

Reducts and Bireducts in Rough Set Methods for Knowledge Discovery

Dominik Ślęzak WIUI 2013 05.06 Olomouc

One University. One World. Yours.

JRS 2013

Halifax, Canada October 11-14

http://cs.smu.ca/jrs2013/ (Workshops at Dalhousie University on October 10) Paper submission deadline: <u>June 6</u> (still some time)

- The theory of rough sets founded in early 80-ties by Prof. Pawlak provides the means for handling incompleteness and uncertainty in large data sets
- In the process of knowledge discovery, one can search for *decision reducts*, which are irreducible subsets of attributes determining decision values
- Dependencies in data can be expressed in terms of, e.g., discernibility or rough set approximations
- There are also rough-set-inspired computational models, such as rough clustering, rough SQL etc.

Decision Tables & Rules

	Outlook	Temp.	Humid.	Wind	Sport?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

It corresponds to a data block included in the <u>positive region</u> of the decision class "Yes"

Rules & Indiscernibility Classes

	Outlook	Temp.	Humid.	Wind	Sport?	
1	Sunny	Hot	High	Weak	N o	
2	Sunny	Hot	High	Strong	N o	
3	Overcast	Hot	High	Weak	Yes	
4	Rain	M ild	High	Weak	Yes	
5	Rain	Cold	Normal	Weak	Yes	
6	Rain	Cold	Normal	Strong	No	
7	Overcast	Cold	Normal	Strong	Yes	
8	Sunny	M ild	High	Weak	No	
9	Sunny	Cold	Normal	Weak	Yes	
10	Rain	M ild	Normal	Weak	Yes	
11	Sunny	M ild	Normal	Strong	Yes	
12	Overcast	M ild	High	Strong	Yes	
13	Overcast	Hot	Normal	Weak	Yes	
14	Rain	M ild	High	Strong	No	

Sport? = Yes

Classes of objects with the same values of Temp. and Humid.

Reducts Preserving Positive Region

- Indiscernibility classes gather objects with (*almost*) the same values on a subset of attributes
- If some attributes are removed, indiscernibility classes may be merged
- So, lower approximations of some decision classes may (*significantly or just slightly*) decrease

Reducts are Everywhere!!!

- In rough sets, reducts are irreducible subsets of attributes that provide specified information
- In databases, we have keys, multivalued dependencies, soft dependencies, etc.
- In probabilistic modeling, we have Markov boundaries (probabilistic decision reducts)
- In bioinformatics, we have signatures: irreducible subsets of genes providing enough information about cancer

Different Approaches to Attribute Reduction

Reduction Constraints:

- Keep (almost) the same approximations of decision classes
- Discern between (almost) all pairs of objects with different decision values
- Keep at (almost) the same level a value of some quality function

Optimization Goals:

- Find minimal reduct(s)
- Find reducts, which induce minimum amount of rules
- Find ensembles of reducts, which work well together

INFOBR GHT

Algorithms & Structures:

- Greedy methods, randomized methods, MapReduce methods, attribute clusters
- Discernibility matrices, data sorting, hashing, distributing, SQL-based scripts

Decision measures to be preserved at (almost!) the same level during the process of attribute reduction

- POS(d/B): amount of objects belonging to lower approximations of decision classes
- Ind(d/B) = Disc(B∪{d}) Disc(B) where
 Disc(C) = |{(x,y): a(x)≠a(y) for some a∈C}|
- Relative Gain R(d/B) =

 $\max_{i} \frac{\text{probability of the i-th decision class induced by r}}{\text{prior probability of the i-th decision class}} \right)$

Approximate Attribute Reduction

We can specify a function

 $\mathsf{M}(\mathsf{d}/) \colon \mathsf{P}(\mathsf{A}) \to \ \mathfrak{R}$

expressing a degree of dependency of d from particular attribute subsets

■ B \subseteq A is an (M, ϵ)-approximate reduct, iff M(d/B) ≥ (1- ϵ)M(d/A)

and none of its proper subsets satisfies it

■ It is important for M to hold the following: $M(d/B) \ge M(d/C)$ $C \subseteq B$

Attribute Reduction based on o-GA

- Genetic level, where each chromosome encodes a permutation T of attributes
- Heuristic level, where permutations
 T are put into the following algorithm:

1. For T: $\{1, ..., |A|\} \rightarrow \{1, ..., |A|\}$, let $B_T = A$; 2. For i = 1 to |A| repeat steps 3 and 4; 3. Let $B_T \leftarrow B_T \setminus \{a_{T(i)}\}$; 4. If $M(d/B_T) < (1-\epsilon) M(d/A)$, undo step 3;

Here we can put a failure of arbitrary constraint for preserving information

Reducts mapped by most permutations

- Those with least cardinality
- Those with least intersections with others
- A good basis for ensemble construction?

The Case Study of MRI Brain Segmentation

The source of conditional attributes Decision T1 T2 PD Phantom Image: Constraint of the source of conditional attributes Image: Constraint of the source of the sour

(relaxation time 1) (relaxation time 2) (proton density)

(tissue type)

The Resulting Decision Table

	edge_T1	edge_T2	edge_PD	hcMag_T1_3	hcMag_T2_3	hcMag_PD_3	hcNbr_T1_3	hcNbr_T2_3	hcNbr_PD_3	hcMag_T1_5	hcMag_T2_5	hcMag_PD_5	hcNbr_T1_5	hcNbr_T2_5	hcNbr_PD_5	somMag_T1	somMag_T2	somMag_PD	somNbr_T1	somNbr_T2	somNbr_PD	mask	dec
voxel(80;18)	0	0	1	2	2	1	2	2	1	1	2	1	1	2	1	1	2	1	1	2	1	1	WM
voxel(81;18)	0	0	1	2	2	1	2	2	1	1	2	1	1	2	1	1	3	1	1	3	1	1	WM
voxel(82;18)	0	1	1	2	2	1	2	2	1	1	2	1	1	2	1	1	3	2	1	3	1	1	WM
voxel(83;18)	0	1	1	2	2	1	2	2	1	1	2	1	1	2	1	1	3	1	1	3	1	1	WM
voxel(114;23)	1	0	1	2	2	2	2	2	2	1	2	2	1	2	2	1	3	3	1	3	3	1	WM
voxel(115;23)	1	1	1	2	2	2	2	2	2	1	2	2	1	2	2	1	3	3	1	3	3	1	WM
voxel(116;23)	1	1	1	2	2	2	2	1	1	1	2	2	1	1	1	1	3	2	1	1	1	1	WM
voxel(62;24)	1	1	1	2	2	1	2	2	2	1	2	1	1	2	2	1	3	2	1	2	3	1	WM
voxel(63;24)	1	0	1	2	2	2	2	2	2	1	2	2	1	2	2	2	3	3	1	2	3	1	WM
voxel(64;24)	1	1	1	3	2	2	2	2	2	1	2	2	1	2	2	2	3	3	2	2	3	1	GM
voxel(65;24)	1	1	0	3	2	2	3	1	2	1	2	2	1	1	2	2	2	3	2	1	3	1	GM
voxel(66;24)	1	1	1	3	1	2	3	1	2	2	1	2	1	1	2	2	2	2	2	1	2	1	GM
voxel(67;24)	1	0	1	3	1	2	3	1	2	2	1	2	2	1	2	3	1	2	3	1	2	1	CSF

Data Quality & Information Preservence

The Case Study of Survival Analysis

$\left[\begin{array}{c} u \end{array} \right]$	#	ttr	st_l	st_{cr}	loc	$ [u]_C $	$ [u]_C \cap def $	$ [u]_C \cap unk $	$ [u]_C \cap suc $
0	1	only	T3	cN1	larynx	25	15	4	6
4	1	after	T3	cN1	larynx	38	8	18	12
$\left 24 \right $	1	radio	T3	cN1	arynx	23	6	7	10
28	1	after	T3	cN0	throat	18	4	8	6
57	1	after	T4	cN1	larynx	32	12	14	6
91	1	after	T3	cN1	throat	35	5	16	14
152	1	only	T3	cN0	larynx	27	9	14	4
255	1	after	T3	cN0	arynx	15	2	6	7
493	1	after	T3	cN1	other	19	6	7	6
552	2	after	T4	cN2	larynx	14	6	3	5

Decision values take the form of probability distributions of defeat / success / unknown!

For each u∈U we can calculate rough membership distribution of the form

$$\mu_d^C(u) = \left\langle \frac{\left| \left[u \right]_C \cap def \right|}{\left| \left[u \right]_C \right|}, \frac{\left| \left[u \right]_C \cap unk \right|}{\left| \left[u \right]_C \right|}, \frac{\left| \left[u \right]_C \cap suc \right|}{\left| \left[u \right]_C \right|} \right\rangle$$

 During the reduction process, we want to discern between only these object pairs, which induce rough memership distributions too far from each other

Rules – cliques of elements in the decision space, which are well-described by conjunctions of attribute descriptors

- The theory of rough sets founded in early 80-ties by Prof. Pawlak provides the means for handling incompleteness and uncertainty in large data sets
- In the process of knowledge discovery, one can search for *decision reducts*, which are irreducible subsets of attributes determining decision values
- Dependencies in data can be expressed in terms of, e.g., discernibility or rough set approximations
- There are also rough-set-inspired computational models, such as rough clustering, rough SQL etc.

An Ensemble of Decision Reducts

- A family of reducts that all together contain many attributes but having small amount of attributes repeating in different reducts
- Ensembles of classifiers diversity improves predictive performance
- Knowledge bases more complete knowledge about data dependencies
- Domain experts lower risk of removing important information from decision model

Bireducts – subsets of attributes paired with subsets of objects, for which the corresponding classifiers work well

Definition (Decision bireduct)

Let $\mathbb{A} = (U, A \cup \{d\})$ be a decision system. A pair (B, X), where $B \subseteq A$ and $X \subseteq U$, is called a decision bireduct, if and only if B discerns all pairs $i, j \in X$ where $d(i) \neq d(j)$, and the following properties hold:

- There is no $C \subsetneq B$ such that C discerns all pairs $i, j \in X$ where $d(i) \neq d(j)$;
- One of the is no Y ⊋ X such that B discerns all pairs i, j ∈ Y where d(i) ≠ d(j).

Some intuition

A decision bireduct (B, X) can be regarded as an inexact functional dependence linking the subset of attributes B with the decision d in a degree X, denoted by $B \Rightarrow_X d$. The objects in $U \setminus X$ can be treated as the outliers. The objects in X can be used to learn a classifier based on B from data.

An Illustrative Example

	Outlook	Temp.	Humid.	Wind	Sport?			
1	Sunny	Hot	High	Weak	No			
2	Sunny	Hot	High	Strong	No			
3	Overcast	Hot	High	Weak	Yes			
4	Rain	Mild	High	Weak	Yes			
5	Rain	Cold	Normal	Weak	Yes			
6	Rain	Cold	Normal	Strong	No			
7	Overcast	Cold	Normal	Strong	Yes			
8	Sunny	Mild	High	Weak	No			
9	Sunny	Cold	Normal	Weak	Yes			
10	Rain	Mild	Normal	Weak	Yes			
11	Sunny	Mild	Normal	Strong	Yes			
12	Overcast	Mild	High	Strong	Yes			
13	Overcast	Hot	Normal	Weak	Yes			
14	Rain	Mild	High	Strong	No			

({O,T,W},{1-14}) ({O,W},{1-8,10,12-14}) ← ({O,T},{1-3,5,7-9,12-14}) ({O,H},{1-5,7-13}) ({O,W},{3-7,9-14}) ({W},{2-6,9-10,13-14}) ({O,H,W},{1-14}) ({T,W},{2-3,5-6,8-9,13-14}) ({H},{3-5,7,9-13}) ({T,W},{1-2,4-5,7,9-10,14}) ({T,H,W},{2-3,5,7-13}) ({H,T},{1-2,4-5,7,9-13}) ({O},{1-5,7-8,10,12-13}) ({H,W},{1-2,5-6,8-10,13-14}) ({T},{1-2,4,6,10-12})

Boolean Representation of Bireducts

Theorem (Bireducts – Boolean representation)

Let $\mathbb{A} = (U, A \cup \{d\})$ be a decision system. Consider the following Boolean formula with variables \overline{i} , i = 1, ..., |U|, and \overline{a} , $a \in A$:

$$\tau^{bi}_{\mathbb{A}} = \bigwedge_{i,j:\,d(i)\neq d(j)} \left(i \lor j \lor \bigvee_{a:\,a(i)\neq a(j)} a \right)$$

An arbitrary pair (B, X), $B \subseteq A$, $X \subseteq U$, is a decision bireduct, if and only if the Boolean formula $\bigwedge_{a \in B} a \land \bigwedge_{i \notin X} i$ is the prime implicant for $\tau_{\mathbb{A}}^{bi}$.

$CNF \Rightarrow DNF$

$$\begin{aligned} \tau^{bi}_{\mathbb{A}} &\equiv \\ &\equiv (\overline{1} \lor \overline{3} \lor \overline{0}) \land (\overline{1} \lor \overline{4} \lor \overline{0} \lor \overline{T}) \land \dots \land (\overline{13} \lor \overline{14} \lor \overline{0} \lor \overline{T} \lor \overline{H} \lor \overline{W}) \\ &\equiv (\overline{0} \land \overline{T} \land \overline{W}) \lor (\overline{0} \land \overline{W} \land \overline{9} \land \overline{11}) \lor (\overline{0} \land \overline{T} \land \overline{4} \land \overline{6} \land \overline{10} \land \overline{11}) \lor \dots \end{aligned}$$

Connections with Approximate Reducts

- Consider the following family of subsets of U:
 X(B) = { X ⊆ U: (B,X) is a decision bireduct }
- Consider:

 $Max(d/B) = max \{ |X|/|U|: X \in \boldsymbol{X}(B) \}$

• It equals: $\sum_{rules \ r \ induced \ by \ B} \left(\frac{number \ of \ objects \ recognizable \ by \ r}{number \ of \ objects \ in \ U} * \right)$

 $\max_{i} \text{ probability of the i-th decision class induced by r} \Big)$

■ B is a (Max,ε)-approximate reduct, iff $\exists X \subseteq U$ such that (B,X) is a bireduct and $|X|/|U| \ge 1 - ε$

"Lattices" of Bireducts

empty empty

1-2,4,6,10-12 {T} 2-6,9-10,13-14 {W} 3-5,7,9-13 {H} 1-5,7-8,10,12 {O}

	1-8,10,12-14	1-3,5,7-9,12-14	1-5,7-13	3-7,9-14
	{O,W}	{O,T}	{O,H}	{O,W}
2-3,5-6,8-9,13-14	1-2,4-5,7,9-10,14	1-2,4-5,7,9-13	1-2,5-6,8-10,13-14	
{T,W}	{T,W}	{H,T}	{H,W}	

Ensembles of Decision Bireducts

 Better control of deficiencies of local classifiers based on particular bireducts in the ensemble

 Good ensembles require accurate but diverse predictions.

Permutation-based Bireduct Generation

```
Input: \sigma : {1, ..., n + m} \rightarrow {1, ..., n + m}, n = |A|, m = |U|
   Output: (B, X), B \subseteq A, X \subseteq U
B \leftarrow A, X \leftarrow \emptyset;
                                      Each σ leads to bireduct
for i = 1 to n + m do
                                         and each bireduct can be
   if \sigma(i) \leq n then
       if B \setminus \{a_{\sigma(i)}\} discerns X
                                         reached by at least one \sigma
       then
                                      Random generation of
         B \leftarrow B \setminus \{a_{\sigma(i)}\}
       end
                                          permutations can lead
   end
                                         to diversified bireducts
   else
       if B discerns X \cup \{\sigma(i) - n\}
                                      For both representation
       then
                                         and efficiency reasons,
           X \leftarrow X \cup \{\sigma(i) - n\}
       end
                                         granulation of objects
    end
                                         and attributes is needed
end
return (B, X)
                                                                     INFOBR GHT
```

Toward Feature Selection on Streams

- Consider (B,X), where X is a buffer of objects that occurred most recently in a data stream
 - If the next x is contradictory with X subject to B, we can remove the oldest contradictory objects from X and/or add some attributes to B to be able to add x
 - If the next x can be added to X subject to B, we can decrease B in order to avoid too rapid growth of X
- This leads to stream bireducts (B,X), where X has no "holes" with respect to the data stream
- Such pairs (B,X) can be stored as <u>information</u> <u>granules</u> for further steps of stream analysis

Selected Papers about Attribute Reduction

- S. Widz, D. Ślęzak: Rough Set Based Decision Support Models Easy to Interpret. In: Rough Sets: Selected Methods and Applications in Management & Engineering. Springer, 95-112 (2012)
- A. Janusz, D. Ślęzak: Utilization of Attribute Clustering Methods for Scalable Computation of Reducts from High-Dimensional Data. FedCSIS 2012: 295-302
- D. Ślęzak, P. Betliński: A Role of (Not) Crisp Discernibility in Rough Set Approach to Numeric Feature Selection. AMLTA 2012
- D. Ślęzak, A. Janusz: Ensembles of Bireducts: Towards Robust Classification and Simple Representation. FGIT 2011: 64-77
- D. Ślęzak: Rough Sets and Functional Dependencies in Data: Foundations of Association Reducts. Tr. Comp. Sci. 5: 182-205 (2009)
- D. Ślęzak: Rough Sets and Few-Objects-Many-Attributes Problem: The Case Study of Analysis of Gene Expression Data Sets. FBIT 2007: 437-442
- D. Ślęzak, J. Wróblewski: Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data. RSKT 2007: 316-323
- S. Widz, D. Ślęzak: Approximation Degrees in Decision Reduct-based MRI Segmentation. FBIT 2007: 431-436
- D. Ślęzak, W. Ziarko: The Investigation of the Bayesian Rough Set Model. Int. J. Approx. Reasoning. 40(1-2): 81-91 (2005)
- J.G. Bazan, A. Skowron, D. Ślęzak, J. Wróblewski: Searching for the Complex Decision Reducts: The Case Study of the Survival Analysis. ISMIS 2003: 160-168

THANK YOU VERY MUCH!!! THIS CONCLUDES THE FIRST PART OF MY TALK

slezak@mimuw.edu.pl slezak@infobright.com www.roughsets.org

