Visit to TU Dresden

Jan Laštovička (jan.lastovicka@upol.cz)

International Center for Information and Uncertainty
Palacky University, Olomouc, Czech Republic
 czech republic EUROPEAN UNION

Basic Information

- institution: Institute of Algebra, Technische Universität Dresden
- location: Dresden, Germany
- date: January 1st - January 31st, 2013
- guarantee: prof. Bernhard Ganter

Institute of algebra (TU Dresden)

Research

- Algebraic Structure Theory (formal concept analysis)
- Discrete Structures
- Methods of Applied Algebra
- Universal Algebra

Members

- 4 professors (Bernhard Ganter)
- 9 research and teaching assistants (Cynthia Glodeanu)
- 6 PhD students (Artem Revenko)

Study

- Bernhard Ganter, Cynthia Vera Glodeanu: Ordinal Factor Analysis (2012)
- Cynthia Vera Glodeanu: Tri-ordinal Factor Analysis (2013)
- Cynthia Vera Glodeanu: Conceptual Factors and Fuzzy Data (2012)
- Sergei Obiedkov: Modal Logic for Evaluating Formulas in Incomplete Contexts (2002)
- Artem Revenko, Sergei O. Kuznetsov: Finding Errors in New Object Intents (2012)

International seminar

Technische Universatat Dresten
Fackrichtung Mathematik

Presentation about concept lattices of incomplete data.

A repository of remarks of Ganter and Wille in a deptarmen's library.

Science

Begin to work on a paper with Cynthia Vera Glodeanu about concept lattices of incomplete triadic contexts.

Let

- $h: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ be a complete homomorphism of complete residuated lattices and
- $\left\langle K_{1}, K_{2}, K_{3}, Y\right\rangle$ be an L-tricontext.

Theorem

For each L-triconcept $\left\langle A_{1}, A_{2}, A_{3}\right\rangle \in \mathscr{T}\left(K_{1}, K_{2}, K_{3}, Y\right)$ it holds that $\left\langle h \circ A_{1}, h \circ A_{2}, h \circ A_{3}\right\rangle \in \mathscr{T}\left(K_{1}, K_{2}, K_{3}, h \circ Y\right)$ and the induced mapping
$h^{\mathscr{T}}: \mathscr{T}\left(K_{1}, K_{2}, K_{3}, Y\right) \rightarrow \mathscr{T}\left(K_{1}, K_{2}, K_{3}, h \circ Y\right)$ preserves arbitrary ik-joins and it holds
$h^{\mathscr{T}}\left(\left\langle A_{1}, A_{2}, A_{3}\right\rangle\right) \preceq_{i} h^{\mathscr{T}}\left(\left\langle B_{1}, B_{2}, B_{3}\right\rangle\right)=h\left(\left\langle A_{1}, A_{2}, A_{3}\right\rangle \preceq_{i}\left\langle B_{1}, B_{2}, B_{3}\right\rangle\right)$.
If h is injective, then so is $h^{\mathscr{T}}$.
If h is surjective, then so is $h^{\mathscr{T}}$.

Entrance to the institute of algebra.

