Imperial College London

Manipulation of quantum noise of light

Radim Filip,

Petr Marek, Vlad Usenko, Mirek Gavenda

Dept. of Optics, Palacky University Olomouc

Lab of Akira Furusawa

The University of Tokio

INVESTMENTS IN EDUCATION DEVELOPMENT

- Petr Marek (postdoc): noiseless amplification nonlinear quantum operations
 Vladyslav Usenko (postdoc):
 - QKD without/with squeezing
- Miroslav Gavenda (postdoc): quantum decoherence and error correction/rejection

Students: Lukáš Lachman, Vojta Kupčík, Petr Zapletal and Petr Klapka

CV QUANTUM NOISE

Continuous quantum noise of light can be measured by homodyne detection.

Quantum information is simultaneously in amplitude and phase "quadrature" of light.

A partial noise reduction is possible in nonlinear OPO and OPA – noise squeezing.

PARAMETRIC AMPLIFIER

- Non-linear parametric process on-line in optical crystal.
- High-Q cavity enhances nonlinearity and filters single mode of light.
- Off-line source of squeezed state.
- Squeezing record: >12dB (who next?)

ON-LINE SQUEEZER WITH OFF-LINE SQUEEZING

• Universal Squeezer:

$$X_1' = \sqrt{T}X_1 + \sqrt{1 - T}X_A,$$

$$P_{1}' = \frac{1}{\sqrt{T}} P_{1} - \frac{\sqrt{(1-T)(1-\eta)}}{\sqrt{T\eta}} P_{0},$$

R. Filip. P. Marek and U.L. Andersen, Phys. Rev. A 71, 042308 (2005).

J. Yoshikawa et al., Phys. Rev. A 76, 060301(R) (2007)

Memo:

Off-line squeezing -> On-line squeezer

Quantum Teleportation and Entanglement

A Hybrid Approach to Optical Quantum Information Processing

QND INTERACTION WITH MATTER

Quantum memory

Quantum opto-mechanics

- single-mode pre-squeezing effectively enhances QND interaction with matter.
- upload can be limited only by loss (up to fixed squeezing)

[R. Filip, PRA 08]

UPLOAD OF |1> OR "CAT" STATE

- Post-selection transforms loss to reduction of amplitude, uploaded state remains pure!
- Pre-squeezing helps to increase interference.

UNIVERSAL QUANTUM INTERFACE

[R. Filip, PRA 2009]

- operations on source are available, but operations on target are limited to single type of coupling (target is not well controllable)
- target is highly **noisy** (even breaking entanglement)
- **unitary coupling**: fast coupling = weak coupling

- Quantum pre-amplification and feed-forward perfectly transfer any quantum state to noisy system through arbitrarily weak coupling.
- Full quantum optical linear amplifier is useful tool for quantum pre-processing!

GENERAL INTERFACE

- similar procedure can be found for any Gaussian coupling not mixing X,P together (except QND coupling).
- for QND type of coupling (CV memory & optomechanical oscillators)
- for transfer of quantum resource, feed-forward can be substituted by post-selection.

P. Marek and R. Filip, Phys. Rev. A 81, 042325 (2010).

ALL OPTICAL QND INTERACTION

J. Yoshikawa, et al., Phys. Rev. Lett. 101, 250501 (2008)

WIGNER FUNCTION

[Y. Miwa, J. Yoshikawa, R. Ukai, R. Filip, A. Furusawa, *Universal Quantum Erasing for Continuous Variables*, arXiv:1007.0314]

ALL OPTICAL AMPLIFIER

 $\hat{a}_{\rm sig}^{\rm out} = \sqrt{G}\,\hat{a}_{\rm sig}^{\rm in} + e^{i\theta}\sqrt{G-1}\,\left(\hat{a}_{\rm idl}^{\rm in}\right)^{\dagger}$ $\hat{a}_{\rm idl}^{\rm out} = \sqrt{G} \,\hat{a}_{\rm idl}^{\rm in} + e^{i\theta} \sqrt{G-1} \left(\hat{a}_{\rm sig}^{\rm in}\right)^{\dagger}$

REVERSIBLE QUANTUM AMPLIFIER

-5dB of squeezing in off-line ancillas

Normalized to inferred vacuum level.

Reversible quantum cloning R. Filip, J. Fiurasek , P. Marek, PRA 69 , 012314 (2004).

J. Yoshikawa, Y. Miwa, R. Filip, A. Furusawa, Phys. Rev. A 83, 052307 (2011)

QUANTUM SENSITIVITY

NOBEL PRIZE 2012

PROPAGATING OPTICAL "CAT"

 $_{,,}CAT'' = a|S>$ $_{,,}CAT'' = S(x=0)|2>$

Probabilistic transformations of non-classical features

How is deterministic squeezing building "cat"?

SQUEEZING & DE-SQUEEZING OF |1>

SQUEEZING & RESQUEEZING OF |1>

SQUEEZING OF |1>

DE-SQUEEZING OF S|1>

PARTICLE PICTURE

$$\hat{S}(\gamma) = e^{\gamma(\hat{a}^{\dagger 2} - \hat{a}^{2})/2}$$

$$|1\rangle \qquad |\alpha\rangle - |-\alpha\rangle \propto |1\rangle + \frac{\alpha^{2}}{\sqrt{6}} |3\rangle$$

WAVE PICTURE

$$\hat{S}(\gamma) = e^{\gamma(\hat{a}^{\dagger 2} - \hat{a}^{2})/2}$$

$$|1\rangle \propto \int (|\alpha e^{i\phi}\rangle - |-\alpha e^{i\phi}\rangle) d\phi$$

$$\hat{S}(\gamma)|1\rangle \approx |\alpha\rangle - |-\alpha\rangle$$

DISTINGUISHABILITY FACTOR: $D(\beta) = \left(\langle \beta | \rho | \beta \rangle + \langle -\beta | \rho | -\beta \rangle \right) / 2$

- overlap with $(|\beta > < \beta|+|-\beta > < -\beta|)/2$
- |1> has a maximal $D_1^{max} = 0.37$

INTERFERENCE FACTOR $V(\beta) = \left(\langle \beta | \rho | - \beta \rangle + \langle -\beta | \rho | \beta \rangle \right) / 2$

- overlap with ($|\beta > < -\beta|+|-\beta > < \beta|$)/2 (can be negative)
- [1> has minimal $V_1^{min} = -D_1^{max}$ at $\beta = 0.97$

PARTICLE PICTURE

$$\hat{S}(\gamma) = e^{\gamma(\hat{a}^{\dagger 2} - \hat{a}^{2})/2}$$

$$|1\rangle \qquad |\alpha\rangle - |-\alpha\rangle \propto |1\rangle + \frac{\alpha^{2}}{\sqrt{6}} |3\rangle$$

WAVE PICTURE

$$\hat{S}(\gamma) = e^{\gamma(\hat{a}^{\dagger 2} - \hat{a}^{2})/2}$$

$$|1\rangle \propto \int (|\alpha e^{i\phi}\rangle - |-\alpha e^{i\phi}\rangle) d\phi$$

$$\hat{S}(\gamma)|1\rangle \approx |\alpha\rangle - |-\alpha\rangle$$

WAVE PICTURE EXPERIMENT

 β chosen at maximal V and D

Squeezing is building phase sensitive quantum superposition from insensitive one presented in |1>.

QUADRATIC NONLINEARITY FOR UNIVERSAL QUANTUM INTERFACE

 Theoretical concept: universal quantum interface exists for any weak Gaussian interaction, specifically was proposed for BS and QND interactions.

Next: tests of sensitivity to imperfections

- Optical tests: reversible all optical processing: squeezer, amplifier and QND interaction. More squeezing required. Still challenging for |1>.
- Implementation: in future

