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TU-games
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TU-games

◮ N = {1, 2, . . . , n} set of players, S ∈ 2N coalition of players

◮ Transferable Utility (TU) game v : 2N → R s.t. v(∅) = 0
assigns to each coalition S its worth v(S)

◮ A game is convex (or supermodular) if for all S ,T ⊆ N,

v(S ∪ T ) + v(S ∩ T ) > v(S) + v(T )

M. Grabisch c©2013 The core of games with restricted cooperation



The core of a game

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑
i∈S xi .
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The core of a game

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑
i∈S xi .

◮ Let v be a game on N. The core of v is:

core(v) = {x ∈ R
N | x(S) > v(S),∀S ⊆ N, x(N) = v(N)}
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◮ The core is a closed convex bounded polyhedron whenever
nonempty.
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The core of a game

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑
i∈S xi .

◮ Let v be a game on N. The core of v is:

core(v) = {x ∈ R
N | x(S) > v(S),∀S ⊆ N, x(N) = v(N)}

◮ The core is a closed convex bounded polyhedron whenever
nonempty.

◮ A collection B of nonempty sets is balanced if there exist
λS > 0 for all S ∈ B such that

∑

S∈B
S∋i

λS = 1, ∀i ∈ N
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The core of a game

◮ x ∈ R
N (payoff vector). Notation: x(S) =

∑
i∈S xi .

◮ Let v be a game on N. The core of v is:

core(v) = {x ∈ R
N | x(S) > v(S),∀S ⊆ N, x(N) = v(N)}

◮ The core is a closed convex bounded polyhedron whenever
nonempty.

◮ A collection B of nonempty sets is balanced if there exist
λS > 0 for all S ∈ B such that

∑

S∈B
S∋i

λS = 1, ∀i ∈ N

◮ (Bondareva 63, Shapley 67) core(v) is nonempty iff v is
balanced:

v(N) >
∑

S∈B

λSv(S)

for all balanced collections B with weights λS .
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Marginal vectors and the Weber set

◮ To each permutation σ on N we assign the sequence of sets
∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = N (maximal chain) defined
by

S1 = {σ(1)}

...

Si = {σ(1), σ(2), . . . , σ(i)}
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Marginal vectors and the Weber set

◮ To each permutation σ on N we assign the sequence of sets
∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = N (maximal chain) defined
by

S1 = {σ(1)}

...

Si = {σ(1), σ(2), . . . , σ(i)}

◮ Let v be a game. To each permutation σ we assign a
marginal worth vector mσ in R

N by:

mσ

σ(i) := v(Si) − v(Si−1)

= v(Si−1 ∪ σ(i)) − v(Si−1)
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Marginal vectors and the Weber set

◮ To each permutation σ on N we assign the sequence of sets
∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = N (maximal chain) defined
by

S1 = {σ(1)}

...

Si = {σ(1), σ(2), . . . , σ(i)}

◮ Let v be a game. To each permutation σ we assign a
marginal worth vector mσ in R

N by:

mσ

σ(i) := v(Si) − v(Si−1)

= v(Si−1 ∪ σ(i)) − v(Si−1)

◮ The Weber set is the convex hull of all marginal vectors
W(v) := conv(mσ | σ ∈ S(N))
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Example: N = {1, 2, 3},
maximal chain C = ∅, {2}, {1, 2}, {1, 2, 3} (denoted ∅, 2, 12, 123),
hence permutation σ is 2,1,3

∅

123

1 2 3

12 13 23

mσ

1 = v(12) − v(2),
mσ

2 = v(2),
mσ

3 = v(123) − v(12))

M. Grabisch c©2013 The core of games with restricted cooperation



The core and the Weber set

◮ The following inclusion always holds

core(v) ⊆ W(v)
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The core and the Weber set

◮ The following inclusion always holds

core(v) ⊆ W(v)

Theorem
(Shapley 1971, Edmonds 1970, Ichiishi 1981) The following are
equivalent.

1. v is convex

2. All marginal vectors mσ, σ ∈ S(N) belong to the core

3. core(v) = conv({mσ}
σ∈S(N))

4. ext(core(v)) = {mσ}
σ∈S(N).
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Games with restricted cooperation

◮ In a classical TU-game, any coalition is supposed to form. In
practice, this is not always a reasonable assumption.
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◮ In a classical TU-game, any coalition is supposed to form. In
practice, this is not always a reasonable assumption.

◮ →֒ TU-games with restricted cooperation: some coalitions are
unfeasible (Myerson 77, Aumann & Drèze 74, Owen 77,
Faigle 89).
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Games with restricted cooperation

◮ In a classical TU-game, any coalition is supposed to form. In
practice, this is not always a reasonable assumption.

◮ →֒ TU-games with restricted cooperation: some coalitions are
unfeasible (Myerson 77, Aumann & Drèze 74, Owen 77,
Faigle 89).

◮ A game with restricted cooperation (F , v) is a mapping
v : F → R satisfying v(∅) = 0, and F is a subcollection of
2N , which contains ∅ and N (set system).

◮ Many structures are possible for F : antimatroids, convex
geometries, lattices, regular set systems, weakly union-closed
set systems, etc.

◮ We mainly focus on distributive lattices.
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Set systems closed under union and intersection

(considered by Faigle & Kern 92, Derks et al.)

◮ Essentially, they are distributive lattices generated by a poset
(N,�):

F = O(N,�)

where O(·) is the set of downsets of some poset (Birkhoff
theorem)

1

2

3

4

∅

1 3

123

3413

134

1234
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Weakly union-closed set systems

(considered by Algaba 98, Faigle & G. 2010)

◮ A set system F is weakly union-closed if
A,B ∈ F , A ∩ B 6= ∅ implies A ∪ B ∈ F .
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Weakly union-closed set systems

(considered by Algaba 98, Faigle & G. 2010)

◮ A set system F is weakly union-closed if
A,B ∈ F , A ∩ B 6= ∅ implies A ∪ B ∈ F .

◮ The basis (collection of sets S in F which cannot be written
as S = A ∪ B , with A,B ∈ F , A,B 6= S , A ∩ B 6= ∅) permits
to reconstruct F .
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Weakly union-closed set systems

(considered by Algaba 98, Faigle & G. 2010)

◮ A set system F is weakly union-closed if
A,B ∈ F , A ∩ B 6= ∅ implies A ∪ B ∈ F .

◮ The basis (collection of sets S in F which cannot be written
as S = A ∪ B , with A,B ∈ F , A,B 6= S , A ∩ B 6= ∅) permits
to reconstruct F .

∅

2

12

124

12345

5

35

345

1234 1345

234

2345
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Regular set systems

(Honda & G. 2008, Lange & G. 2009) A set system F is regular if
all maximal chains from ∅ to N have length n.
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Regular set systems

(Honda & G. 2008, Lange & G. 2009) A set system F is regular if
all maximal chains from ∅ to N have length n.

∅

1

13

134

1234

234

23

2

∅

1 2

13 14 23 24

123 134 124234

1234

Figure: Left: regular but not weakly union-closed; Right: regular and
weakly union-closed but not a lattice, since 1 and 2 have no supremum

M. Grabisch c©2013 The core of games with restricted cooperation



Summary

regular set systems weakly union-closed systems

distributive lattices O(X )
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The core of games on set systems

◮ Let F be a set system, v a game on F . The core of v is
defined by

core(v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}
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The core of games on set systems

◮ Let F be a set system, v a game on F . The core of v is
defined by

core(v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}

◮ When nonempty, the core is a closed convex polyhedron.
However, it may be unbounded or without vertices.
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The core of games on set systems

◮ Let F be a set system, v a game on F . The core of v is
defined by

core(v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}

◮ When nonempty, the core is a closed convex polyhedron.
However, it may be unbounded or without vertices.

◮ The fundamental theorem on polyhedra asserts that a
polyhedron P defined by Ax 6 b, x ∈ R

N has the following
structure:

P = conv(x1, x2, . . . , xp) + cone(r1, . . . , rq)
where x1, . . . , xp are the extreme points (vertices) of P , and
r1, . . . , rq are the extremal rays (half-lines).
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The core of games on set systems

◮ Let F be a set system, v a game on F . The core of v is
defined by

core(v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}
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However, it may be unbounded or without vertices.

◮ The fundamental theorem on polyhedra asserts that a
polyhedron P defined by Ax 6 b, x ∈ R

N has the following
structure:
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r1, . . . , rq are the extremal rays (half-lines).

◮ Moreover, the conic part (called the recession cone) is defined
by Ax 6 0.
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The core of games on set systems

◮ Let F be a set system, v a game on F . The core of v is
defined by

core(v) = {x ∈ R
N | x(S) > v(S),∀S ∈ F , x(N) = v(N)}

◮ When nonempty, the core is a closed convex polyhedron.
However, it may be unbounded or without vertices.

◮ The fundamental theorem on polyhedra asserts that a
polyhedron P defined by Ax 6 b, x ∈ R

N has the following
structure:

P = conv(x1, x2, . . . , xp) + cone(r1, . . . , rq)
where x1, . . . , xp are the extreme points (vertices) of P , and
r1, . . . , rq are the extremal rays (half-lines).

◮ Moreover, the conic part (called the recession cone) is defined
by Ax 6 0.

◮ Therefore, we write
core(v) = conv(x1, x2, . . . , xp) + core(0)

M. Grabisch c©2013 The core of games with restricted cooperation



The core of games on set systems

Assuming core(v) is nonempty, we have
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The core of games on set systems

Assuming core(v) is nonempty, we have

1. core(v) has rays if and only if the recession cone core(0) is a
pointed cone different from {0}.

= +
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The core of games on set systems

Assuming core(v) is nonempty, we have

1. core(v) has rays if and only if the recession cone core(0) is a
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2. core(v) has no vertices if and only if core(0) contains a line.
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The core of games on set systems

Assuming core(v) is nonempty, we have

1. core(v) has rays if and only if the recession cone core(0) is a
pointed cone different from {0}.

2. core(v) has no vertices if and only if core(0) contains a line.

3. core(v) is a polytope (bounded polyhedron) if and only if
core(0) = {0}.
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Nonemptiness of the core

General result: core(v) is nonempty iff v is balanced
(replace 2N by F)
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Nonemptiness of the core

General result: core(v) is nonempty iff v is balanced
(replace 2N by F)

Case of distributive lattices:

Theorem
(G. & Sudhölter 2012) Let F = O(N,�). The following holds.

1. If (N,�) is connected, then for any game v on F ,
core(v) 6= ∅.

2. If (N,�) is not connected, then there exists a game v on F
such that core(v) = ∅.
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Pointedness of the core

By the theory of polyhedra, for a balanced game v , core(v) is
pointed iff the system

x(S) = 0, S ∈ F \ {∅}

has 0 as unique solution. If this condition is satisfied, we say that
the set system F is nondegenerate. In particular:
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Pointedness of the core

By the theory of polyhedra, for a balanced game v , core(v) is
pointed iff the system

x(S) = 0, S ∈ F \ {∅}

has 0 as unique solution. If this condition is satisfied, we say that
the set system F is nondegenerate. In particular:

1. The core is not pointed if |F \ {∅}| < n;
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Pointedness of the core

By the theory of polyhedra, for a balanced game v , core(v) is
pointed iff the system

x(S) = 0, S ∈ F \ {∅}

has 0 as unique solution. If this condition is satisfied, we say that
the set system F is nondegenerate. In particular:

1. The core is not pointed if |F \ {∅}| < n;

2. The core is not pointed if there exists a subset K ⊆ N,
|K | > 1, such that either K ⊆ S or K ∩ S = ∅ for every
nonempty S ∈ F ;
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Pointedness of the core

By the theory of polyhedra, for a balanced game v , core(v) is
pointed iff the system

x(S) = 0, S ∈ F \ {∅}

has 0 as unique solution. If this condition is satisfied, we say that
the set system F is nondegenerate. In particular:

1. The core is not pointed if |F \ {∅}| < n;

2. The core is not pointed if there exists a subset K ⊆ N,
|K | > 1, such that either K ⊆ S or K ∩ S = ∅ for every
nonempty S ∈ F ;

3. The core is pointed if F contains all singletons;
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Pointedness of the core

By the theory of polyhedra, for a balanced game v , core(v) is
pointed iff the system

x(S) = 0, S ∈ F \ {∅}

has 0 as unique solution. If this condition is satisfied, we say that
the set system F is nondegenerate. In particular:

1. The core is not pointed if |F \ {∅}| < n;

2. The core is not pointed if there exists a subset K ⊆ N,
|K | > 1, such that either K ⊆ S or K ∩ S = ∅ for every
nonempty S ∈ F ;

3. The core is pointed if F contains all singletons;

4. The core is pointed if F contains a chain of length n (e.g., if
F is regular, in particular, if F = O(N,�))
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Boundedness of the core

Lemma (Derks & Reijnierse 98)

The recession cone core(0) of a game on F is a linear subspace if
and only if F \ {∅,N} is a balanced collection or is empty.
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Boundedness of the core

Lemma (Derks & Reijnierse 98)

The recession cone core(0) of a game on F is a linear subspace if
and only if F \ {∅,N} is a balanced collection or is empty.

Since boundedness is equivalent to core(0) = {0}, we get:

Theorem
Let v be a game on a set system F . Then core(v) is bounded if
and only if F is nondegenerate and F \ {∅,N} is balanced.
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Extremal rays

Extremal rays are known if F = O(N) (distributive lattice).
Notation: i ≺· j means i ≺ j in (N,�), and there is no k such that
i ≺ k ≺ j .

Theorem
(Fujishige & Tomizawa 83, Derks & Gilles 95) Let F = O(N,�)
be a set system. The recession cone of the core reads

core(0) = cone(1{j} − 1{i} | i , j ∈ N such that j ≺· i).
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Extremal rays

Extremal rays are known if F = O(N) (distributive lattice).
Notation: i ≺· j means i ≺ j in (N,�), and there is no k such that
i ≺ k ≺ j .

Theorem
(Fujishige & Tomizawa 83, Derks & Gilles 95) Let F = O(N,�)
be a set system. The recession cone of the core reads

core(0) = cone(1{j} − 1{i} | i , j ∈ N such that j ≺· i).

Consequence: when F is a distributive lattice, the core of a game
is bounded if and only if F = 2N .
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Extremal rays: example

1

2

3

4

∅

1 3

123

3413

134

1234

Extremal rays are (0, 0, 1,−1), (1,−1, 0, 0) and (0,−1, 1, 0).
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Extreme points

◮ Extreme points are known in the case where F = O(N) and v
is convex.
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Extreme points

◮ Extreme points are known in the case where F = O(N) and v
is convex.

◮ S(F): set of permutations induced by maximal chains in F ,
i.e., linear extensions of �.
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Extreme points

◮ Extreme points are known in the case where F = O(N) and v
is convex.

◮ S(F): set of permutations induced by maximal chains in F ,
i.e., linear extensions of �.

◮ To each permutation σ ∈ S(F), we assign a marginal vector
mσ

mσ

σ(i) = v({σ(1), . . . , σ(i)}) − v({σ(1), . . . , σ(i − 1)})
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◮ Extreme points are known in the case where F = O(N) and v
is convex.

◮ S(F): set of permutations induced by maximal chains in F ,
i.e., linear extensions of �.

◮ To each permutation σ ∈ S(F), we assign a marginal vector
mσ

mσ

σ(i) = v({σ(1), . . . , σ(i)}) − v({σ(1), . . . , σ(i − 1)})

◮ The Weber set is defined by W (v) = conv(mσ, σ ∈ S(F)).
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Extreme points

◮ Extreme points are known in the case where F = O(N) and v
is convex.

◮ S(F): set of permutations induced by maximal chains in F ,
i.e., linear extensions of �.

◮ To each permutation σ ∈ S(F), we assign a marginal vector
mσ

mσ

σ(i) = v({σ(1), . . . , σ(i)}) − v({σ(1), . . . , σ(i − 1)})

◮ The Weber set is defined by W (v) = conv(mσ, σ ∈ S(F)).

Theorem
(Derks & Gilles 95, Faigle & Kern 2000) Let v be a game on
F = O(N,�). Then

core(v) ⊆ W (v) + core(0).
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Extreme points

Generalization of the Shapley-Ichiishi Theorem:

Theorem
(Fujishige & Tomizawa 83, Derks & Gilles 95) Let v be a game on
F = O(N,�). The following propositions are equivalent.

1. v is convex;

2. mσ ∈ core(v) for all σ ∈ S(F);

3. core(v) = W (v) + core(0);

4. ext(core(v)) = {mσ}
σ∈S(F).
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Bounded faces

◮ A p-dim face of a n-dim polyhedron P defined by Ax 6 b is a
set of points in P satisfying a subsystem of n − p independent
equalities A′x = b′.
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Bounded faces

◮ A p-dim face of a n-dim polyhedron P defined by Ax 6 b is a
set of points in P satisfying a subsystem of n − p independent
equalities A′x = b′.

◮ A vertex is a 0-dim face, an edge a 1-dim face, ...., a facet is
a (n − 1)-dim face, and P itself is the only n-dim face.
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Bounded faces

◮ A p-dim face of a n-dim polyhedron P defined by Ax 6 b is a
set of points in P satisfying a subsystem of n − p independent
equalities A′x = b′.

◮ A vertex is a 0-dim face, an edge a 1-dim face, ...., a facet is
a (n − 1)-dim face, and P itself is the only n-dim face.

◮ Hence, searching bounded faces of the core amounts to
turning some inequalities x(S) > v(S) into equalities
x(S) = v(S), so that the new polyhedron is bounded (has no
rays).
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Bounded faces

◮ We call normal collection any collection N ⊂ F of nonempty
sets such that

coreN (v) = {x ∈ R
N | x(S) > v(S) ∀S ∈ F ,

x(S) = v(S) ∀S ∈ N , and x(N) = v(N)}

is bounded. By convention, N 6∈ N . We call coreN (v) the
restricted core w.r.t. N (G. 2011).
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Bounded faces

◮ We call normal collection any collection N ⊂ F of nonempty
sets such that

coreN (v) = {x ∈ R
N | x(S) > v(S) ∀S ∈ F ,

x(S) = v(S) ∀S ∈ N , and x(N) = v(N)}

is bounded. By convention, N 6∈ N . We call coreN (v) the
restricted core w.r.t. N (G. 2011).

◮ Problem: many normal collections exist.
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Restricted cores

We say that an extremal ray r of core(0) is deleted by equality
x(S) = 0 if core{S}(0) = {x ∈ core(0) | x(S) = 0} does not
contain r any more.
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Restricted cores

We say that an extremal ray r of core(0) is deleted by equality
x(S) = 0 if core{S}(0) = {x ∈ core(0) | x(S) = 0} does not
contain r any more.

Lemma
(G. 2011) For i , j ∈ N such that j ≺· i , the extremal ray 1{j} − 1{i}
is deleted by equality x(S) = 0 if and only if S ∋ j and S 6∋ i .
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Restricted cores

We say that an extremal ray r of core(0) is deleted by equality
x(S) = 0 if core{S}(0) = {x ∈ core(0) | x(S) = 0} does not
contain r any more.

Lemma
(G. 2011) For i , j ∈ N such that j ≺· i , the extremal ray 1{j} − 1{i}
is deleted by equality x(S) = 0 if and only if S ∋ j and S 6∋ i .
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N = {13} is a normal collection, as well as N = {1, 3},
{1, 3, 13},...
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Normal collections

Fact: a normal collection contains at least h(N) subsets, where
h(N) is the height of (N,�).

Definition
Let (N,�) with h(N) > 0, and N = {N1, . . . ,Nq} be a normal
collection.

1. N is a minimal collection if no proper subcollection is normal.

2. N is a thin collection if no S ∈ N may be replaced by a
proper subset of S without losing normality.

3. N is a short collection if it contains exactly h(N) subsets.

4. N is a nested collection if it is a chain in F .

Note that any short normal collection is minimal, but the converse
is not true
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Normal collections

Examples of normal collections: the upwards collection (short,
minimal and thin), the downwards collection (short, minimal and
thin), the Grabisch-Xie collection (short, nested), etc.

Example

Consider the poset (N,�) of 9 elements depicted below.

9

1

4 5

7

2

3

6

8

The upwards collection is {123, 13456}, the downwards collection
is {13, 123456}, and the Grabisch-Xie collection is {123, 1234569}.
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The Weber set

◮ C: set of all maximal chains from ∅ to N in F .
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The Weber set

◮ C: set of all maximal chains from ∅ to N in F .

◮ We recall that to any maximal chain
C = {∅,S1,S2, . . . ,Sn = N} with Si := {σ(1), . . . , σ(i)}, we
associate the marginal vector mC ∈ R

N (or mσ)

mC
σ(i) := v(Si ) − v(Si−1), i ∈ N,

and the Weber set is the convex hull of all marginal vectors:
W(v) := conv(mC | C ∈ C).
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The Weber set

◮ C: set of all maximal chains from ∅ to N in F .

◮ We recall that to any maximal chain
C = {∅,S1,S2, . . . ,Sn = N} with Si := {σ(1), . . . , σ(i)}, we
associate the marginal vector mC ∈ R

N (or mσ)

mC
σ(i) := v(Si ) − v(Si−1), i ∈ N,

and the Weber set is the convex hull of all marginal vectors:
W(v) := conv(mC | C ∈ C).

◮ Let N be a normal nested collection. A restricted maximal
chain (w.r.t. N ) is a maximal chain from ∅ to N in O(N)
containing N .
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The Weber set

◮ C: set of all maximal chains from ∅ to N in F .

◮ We recall that to any maximal chain
C = {∅,S1,S2, . . . ,Sn = N} with Si := {σ(1), . . . , σ(i)}, we
associate the marginal vector mC ∈ R

N (or mσ)

mC
σ(i) := v(Si ) − v(Si−1), i ∈ N,

and the Weber set is the convex hull of all marginal vectors:
W(v) := conv(mC | C ∈ C).

◮ Let N be a normal nested collection. A restricted maximal
chain (w.r.t. N ) is a maximal chain from ∅ to N in O(N)
containing N .

◮ A restricted marginal vector is a (classical) marginal vector
whose underlying maximal chain is restricted.
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The Weber set

◮ C: set of all maximal chains from ∅ to N in F .

◮ We recall that to any maximal chain
C = {∅,S1,S2, . . . ,Sn = N} with Si := {σ(1), . . . , σ(i)}, we
associate the marginal vector mC ∈ R

N (or mσ)

mC
σ(i) := v(Si ) − v(Si−1), i ∈ N,

and the Weber set is the convex hull of all marginal vectors:
W(v) := conv(mC | C ∈ C).

◮ Let N be a normal nested collection. A restricted maximal
chain (w.r.t. N ) is a maximal chain from ∅ to N in O(N)
containing N .

◮ A restricted marginal vector is a (classical) marginal vector
whose underlying maximal chain is restricted.

◮ The (restricted) Weber set WN (v) is the convex hull of all
restricted marginal vectors w.r.t. N .

M. Grabisch c©2013 The core of games with restricted cooperation



The Weber set
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The Weber set

Theorem
(G. 2011) Consider N a nested normal collection. Then for every
game v on F = O(N), coreN (v) ⊆ WN (v).
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The Weber set

Theorem
(G. 2011) Consider N a nested normal collection. Then for every
game v on F = O(N), coreN (v) ⊆ WN (v).

Theorem
(G. 2011) Consider N a nested normal collection. If v is convex on
F = O(N), then coreN (v) = WN (v), i.e., the vertices of
coreN (v) are exactly the restricted marginal vectors w.r.t. N .

M. Grabisch c©2013 The core of games with restricted cooperation



The case of convex games

We set core
b(v) =

⋃
N coreN (v).
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The case of convex games

We set core
b(v) =

⋃
N coreN (v).

We denote by MNNC(F) the set of minimal nested normal
collections of F .

M. Grabisch c©2013 The core of games with restricted cooperation



The case of convex games

We set core
b(v) =

⋃
N coreN (v).

We denote by MNNC(F) the set of minimal nested normal
collections of F .

Theorem
(G. & Sudhölter 2013)

1. For any convex game v and any nested normal collection N
of F , coreN (v) 6= ∅. Moreover, if v is strictly convex, then
dim coreN (v) = n − |N | − 1.

2. For any convex game v,

core
b(v) =

⋃

N∈MNNC(F)

coreN (v)

Moreover, no term in the union is redundant if v is strictly
convex.

3. Let N be a normal collection of F . If v is strictly convex,
then coreN (v) 6= ∅ if and only if N is nested.
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Concluding remarks

◮ The core of games with restricted cooperation (on set
systems), when nonempty, is a closed convex polyhedron,
possibly unbounded, or without vertices. Its structure is
elucidated.
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systems), when nonempty, is a closed convex polyhedron,
possibly unbounded, or without vertices. Its structure is
elucidated.

◮ Bounded faces of the core are induced by normal collections.

◮ When the game is strictly convex, bounded faces are in
bijection with minimal nested normal collections.
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Concluding remarks

◮ The core of games with restricted cooperation (on set
systems), when nonempty, is a closed convex polyhedron,
possibly unbounded, or without vertices. Its structure is
elucidated.

◮ Bounded faces of the core are induced by normal collections.

◮ When the game is strictly convex, bounded faces are in
bijection with minimal nested normal collections.

◮ The union of all bounded faces, core
b(v), is called the

bounded core. It can be defined as

core
b(v) = {x ∈ core(v) | ∀j ≺· i ,∀ǫ > 0,

x + ǫ(1{i} − 1{j}) 6∈ core(v)}

and has been axiomatized (G. & Sudhölter 2012).
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