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Some more notions

Definition 1 (Conservative expansion)
Let P1 ⊆ P2. P2-theory T2 is a conservative extension of
P1-theory T1 iff for each P1-formula, T2 ` ϕ iff T1 ` ϕ.

Definition 2
Let M = 〈A,M〉 be a P-model. Then Alg(M) is the subalgebra
of A with the domain

{‖ϕ‖Mv | ϕ a P-formula and v an M-evaluation}.

Definition 3 (Exhaustive model)

A model M = 〈A,M〉 is exhaustive if A = Alg(M).

We write:

‖ϕ(a1, . . . , an)‖M instead of ‖ϕ(x1, . . . , xn)‖Mv for v(xi) = ai.

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Skolemization
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Henkin theories, preSkolem logics, and Skolemization

A theory T is Henkin if it is ∀-Henkin and for each ϕ such that
T ` (∃x)ϕ(x) there is a constant such that T ` ϕ(c).

L∀ is preSkolem if T ∪ {ϕ(c)} is a conservative expansion of
T ∪ {(∃x)ϕ(x)} for each P-theory T ∪ {ϕ}, and a constant c 6∈ P

Theorem 4
1 L∀ is preSkolem.

2 For each P-theory T ∪ {ϕ} such that T 0 ϕ there is P ′ ⊇ P
and a linear Henkin P ′-theory T ′ ⊇ T such that T ′ 0 ϕ.

3 T ∪ {(∀~y)ϕ(fϕ(~y),~y)} is a conservative expansion of
T ∪ {(∀~y)(∃x)ϕ(x,~y)} for each P-theory T ∪ {ϕ(x,~y), and a
functional symbol fϕ 6∈ P of the proper arity.

The notion of preSkolem logic and Henkin theory could be relativized
to a chosen class of formulae while keeping the theorem provable
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(A bit of) model theory
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Elementary embeddings

Definition 5
An elementary embedding of a P1-model 〈B1,M1〉 into a
P2-model 〈B2,M2〉 is a pair (f , g) such that:

1 f is an embedding of B1 into B2.
2 g is a one-one mapping of M1 into M2

3 f (‖ϕ(a1, . . . , an)‖〈B1,M1〉) = ‖ϕ(g(a1), . . . , g(an))‖〈B2,M2〉 holds
for each P1-formula ϕ(x1, . . . , xn) and a1, . . . , an ∈M.

We use the denotation: 〈B1,M1〉
(f ,g)
↪→ 〈B2,M2〉

If 〈B1,M1〉 is exhaustive than in the condition 1 it is sufficient to
assume that f is a one-one mapping
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Conservative extension

Lemma 6
Let L∀ is preSkolem, T2 be a conservative extension of T1 and
M an exhaustive model of T1. Then there exists a linear Henkin
theory T extending T2 such that M can be elementarily
embedded into CM(T).

Theorem 7
Let L∀ is preSkolem. Then the following claims are equivalent:

1 P2-theory T2 is a conservative extension of P1-theory T1

2 each exhaustive model of T1 can be elementarily
embedded into a model of T2.

The condition of exhaustiveness cannot be omitted!
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Witnessed semantics

Petr Cintula Mathematical fuzzy logic: first-order and beyond



Witnessed models

In CFOL: predicate logic with two variables has finite model
property. Fuzzy logic: not even for one variable (monadic logic).

Example in (G∀) over standard G-algebra:

ϕ = ¬(∀x)P(x) &¬(∃x)¬P(x)

Evidently ϕ has no finite model. But consider M with domain N,
where PM(n) = 1

n+1 . Then clearly for each i ∈ N: ‖P(i)‖ > 0 and
inf ‖P(i)‖ = 0, i.e., M |= ϕ

The infimum is not the minimum, is not witnessed.

Definition 8
A P-model M is witnessed if for each P-formula ϕ(x,~y) and for
each ~a ∈ M there are bs, bi ∈ M st.

‖(∀x)ϕ(x,~a)‖M = ‖ϕ(bi,~a)‖M ‖(∃x)ϕ(x,~a)‖M = ‖ϕ(bs,~a)‖M.
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Witnessing axioms and witnessed logic

Consider the axiom schemas (Baaz)

(C∃) (∃y)((∃x)ϕ(x)→ ϕ(y))

(C∀) (∃y)(ϕ(y)→ (∀x)ϕ(x))

Note that both (C∃) and (C∀) are provable in Ł∀; only (C∃) is
provable in Π∀, and none is provable in G∀

Definition 9
The witnessed predicate logic L∀w extends L∀ by(C∃) and (C∀)

Theorem 10
For each formula ϕ there is a formula ϕ′ in a prenex form s.t.

`L∀w ϕ↔ ϕ′
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Witnessed completeness

Not each L∀w-model of T is witnessed. But we can prove:

Lemma 11
If L∀ is preSkolem, T a theory, and M an exhaustive model
of T. Then M is a L∀w-model of T iff it can be elementarily
embedded into a witnessed model of T.

Theorem 12 (Completeness of witnessed logics)

If L∀ is preSkolem, T a theory and ϕ a formula, TFAE:
T `L∀w ϕ.
M |= ϕ for each witnessed linear model M of T.
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How do we show that a logic is
preSkolem?
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Deduction theorems

DT: a set of propositional formulae of a single variable ?

Definition 13
L enjoys the almost implicational deduction theorem with a set
of deductive terms DT if for each fle T ∪ {ϕ}:

T, ϕ `L ψ iff T `L δ(ϕ)→ ψ for some δ ∈ DT.

Theorem 14 (Deduction theorem of L∀)
If L enjoys the almost implicational deduction theorem w.r.t.
DT, then for each theory T, formula ψ and sentence ϕ:

T, ϕ `L∀ ψ iff T `L∀ δ(ϕ)→ ψ for some δ ∈ DT.
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preSkolem logics – characterization

Theorem 15
Let L enjoy the almost implicational deduction theorem w.r.t.
DT. Then the following are equivalent:

L∀ is preSkolem
For each P and each δ ∈ DT there is δ0 ∈ DT such that

`L∀ δ0((∃x)ϕ(x))→ (∃x)δ(ϕ(x))

Proof.
Recall: preSkolem means that T ∪ {ϕ(c)} is a conservative
extension of T ∪ {(∃x)ϕ(x)}.
From ` δ(ϕ(c)) → (∃x)δ(ϕ(x)) we get ϕ(c) ` (∃x)δ(ϕ(x)) using
DT and so by conservativity: (∃x)ϕ(x) ` (∃x)δ(ϕ(x)). DT again
completes the proof.
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preSkolem logics – characterization

Theorem 15
Let L enjoy the almost implicational deduction theorem w.r.t.
DT. Then the following are equivalent:

L∀ is preSkolem
For each P and each δ ∈ DT there is δ0 ∈ DT such that

`L∀ δ0((∃x)ϕ(x))→ (∃x)δ(ϕ(x))

Proof.
Recall: preSkolem means that T ∪ {ϕ(c)} is a conservative
extension of T ∪ {(∃x)ϕ(x)}.
Assume T ∪ {ϕ(c)} ` ψ. Thus by DT: T ` δ(ϕ(c)) → ψ for
some is δ ∈ DT. By Constants Theorem also: T ` δ(ϕ(x))→ ψ.
By (gen), (∃2), and (mp) we have: T ` (∃x)δ(ϕ(x)) → ψ. The
assumption and DT complete the proof.

Petr Cintula Mathematical fuzzy logic: first-order and beyond



preSkolem logics – examples

All axiomatic extensions of UL have the almost implicational
deduction theorem for DT = {(? ∧ 1)n | n ∈ N}

If L is axiomatic extension of UL, then L∀ is preSkolem
because `UL∀ (((∃x)ϕ(x)) ∧ 1)n → (∃x)((ϕ(x) ∧ 1)n)

All axiomatic extensions of MTL4 have the almost implicational
deduction theorem for DT = {4(?)}

If L is axiomatic extension of MTL4, then L∀ is not preSkolem
because 6`MTL4∀ 4(∃x)ϕ(x)→ (∃x)4ϕ(x)

But note that `MTL4∀ 4(∃x)4ϕ(x)→ (∃x)44ϕ(x)
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First-order fuzzy logics with identity
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First-order fuzzy logics with identity

Axioms of L∀=: those of L∀+

x = x (reflexivity—all things are identical to themselves)
x = y→ (ϕ(x)→ ϕ(y))

(Leibniz identity law—indiscernibility of identicals)

In sufficiently strong logics (eg, with 4), = comes out crisp:
` x = y ∨ ¬(x = y)

In weaker logics we can add it as an additional axiom

Models can then be factorized so that =M is interpreted as the
identity of individuals

The logic where fuzzy identity is the only predicate (not
necessarily satisfying the second condition) are studied in:
Bělohlávek, Vychodil: Fuzzy Equational Logic. Springer, 2005.
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Completeness
w.r.t. special classes of algebras
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We want ‘stronger’ completeness theorem

Definition 16
L∀(=) has the SKC if for each countable P, theory T, and
formula ϕ the following are equivalent:

T `L∀(=)
ϕ.

〈A,M〉 |= ϕ for each A ∈ K and each countable model
〈A,M〉 of T.

L∀(=) has the KC if the above condition holds for the empty
theory.
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General result

Theorem 17
Let L be a core fuzzy logic. The following are equivalent:

1 L∀= has the SKC.

2 For every countable model 〈A,M〉 there is an L-chain
B ∈ K and a countable model 〈B,M′〉 s.t.

〈A,M〉
(f ,g)
↪→ 〈B,M′〉.

The following condition is clearly sufficient for SKC, is it
necessary?

3 Every countable L-chain A can be σ-embedded into some
L-chain B ∈ K.

We can find an example of a logic K and semantics K showing
that the condition 3 is not necessary.
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General result

Theorem 18
Let L be a core fuzzy logic. The following are equivalent:

3 Every countable L-chain A can be σ-embedded into some
L-chain B ∈ K.

4 For every countable model 〈A,M〉 there is an L-chain
B ∈ K and a countable model 〈B,M′〉 s.t.

〈A,M〉
(f ,g)
↪→ 〈B,M′〉 and f is an isomorphism

The following condition is clearly sufficient for SKC, is it
necessary?

3 Every countable L-chain A can be σ-embedded into some
L-chain B ∈ K.

We can find an example of a logic K and semantics K showing
that the condition 3 is not necessary.
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Results for particular semantics—finite chains

Theorem 19
The following are equivalent:

(i) L enjoys the SFC,
(i) L∀ enjoys the SFC,

(iii) all L-chains are finite,
(iv) there is a natural number n such that the length of each

L-chain is less or equal than n, and
(v) there is a natural number n such that `L

∨
i<n(xi → xi+1).

Theorem 20
If L∀ enjoys the FC, then L∀ = L∀w.
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Logic RC SRC (S)QC (S)FC

SL`
S∀, for each S ⊆ {e, c, i, o} Yes Yes Yes No

SL`
a∀ No No No No

SL`
aw∀ Yes Yes Yes No

MTL∀, IMTL∀, SMTL∀ Yes Yes Yes No
WCMTL∀, ΠMTL∀ ? No ? No

BL∀, SBL∀ No No No No
Ł∀, Π∀ No No Yes No

G∀, WNM∀, NM∀ Yes Yes Yes No
CnMTL∀, CnIMTL∀ Yes Yes Yes No

CFOL No No No Yes
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Decidability and arithmetical hierarchy

Logic THM stTAUT stSAT stTAUTpos stSATpos

BL∀ Σ1-compl. Non-arit. Non-arit. Non-arit. Non-arit.
SBL∀ Σ1-compl. Non-arit. Non-arit. Non-arit. Non-arit.
Ł∀ Σ1-compl. Π2-compl. Π1-compl. Σ1-compl. Σ2-compl.
G∀ Σ1-compl. Σ1-compl. Π1-compl. Σ1-compl. Π1-compl.
Π∀ Σ1-compl. Non-arit. Non-arit. Non-arit. Non-arit.

(Ł⊕)∀ Σ1-compl. Π2-hard Π1-compl. Σ1-compl. Σ2-compl.
(G⊕)∀ Σ1-compl. Σ1-hard Π1-compl. Σ1-compl. Π1-compl.
(Π⊕)∀ Σ1-compl. Non-arit. Non-arit. Non-arit. Non-arit.
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Formal fuzzy mathematics
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Formal fuzzy mathematics

First-order fuzzy logic is strong enough to support non-trivial
formal mathematical theories

Mathematical concepts in such theories show gradual rather
than bivalent structure

Examples:
Skolem, Hájek (1960, 2005): naïve set theory over Ł
Takeuti–Titani (1994): ZF-style fuzzy set theory

in a system close to Gödel logic (⇒ contractive)
Restall (1995), Hájek–Paris–Shepherdson (2000):

arithmetic with the truth predicate over Ł
Hájek–Haniková (2003): ZF-style set theory over BL4
Novák (2004): Church-style fuzzy type theory over IMTL4
Běhounek–Cintula (2005): higher-order fuzzy logic
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Hájek–Haniková fuzzy set theory

Logic: First-order BL4 with identity

Language: ∈
Axioms: (z not free in ϕ)

4(∀u)(u ∈ x↔ u ∈ y)→ x = y (extensionality)

(∃z)4(∀y)¬(y ∈ z) (empty set ∅)

(∃z)4(∀u)(u ∈ z↔ (u = x ∨ u = y) (pair {x, y})

(∃z)4(∀u)(u ∈ z↔ (∃y)(u ∈ y & y ∈ x)) (union
⋃

)

(∃z)4(∀u)(u ∈ z↔4(∀u ∈ x)(u ∈ y)) (weak power)

(∃z)4(∅ ∈ z & (∀x ∈ z)(x ∪ {x} ∈ z)) (infinity)

(∃z)4(∀u)(u ∈ z↔ (u ∈ x & ϕ(u, x)), z not free in ϕ (separation)

(∃z)4[(∀u ∈ x)(∃v)ϕ(u, v)→ (∀u ∈ x)(∃v ∈ z)ϕ(u, v)] (collection)

4(∀x)((∀y ∈ x)ϕ(y)→ ϕ(x))→4(∀x)ϕ(x) (∈-induction)

(∃z)4((∀u)(u ∈ z ∨ ¬(u ∈ z)) & (∀u ∈ x)(u ∈ y)) (support)
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Hájek–Haniková fuzzy set theory

Semantics: A cumulative hierarchy of BL-valued fuzzy sets

Features:
Contains an inner model of classical ZF:

(as the subuniverse of hereditarily crisp sets)
Conservatively extends classical ZF with fuzzy sets
Generalizes Takeuti–Titani’s construction

in a non-contractive fuzzy logic
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Cantor–Łukasiewicz set theory

Logic: First-order Łukasiewicz logic Ł∀

Language: ∈, set comprehension terms {x | ϕ}

Axioms:
y ∈ {x | ϕ} ↔ ϕ(y) (unrestricted comprehension)

Features:
Non-contractivity of Ł blocks Russell’s paradox
Consistency conjectured by Skolem (1960—still open: in
2010 a gap found by Terui in White’s 1979 proof)
Adding extensionality is inconsistent with CŁ
Open problem: define a reasonable arithmetic in CŁ

(some negative results by Hájek, 2005)
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Fuzzy class theory = (Henkin-style) higher-order MFL

Logic: Any first-order deductive fuzzy logic with 4 and =
Originally: ŁΠ for its expressive power

Language:
Sorts of variables for atoms, classes, classes of classes. . .
Subsorts for k-tuples of objects at each level
∈ between successive sorts
At all levels: {x | . . . } for classes, 〈. . .〉 for tuples

Axioms (for all sorts):
〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . .& xk = yk

(tuple identity)
(∀x)4(x ∈ A↔ x ∈ B)→ A = B (extensionality)
y ∈ {x | ϕ(x)} ↔ ϕ(y) (class comprehension)
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Fuzzy class theory = (Henkin-style) higher-order MFL

Semantics:
Fuzzy sets and relations of all orders over a crisp ground set

(Henkin-style⇒ non-standard models exist,
full higher-order fuzzy logic non-axiomatizable)

Features:
Suitable for the reconstruction and graded generalization

of large parts of traditional fuzzy mathematics
Several mathematical disciplines have been developed
within its framework, using it as a foundational theory:

(eg, fuzzy relations, fuzzy numbers, fuzzy topology)
The results obtained trivialize initial parts of traditional
fuzzy set theory
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