model \mathfrak{M} of *T*.

く 同 と く ヨ と く ヨ と

How do we show that a logic is preSkolem?

Petr Cintula Mathematical fuzzy logic: first-order and beyond

(문)(문)

A ■

э

DT: a set of propositional formulae of a single variable *

Definition 13

L enjoys the *almost implicational deduction theorem* with a set of *deductive terms* DT if for each fle $T \cup \{\varphi\}$:

$$T, \varphi \vdash_{\mathsf{L}} \psi \qquad \text{iff} \qquad T \vdash_{\mathsf{L}} \delta(\varphi) \to \psi \quad \text{ for some } \delta \in \mathsf{DT}.$$

Theorem 14 (Deduction theorem of $L\forall$)

If L enjoys the almost implicational deduction theorem w.r.t. DT, then for each theory T, formula ψ and sentence φ :

 $T, \varphi \vdash_{\mathsf{L} \forall} \psi \qquad \textit{iff} \qquad T \vdash_{\mathsf{L} \forall} \delta(\varphi) \rightarrow \psi \quad \textit{ for some } \delta \in \mathsf{DT}.$

ヘロト ヘアト ヘビト ヘビト

preSkolem logics - characterization

Theorem 15

Let L enjoy the almost implicational deduction theorem w.r.t. DT. Then the following are equivalent:

- L∀ is preSkolem
- For each \mathcal{P} and each $\delta \in DT$ there is $\delta_0 \in DT$ such that

$$\vdash_{\mathsf{L}\forall} \delta_0((\exists x)\varphi(x)) \to (\exists x)\delta(\varphi(x))$$

Proof.

Recall: preSkolem means that $T \cup \{\varphi(c)\}$ is a conservative extension of $T \cup \{(\exists x)\varphi(x)\}$. From $\vdash \delta(\varphi(c)) \rightarrow (\exists x)\delta(\varphi(x))$ we get $\varphi(c) \vdash (\exists x)\delta(\varphi(x))$ using DT and so by conservativity: $(\exists x)\varphi(x) \vdash (\exists x)\delta(\varphi(x))$. DT again completes the proof.

preSkolem logics - characterization

Theorem 15

Let L enjoy the almost implicational deduction theorem w.r.t. DT. Then the following are equivalent:

- L∀ is preSkolem
- For each \mathcal{P} and each $\delta \in DT$ there is $\delta_0 \in DT$ such that

$$\vdash_{\mathsf{L}\forall} \delta_0((\exists x)\varphi(x)) \to (\exists x)\delta(\varphi(x))$$

Proof.

Recall: preSkolem means that $T \cup \{\varphi(c)\}$ is a conservative extension of $T \cup \{(\exists x)\varphi(x)\}$.

Assume $T \cup \{\varphi(c)\} \vdash \psi$. Thus by DT: $T \vdash \delta(\varphi(c)) \rightarrow \psi$ for some is $\delta \in$ DT. By Constants Theorem also: $T \vdash \delta(\varphi(x)) \rightarrow \psi$. By (gen), ($\exists 2$), and (mp) we have: $T \vdash (\exists x)\delta(\varphi(x)) \rightarrow \psi$. The assumption and DT complete the proof. All axiomatic extensions of UL have the almost implicational deduction theorem for $DT = \{(\star \land \overline{1})^n \mid n \in \mathbb{N}\}$

If L is axiomatic extension of UL, then L \forall is preSkolem because $\vdash_{\text{UL}\forall} (((\exists x)\varphi(x)) \land \overline{1})^n \to (\exists x)((\varphi(x) \land \overline{1})^n)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

All axiomatic extensions of UL have the almost implicational deduction theorem for $DT = \{(\star \land \overline{1})^n \mid n \in \mathbb{N}\}$

If L is axiomatic extension of UL, then L \forall is preSkolem because $\vdash_{\text{UL}\forall} (((\exists x)\varphi(x)) \land \overline{1})^n \to (\exists x)((\varphi(x) \land \overline{1})^n)$

All axiomatic extensions of MTL_{\triangle} have the almost implicational deduction theorem for $DT = \{ \triangle(\star) \}$

If L is axiomatic extension of MTL_{\triangle} , then L \forall is not preSkolem because $\nvdash_{MTL_{\triangle}\forall} \triangle (\exists x)\varphi(x) \rightarrow (\exists x) \triangle \varphi(x)$

But note that $\vdash_{\mathrm{MTL}_{\bigtriangleup}\forall} \triangle(\exists x) \triangle \varphi(x) \rightarrow (\exists x) \triangle \triangle \varphi(x)$

ヘロン 人間 とくほ とくほ とう

First-order fuzzy logics with identity

Petr Cintula Mathematical fuzzy logic: first-order and beyond

ヨト イヨト

э

First-order fuzzy logics with identity

Axioms of $L \forall =:$ those of $L \forall +$

 x = x (reflexivity—all things are identical to themselves)
 x = y → (φ(x) → φ(y)) (Leibniz identity law—indiscernibility of identicals)

In sufficiently strong logics (eg, with \triangle), = comes out crisp: $\vdash x = y \lor \neg(x = y)$

In weaker logics we can add it as an additional axiom

Models can then be factorized so that $=_{\boldsymbol{M}}$ is interpreted as the identity of individuals

The logic where fuzzy identity is the only predicate (not necessarily satisfying the second condition) are studied in: Bělohlávek, Vychodil: Fuzzy Equational Logic. Springer, 2005.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Completeness w.r.t. special classes of algebras

Petr Cintula Mathematical fuzzy logic: first-order and beyond

★ E > < E >

Definition 16

 $L\forall_{(=)}$ has the SKC if for each countable \mathcal{P} , theory *T*, and formula φ the following are equivalent:

- $T \vdash_{\mathsf{L}\forall_{(=)}} \varphi$.
- $\langle A, \mathbf{M} \rangle \models \varphi$ for each $A \in \mathbb{K}$ and each *countable* model $\langle A, \mathbf{M} \rangle$ of *T*.

 $L\forall_{(=)}$ has the KC if the above condition holds for the empty theory.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 17

Let L be a core fuzzy logic. The following are equivalent: ● L∀₌ has the SKC.

Por every countable model ⟨A, M⟩ there is an L-chain B ∈ K and a countable model ⟨B, M'⟩ s.t.

 $\langle \boldsymbol{A}, \mathbf{M} \rangle \stackrel{(f,g)}{\hookrightarrow} \langle \boldsymbol{B}, \mathbf{M}' \rangle.$

・ 同 ト ・ 臣 ト ・ 臣 ト …

Theorem 17

Let L be a core fuzzy logic. The following are equivalent: ● L∀₌ has the SKC.

② For every countable model ⟨A, M⟩ there is an L-chain B ∈ K and a countable model ⟨B, M'⟩ s.t.

$$\langle \boldsymbol{A}, \mathbf{M} \rangle \stackrel{(f,g)}{\hookrightarrow} \langle \boldsymbol{B}, \mathbf{M}' \rangle.$$

The following condition is clearly sufficient for $S{\mathbb{K}}C,$ is it necessary?

Solution Every countable L-chain A can be σ -embedded into some L-chain $B \in \mathbb{K}$.

We can find an example of a logic K and semantics \mathbb{K} showing that the condition 3 is not necessary.

General result

Theorem 18

Let L be a core fuzzy logic. The following are equivalent:

- Solution Every countable L-chain A can be σ -embedded into some L-chain $B \in \mathbb{K}$.
- Solution For every countable model ⟨A, M⟩ there is an L-chain B ∈ K and a countable model ⟨B, M'⟩ s.t.

 $\langle \pmb{A}, \pmb{M} \rangle \stackrel{(f,g)}{\hookrightarrow} \langle \pmb{B}, \pmb{M}'
angle$ and f is an isomorphism

The following condition is clearly sufficient for $S\mathbb{K}C,$ is it necessary?

Solution Every countable L-chain A can be σ -embedded into some L-chain $B \in \mathbb{K}$.

We can find an example of a logic K and semantics \mathbb{K} showing that the condition 3 is not necessary.

Theorem 19

The following are equivalent:

- (i) L enjoys the $S\mathcal{F}C$,
- (i) $L\forall$ enjoys the SFC,
- (iii) all L-chains are finite,
- (iv) there is a natural number n such that the length of each L-chain is less or equal than n, and

(v) there is a natural number *n* such that $\vdash_{L} \bigvee_{i < n} (x_i \to x_{i+1})$.

Theorem 20

If $L\forall$ enjoys the $\mathcal{F}C$, then $L\forall = L\forall^w$.

イロト イポト イヨト イヨト

Logic	RC	SRC	(S)QC	(S)FC
$SL_{S}^{\ell} \forall$, for each $S \subseteq \{e, c, i, o\}$	Yes	Yes	Yes	No
$\mathrm{SL}^\ell_\mathrm{a} orall$	No	No	No	No
$\mathrm{SL}^\ell_\mathrm{aw} orall$	Yes	Yes	Yes	No
$MTL\forall, IMTL\forall, SMTL\forall$	Yes	Yes	Yes	No
WCMTL \forall , IIMTL \forall	?	No	?	No
BL \forall , SBL \forall	No	No	No	No
$ m E orall, \Pi orall$	No	No	Yes	No
$G \forall$, WNM \forall , NM \forall	Yes	Yes	Yes	No
$C_nMTL\forall, C_nIMTL\forall$	Yes	Yes	Yes	No
CFOL	No	No	No	Yes

Petr Cintula Mathematical fuzzy logic: first-order and beyond

くりょう 小田 マイボット 山下 シックション

Decidability and arithmetical hierarchy

Logic	THM	stTAUT	stSAT	stTAUT _{pos}	stSAT _{pos}
BL∀	Σ_1 -compl.	Non-arit.	Non-arit.	Non-arit.	Non-arit.
SBL∀	Σ_1 -compl.	Non-arit.	Non-arit.	Non-arit.	Non-arit.
Ł∀	Σ_1 -compl.	Π_2 -compl.	Π_1 -compl.	Σ_1 -compl.	Σ_2 -compl.
G∀	Σ_1 -compl.	Σ_1 -compl.	Π_1 -compl.	Σ_1 -compl.	Π_1 -compl.
П∀	Σ_1 -compl.	Non-arit.	Non-arit.	Non-arit.	Non-arit.
$(L\oplus) \forall$	Σ_1 -compl.	Π_2 -hard	Π_1 -compl.	Σ_1 -compl.	Σ_2 -compl.
$(G\oplus) \forall$	Σ_1 -compl.	Σ_1 -hard	Π_1 -compl.	Σ_1 -compl.	Π_1 -compl.
$\forall (\oplus \Pi)$	Σ_1 -compl.	Non-arit.	Non-arit.	Non-arit.	Non-arit.

æ

Formal fuzzy mathematics

Petr Cintula Mathematical fuzzy logic: first-order and beyond

(E)

э

First-order fuzzy logic is strong enough to support non-trivial formal mathematical theories

Mathematical concepts in such theories show gradual rather than bivalent structure

Examples:

- Skolem, Hájek (1960, 2005): naïve set theory over Ł
- Takeuti–Titani (1994): ZF-style fuzzy set theory in a system close to Gödel logic (⇒ contractive)
- Restall (1995), Hájek–Paris–Shepherdson (2000): arithmetic with the truth predicate over Ł
- Hájek–Haniková (2003): ZF-style set theory over BL_{\triangle}
- Novák (2004): Church-style fuzzy type theory over $IMTL_{\triangle}$
- Běhounek–Cintula (2005): higher-order fuzzy logic

くロト (過) (目) (日)

Hájek–Haniková fuzzy set theory

Logic: First-order BL_{\triangle} with identity Language: \in Axioms: (*z* not free in φ) • $\triangle(\forall u)(u \in x \leftrightarrow u \in y) \rightarrow x = y$ • $(\exists z) \triangle(\forall y) \neg (y \in z)$ • $(\exists z) \triangle(\forall u)(u \in z \leftrightarrow (u = x \lor u = y))$

- $(\exists z) \triangle (\forall u) (u \in z \leftrightarrow (\exists y) (u \in y \& y \in x))$
- $(\exists z) \triangle (\forall u) (u \in z \leftrightarrow \triangle (\forall u \in x) (u \in y))$ (weak power)
- $(\exists z) \triangle (\emptyset \in z \& (\forall x \in z) (x \cup \{x\} \in z))$ (infinity)
- $(\exists z) \triangle (\forall u) (u \in z \leftrightarrow (u \in x \& \varphi(u, x)), z \text{ not free in } \varphi$ (separation)
- $(\exists z) \triangle [(\forall u \in x)(\exists v)\varphi(u,v) \rightarrow (\forall u \in x)(\exists v \in z)\varphi(u,v)]$ (collection)
- $\triangle(\forall x)((\forall y \in x)\varphi(y) \to \varphi(x)) \to \triangle(\forall x)\varphi(x)$ (\in -induction)
- $(\exists z) \triangle ((\forall u)(u \in z \lor \neg (u \in z)) \& (\forall u \in x)(u \in y))$ (support)

(extensionality)

(empty set Ø)

(pair $\{x, y\}$)

(union [])

Semantics: A cumulative hierarchy of BL-valued fuzzy sets

Features:

- Contains an inner model of classical ZF: (as the subuniverse of hereditarily crisp sets)
- Conservatively extends classical ZF with fuzzy sets
- Generalizes Takeuti–Titani's construction in a non-contractive fuzzy logic

Logic: First-order Łukasiewicz logic Ł \forall

Language: \in , set comprehension terms { $x \mid \varphi$ }

Axioms:

• $y \in \{x \mid \varphi\} \leftrightarrow \varphi(y)$ (unrestricted comprehension)

Features:

- Non-contractivity of Ł blocks Russell's paradox
- Consistency conjectured by Skolem (1960—still open: in 2010 a gap found by Terui in White's 1979 proof)
- Adding extensionality is inconsistent with CŁ
- Open problem: define a reasonable arithmetic in CŁ (some negative results by Hájek, 2005)

ヘロト 人間 ト ヘヨト ヘヨト

Fuzzy class theory = (Henkin-style) higher-order MFL

Logic: Any first-order deductive fuzzy logic with \triangle and = Originally: $L\Pi$ for its expressive power

Language:

- Sorts of variables for atoms, classes, classes of classes...
- Subsorts for *k*-tuples of objects at each level
- \in between successive sorts
- At all levels: $\{x \mid ...\}$ for classes, $\langle ... \rangle$ for tuples

Axioms (for all sorts):

•
$$\langle x_1, \dots, x_k \rangle = \langle y_1, \dots, y_k \rangle \rightarrow x_1 = y_1 \& \dots \& x_k = y_k$$

(tuple identity)
• $(\forall x) \triangle (x \in A \leftrightarrow x \in B) \rightarrow A = B$ (extensionality)
• $y \in \{x \mid \varphi(x)\} \leftrightarrow \varphi(y)$ (class comprehension)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Semantics:

Fuzzy sets and relations of all orders over a crisp ground set (Henkin-style \Rightarrow non-standard models exist,

full higher-order fuzzy logic non-axiomatizable)

Features:

- Suitable for the reconstruction and graded generalization of large parts of traditional fuzzy mathematics
- Several mathematical disciplines have been developed within its framework, using it as a foundational theory: (eg, fuzzy relations, fuzzy numbers, fuzzy topology)
- The results obtained trivialize initial parts of traditional fuzzy set theory

・ロト ・ 理 ト ・ ヨ ト ・

References and

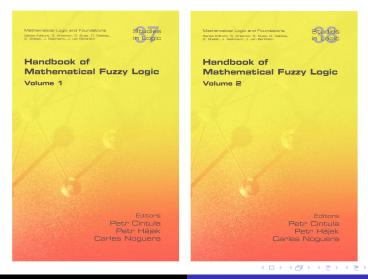
further research topics

Petr Cintula Mathematical fuzzy logic: first-order and beyond

★ E > < E >

э

PC, P. Hájek, C. Noguera. *Handbook of Mathematical Fuzzy Logic*. Studies in Logic, Mathematical Logic and Foundations, vol. 37 and vol. 38, London, College Publications, 2011.



Petr Cintula

Mathematical fuzzy logic: first-order and beyond

PC, P. Hájek, C. Noguera. *Handbook of Mathematical Fuzzy Logic*. Studies in Logic, Mathematical Logic and Foundations, vol. 37 and vol. 38, London, College Publications, 2011.

Volume 1

I Introduction to Mathematical Fuzzy Logic Libor Běhounek, Petr Cintula, and Petr Hájek	1
II A General Framework for Mathematical Fuzzy Logic Petr Cintula and Carles Noguera	103
III Proof Theory for Mathematical Fuzzy Logic George Metcalfe	209
IV Algebraic Semantics: Semilinear FL-Algebras Rostislav Horčík	283
V Hájek's Logic BL and BL-Algebras Manuela Busaniche and Franco Montagna	355

Volume 2

VI Łukasiewicz Logic and MV-Algebras Antonio Di Nola and Ioana Leuştean	469
VII Gödel–Dummett Logics Matthias Baaz and Norbert Preining	585
VIII Fuzzy Logics with Enriched Language Francesc Esteva, Lluís Godo, and Enrico Marchioni	627
IX Free Algebras and Functional Representation for Fuzzy Lo	ogics
Stefano Aguzzoli, Simone Bova, and Brunella Gerla	713
X Computational Complexity of Propositional Fuzzy Logics Zuzana Haniková	793
XI Arithmetical Complexity of First-Order Fuzzy Logics	
Petr Hájek, Franco Montagna, and Carles Noguera	853

イロト イポト イヨト イヨト

Schools of studying particular fuzzy logic

- Vienna school of Gödel logic: M. Baaz, C. Fermüller, A. Ciabattoni, ...
 Chapter VII of the Handbook
- Ostrava school of Pavelka's logic: V. Novák, A. Dvořák, P. Murinová, ...
 V. Novák, I. Perfilieva, J. Močkoř: *Mathematical Principles of Fuzzy Logic*. Kluwer, Dordrecht, 2000.
- Italian school of Łukasiewicz logic: D. Mundici, A. di Nola, S. Aguzzoli, . . .

D. Mundici: *Advanced Łukasiewicz Calculus and MV-algebras.* Springer, 2011

・ 同 ト ・ ヨ ト ・ ヨ ト

Completeness

- L. Hay. Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic, 28:77–86, 1963.
- A. Horn. Logic with truth values in a linearly ordered Heyting algebras. Journal of Symbolic Logic, 34(3):395–408, 1969.
- V. Novák: On the syntactico-semantical completeness of first-order fuzzy logic I, II. Kybernetika 26:47–66, 26:134-154, 1990.
- G. Takeuti, S. Titani. *Fuzzy Logic and Fuzzy Set Theory* Archive for Mathematical Logic 32:1–32, 1992.
- P. Hájek: Metamathematics of Fuzz Logic, Kluwer 1998.
- S. Gottwald: *A Treatise on Many-Valued Logics*, Research Studies Press, 2001.
- P. Hájek, PC: *On Theories and Models in Fuzzy Predicate Logics*. J. of Symbolic Logic, 71:863–880, 2006.
- PC, C. Noguera: Chapter II of the Handbook

Completeness w.r.t. special semantics

- F. Montagna, H. Ono. Kripke semantics, undecidability and standard completeness for Esteva and Godo's logic MTL∀. Studia Logica, 71:227–245, 2002.
- P. Hájek, F. Montagna: A note on the first-order logic of complete BL-chains. Mathematical Logic Quarterly, 54(4):435–446, 2008.
- PC, F. Esteva J. Gispert, L. Godo, F. Montagna,
 C. Noguera: *Distinguished Algebraic Semantics For T-Norm Based Fuzzy Logics: Methods and Algebraic Equivalencies*. Annals of Pure and Applied Logic, 160(1):53–81, 2009.
- PC, R. Horčík, C. Noguera: The quest for basic fuzzy logic. Submitted.

ヘロン 人間 とくほ とくほ とう

Decidability and arithmetical hierarchy

- B. Scarpellini. Die Nichtaxiomatisierbarkeit des unendlichwertigen Pradikatenkalkuls von Łukasiewicz. Journal of Symbolic Logic, 27:159–170, 1962.
- M. Ragaz. Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik. PhD thesis, ETH Zurich, 1981.
- P. Hájek: *Fuzzy Logic and Arithmetical Hierarchy I–III*. Fuzzy sets and System 73, Studia logica 58, 68.
- PC, P. Hájek. Complexity issues in axiomatic extensions of Łukasiewicz logic. Journal of Logic and Computation, 19:245–260, 2009.
- F. Montagna, C. Noguera: Arithmetical complexity of first-order predicate fuzzy logics over distinguished semantics. Journal of Logic and Computation, 20:399–424, 2010.
- F. Bou, C. Noguera. Solution of some problems in arithmetical complexity of first-order fuzzy logics. Available at arxiv.org.
- P. Hájek, F. Montagna, C. Noguera: Chapter XI of the Handbook

- M. Baaz, N. Preining, R. Zach: *First-order Gödel logics.* Annals of Pure and Applied Logic 147:23–47, 2007.
- G. Metcalfe, N. Olivetti, D. Gabbay: Proof Theory for Fuzzy Logics. Springer, 2008.
- M. Baaz, G. Metcalfe: Herbrand's Theorem, Skolemization and Proof Systems for First-Order Lukasiewicz Logic. J. Log. Comput. 20:35–54, 2010.
- A. Ciabattoni, G. Metcalfe: *Density elimination.* Theoretial Computer Science 403:328–346, 2008.
- G. Metcalfe: Chapter III of the Handbook.

ヘロト 人間 とくほ とくほ とう

э.

- R. Giles. Łukasiewicz logic and fuzzy set theory. International Journal of ManŰMachine Studies, 8:313Ű-327, 1976.
- C. Fermüller: *Revisiting Giles's Game.* In Games: Unifying Logic, Language, and Philosophy pp. 209-227, 2009
- PC, O. Majer: Towards Evaluation Games for Fuzzy Logics. In. Games: Unifying Logic, Language, and Philosophy pp 117–138, 2009.

Model theory in fuzzy logic

- P. Hájek, PC: *On Theories and Models in Fuzzy Predicate Logics*. Journal of Symbolic Logic, 71(3):863–880, 2006.
- P. Murinová, V. Novák: Omitting types in fuzzy logic with evaluated syntax. Mathematical Logic Quarterly, 52(3):259–268, 2006.
- M.C. Laskowski, S. Malekpour: *Provability in predicate product logic*. Archive for Mathematical logic 46(4–6):365-378, 2007.
- P. Dellunde: *Preserving mappings in fuzzy predicate logics*. J. Log. Comput. 22:1367–1389, 2012.
- V. Novák: *Elements of model theory in higher-order fuzzy logic.* Fuzzy Sets and Systems 205: 101–115, 2012.
- P. Dellunde, F. Esteva: *On elementary equivalence in fuzzy predicate logics.* Arch. Math. Log. 52:1–17, 2013.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Arithmetics

- P. Hájek, J. Paris, J.C. Shepherdson: *The Liar Paradox and Fuzzy Logic*. Journal of Symbolic Logic 65:339–346, 2000.
- P. Hájek, J.C. Shepherdson: A Note on the Notion of Truth in Fuzzy Logic. Annals of Pure and Applied Logic 109:65–69, 2001.
- P. Hájek: On arithmetic in the Cantor–Łukasiewicz fuzzy set theory. Arch. Math. Log. 44:763-782, 2005.
- S. Yatabe. A note on Hájek, Paris and Shepherdson's theorem. Logic Journal of the IGPL, 13:261–266, 2005.
- P. Hájek: *Towards metamathematics of weak arithmetics over fuzzy logic.* Logic J. of the IGPL 19:467-475, 2011.

ヘロト 人間 とくほ とくほ とう

э.

Set theories – ZF style

- D. Klaua. Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin, 7:859–867, 1965.
- S. Gottwald. Set theory for fuzzy sets of higher level. Fuzzy Sets and Systems, 2(2):125–151, 1979.
- G. Takeuti, S. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic, 49:851–866, 1984.
- G. Takeuti, S. Titani. *Fuzzy Logic and Fuzzy Set Theory* Archive for Mathematical Logic 32:1–32, 1992.
- P. Hájek, Z. Haniková. *A development of set theory in fuzzy logic*. In Beyond Two. pp. 273–285. Physica-Verlag, 2003.
- S. Gottwald. Universes of fuzzy sets and axiomatizations of fuzzy set theory. Studia Logica, 82:211–144, 2006.
- P. Hájek, Z. Haniková: Interpreting lattice-valued set theory in fuzzy set theory. Logic J. of the IGPL 21:77–90, 2013.

Set theories - naive comprehension

- T. Skolem. A set theory based on a certain 3-valued logic. Mathematica Scandinavica, 8:71–80, 1960.
- R. White. The consistency of the axiom of comprehension in the infinite-valued predicate logic of Łukasiewicz. Journal of Philosophical Logic, 8(1):509–534, 1979.
- P. Hájek: *On arithmetic in the Cantor–Łukasiewicz fuzzy set theory.* Archive for Mathematical Logic 44:763-782, 2005.
- S. Yatabe. *Distinguishing non-standard natural numbers in a set theory within Łukasiewicz logic.* Archive for Mathematical Logic, 46:281–287, 2007.

ヘロン 人間 とくほ とくほ とう

Fuzzy Type theory

- V. Novák: On fuzzy type theory. Fuzzy Sets and Systems. 149:235–273, 2004.
- V. Novák: *A formal theory of intermediate quantifiers.* Fuzzy Sets and Systems, 159:1229–1246, 2008.
- V. Novák: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets and Systems 159:2939–2969, 2008.
- P. Murinová, V. Novák: *A formal theory of generalized intermediate syllogisms.* Fuzzy Sets and Systems 186:47–80, 2012.
- V. Novák: *Elements of model theory in higher-order fuzzy logic.* Fuzzy Sets and Systems 205:101–115, 2012.

ヘロト 人間 とくほ とくほ とう

Fuzzy Class theory

- L. Běhounek, PC: *Fuzzy class theory.* Fuzzy Sets and Systems 154:34–55, 2005.
- T. Kroupa: *Filters in Fuzzy Class Theory.* Fuzzy Sets and Systems 159:1773–1787, 2008.
- R. Horčík: Solution of a system of linear equations with fuzzy numbers. Fuzzy Sets and Systems 159:1788–1810, 2008.
- L. Běhounek, U. Bodenhofer, PC: *Relations in Fuzzy Class Theory: Initial steps.* Fuzzy Sets and Systems 159:1729–1772, 2008.
- L. Běhounek, M. Daňková: *Relational compositions in Fuzzy Class Theory.* Fuzzy Sets and Systems 160:1005–1036, 2009.
- L. Běhounek: *Graded properties of unary and binary fuzzy connectives.* Fuzzy Sets and Systems 202:1–41, 2012.

æ

Some additional topics

- P. Hájek, V. Novák: The Sorites Paradox and Fuzzy Logic. International Journal of General Systems 32:373–383, 2003
- P. Hájek: Making fuzzy description logic more general. Fuzzy Sets and Systems 154:1–15, 2005.
- R. Bělohlávek, V. Vychodil: *Fuzzy Equational Logic.* Springer, 2005.
- A. Garcia-Cerdana, E. Armengol, F. Esteva: *Fuzzy* Description Logics and t-norm based fuzzy logics. Int. J. Approx. Reasoning 51:632–655, 2010.

ヘロト 人間 とくほ とくほ とう