Eduard Bartl：Minimal Solutions of Fuzzy Relational Eq．：Probabilistic Algorithm

Introduction

generalized fuzzy relational equations（FREs）are equations of the form R ■ $S=T$ ，where R, S ，and T are binary fuzzy relations，and \square denotes a general composition introduced by Radim Belohlavek in［3］
problem：given two of the relations，determine the third one for which the equality R 回 $S=T$ holds
the aim of the current research：extension of the previous work on generalized FREs by developing method for constructing all minimal solutions and， consequently，for determining the whole solution set

Preliminaries

an aggregation structure $\left\langle\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}, \square\right\rangle$ ，where \mathbf{L}_{i} are complete lattices and $\square: L_{1} \times L_{2} \rightarrow L_{3}$ is a function which commutes with suprema in both arguments； define operations
${ }^{\circ} \square: L_{1} \times L_{3} \rightarrow L_{2}, \quad a_{1} \circ_{\square} a_{3}=\bigvee_{2}\left\{a_{2} \mid a_{1} \square a_{2} \leq_{3} a_{3}\right\}$ $\square \circ: L_{3} \times L_{2} \rightarrow L_{1}, a_{3} \square^{\circ} a_{2}=\bigvee_{1}\left\{a_{1} \mid a_{1} \square a_{2} \leq_{3} a_{3}\right\}$ $\stackrel{\text { op }}{\square} \mathrm{O}: L_{3} \times L_{2} \rightarrow L_{1}, \quad a_{3}{ }_{\square}^{\mathrm{op}} \circ a_{2}=\bigwedge_{1}\left\{a_{1} \mid a_{1} \square a_{2} \geq_{3} a_{3}\right\}$
consider two important examples of aggreg．struct．； in both cases，$\langle L, \wedge, \mathrm{~V}, \otimes, \rightarrow, 0,1\rangle$ is a complete residuated lattice；$L_{i}=L$ and \leq_{i} is either \leq or th dual of \leq
1． $\mathbf{L}_{1}=\langle L, \leq\rangle, \mathbf{L}_{2}=\langle L, \leq\rangle, \mathbf{L}_{3}=\langle L, \leq\rangle, \square=\otimes$ ：
$a_{1} \square_{\square} a_{3}=\bigvee\left\{a_{2} \mid a_{1} \otimes a_{2} \leq a_{3}\right\}=a_{1} \rightarrow a_{3}$ $a_{3} \square^{\circ} a_{2}=\bigvee\left\{a_{1} \mid a_{1} \otimes a_{2} \leq a_{3}\right\}=a_{2} \rightarrow a_{3}$

2． $\mathbf{L}_{1}=\langle L, \leq\rangle, \mathbf{L}_{2}=\left\langle L, \leq^{-1}\right\rangle, \mathbf{L}_{3}=\left\langle L, \leq^{-1}\right\rangle, \square=\rightarrow$ ： $a_{1} \circ \square a_{3}=\bigwedge\left\{a_{2} \mid a_{1} \rightarrow a_{2} \geq a_{3}\right\}=a_{1} \otimes a_{3}$ $a_{3} \square^{\circ} a_{2}=\bigvee\left\{a_{1} \mid a_{1} \rightarrow a_{2} \geq a_{3}\right\}=a_{3} \rightarrow a_{2}$
for fuzzy relations $R \in L_{1}^{X \times Y}, S \in L_{2}^{Y \times Z}$ ，let a fuzzy relation R 回 $S \in L_{3}^{X \times Z}$ be defined by

$$
(R \square S)(x, z)=\bigvee_{3 y \in Y}(R(x, y) \square S(y, z))
$$

product $\mathbb{0}$ generalizes both sup－t－norm product（ ${ }^{\circ}$ ） and inf－residuum product（4）：
for the setting of Example 1：R 回 $S=R \circ S$ for the setting of Example 2：R 回 $S=R \triangleleft S$
：：for $R \in L_{1}^{X \times Y}$ and $S \in L_{3}^{Y \times Z}$ ，let $R \triangleleft S \in L_{2}^{X \times Z}$ and $R_{\square} \varangle S \in L_{1}^{X \times Z}$ be defined by
$\left(R \unlhd_{\square} S\right)(x, z)=\bigwedge_{2 y \in Y}\left(R(x, y) \square_{\square} S(y, z)\right)$
$\left(R_{\square} \varangle S\right)(x, z)=\bigwedge_{1 y \in Y}\left(R(x, y) \square^{\circ} S(y, z)\right)$

Minimal Solutions

：assumption：$\left\langle\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}, \square\right\rangle$ be an aggreg．struct such that \square commutes with infima in the first arg．
：：scalar－by－scalar equation is expression

$$
\begin{equation*}
u \square s=t \tag{1}
\end{equation*}
$$

where $u \in L_{1}, s \in L_{2}, t \in L_{3}$
Theorem 1 If equation（1）is solvable then for each solution $r \in L_{1}$ we have $r \in\left[t_{\square}^{o p} \circ s, t_{\square^{\circ}} s\right]$ ．
：：vector－by－vector equation is expression

$$
\left(u_{1} \ldots u_{n}\right) \text { 回 }\left(\begin{array}{c}
s_{1} \tag{2}\\
\vdots \\
s_{n}
\end{array}\right)=t \text {, }
$$

where $\left(u_{j}\right) \in L_{1}^{Y},\left(s_{j}\right)^{-1} \in L_{2}^{Y}, t \in L_{3}, j \in J$
Theorem 2 If there is $j^{\prime} \in J$ such that $u_{j^{\prime}} \square s_{j^{\prime}}=t$ is solvable then equation（2）has a minimal solution $R=\left(r_{1} \ldots r_{n}\right)$ such that

$$
r_{j}= \begin{cases}t_{\square}^{\mathrm{op}} \circ s_{j} & \text { for } j=j^{\prime}, \\ 0_{1} & \text { otherwise. }\end{cases}
$$

$:$ vector－by－matrix equation is expression

$$
\left(u_{1} \ldots u_{n}\right) \square\left(\begin{array}{c}
s_{11} \ldots s_{1 p} \tag{3}\\
\vdots \cdots \\
s_{n 1} \ldots s_{n p}
\end{array}\right)=\left(t_{1} \ldots t_{p}\right),
$$

where $\left(u_{j}\right) \in L_{1}^{Y},\left(s_{j k}\right) \in L_{2}^{Y \times Z},\left(t_{k}\right) \in L_{3}^{Z}, j \in J, k \in K$
：equation（3）can be rewritten using the table \mathfrak{T}

$$
\mathfrak{T}_{j k}= \begin{cases}u_{j} \square s_{j k} & \text { for } j \in J \\ t_{k} & \text { for } j=n+1\end{cases}
$$

：：now，we need to suppose L_{1} is a chain and $\square^{\circ}={ }_{\square}^{\mathrm{op}}$
：：important result：when we put the greatest solution into the equation（3），the k－th column of \mathfrak{T} consist of the values equal to t_{k} or the values that are strictly smaller than t_{k} ；this allows us to binarize table \mathfrak{T} ： $\mathfrak{B}_{j k}=1$ if $\mathfrak{T}_{j k}=t_{k}, \mathfrak{B}_{j k}=0$ if $\mathfrak{T}_{j k}<{ }_{3} t_{k}$
：we say that $J_{\text {cov }} \subseteq J$ is a covering of the last row of \mathfrak{B} if $\max _{j \in J_{\text {cov }}} \mathfrak{B}_{j k}=1$ for all $k \in K$ ；we say that $J_{\text {cov }} \subseteq J$ is a minimal covering of the last row of \mathfrak{B} if
there is no covering J^{\prime} such that J^{\prime} there is no covering $J_{\text {cov }}^{\prime}$ such that $J_{\text {cov }}^{\prime} \subset J_{\text {cov }}$
Theorem 3 Let $\hat{R}=\left(\hat{r}_{1} \ldots \hat{r}_{n}\right)$ be the greatest solution \breve{R} a solvable equation（3）．Then every minimal solution $\breve{R}=\left(\breve{r}_{1} \ldots \breve{r}_{n}\right)$ of（3）is of the form

$$
\breve{r}_{j}= \begin{cases}\hat{r}_{j} & \text { for } j \in J_{\text {cov }}, \\ 0_{1} & \text { otherwise },\end{cases}
$$

where $J_{\text {cov }}$ is a minimal covering of the last row of \mathfrak{B} ．

Algorithm

：：algorithm requires the table \mathfrak{B} and returns a family of（almost）minimal coverings of the last row in \mathfrak{B}
$::$ let $J_{\text {cov }} \subseteq J$ denote a set of row－indices in table \mathfrak{B} representing an（almost）minimal covering，let $K_{\text {unc }} \subseteq K$ denote a set of uncovered column－indices of the last row in table \mathfrak{B} ，and let $\mathfrak{B}_{j} \subseteq K$ denote a set of column－indices representing the j－th row in table \mathfrak{B} ，i．e．

$$
k \in \mathfrak{B}_{j-} \text { iff } \mathfrak{B}_{j k}=1
$$

for all $k \in K$
：：the crucial part of algorithm is calculating a minima covering：in a given step of computation，the problem of finding a minimal covering can be dentified with the set cover problem
：：since the set cover problem is NP－hard optimization problem，we apply the greedy approach
：：such approach guarantees a known approximation ratio of the algorithm（note，the approximation ratio tells us how far the obtained solution is from a minimal solution in the worst case

Probabilistic algorithm for computing all minimal solutions based on greedy approach：
Require：binary table \mathfrak{B} of dimension $(n+1) \times p$ ，last row of \mathfrak{B} is full of 1 s
Ensure：family \mathcal{C} of（almost）minimal coverings of the last row in table \mathfrak{B}
$\mathcal{C} \leftarrow \emptyset$
$J \leftarrow\{1,2, \ldots, n\}$

repeat

$J_{\text {cov }} \leftarrow \emptyset$

$K_{\text {unc }} \leftarrow\{1,2, \ldots, p\}$
while $\left(K_{\text {a }} \neq \emptyset\right)$
e $\left(K_{\text {unc }} \neq \emptyset\right)$ and $\left(J_{\text {cov }} \neq J\right)$ do
select $j \in J$ for which $\mid \mathfrak{B}_{j} \cap K_{\text {unc }}$ is largest
$J_{\text {cov }} \leftarrow J_{\text {cov }} \cup\{j\}$

end while

if $K_{\text {unc }}=\emptyset$ then
randomly choose $j \in J_{\text {cov }}$
remove j－th row from table \mathfrak{B}
$J \leftarrow J \backslash\{j\}$
end if
end if
until $K_{\text {unc }} \neq$
until $K_{\text {unc }}$
return \mathcal{C}

Example

we assume a five－element Gödel chain and a vector－by－matrix sup－t－norm eq．$U \circ S=T$ ，where
$S=\left(\begin{array}{llll}0.50 & 0.50 & 0.25 & 0.50 \\ 1.00 & 1.00 & 0.00 & 0.25 \\ 1.00 & 0.50 & 0.00 & 0.00 \\ 0.25 & 0.75 & 0.00 & 0.25 \\ 0.75 & 0.00 & 0.75 & 0.75 \\ 0.25 & 0.50 & 0.00 & 1.00\end{array}\right), T=\left(\begin{array}{llll}0.75 & 0.75 & 0.25 & 0.50\end{array}\right)$
the equation is solvable with the greatest solution being

$$
\hat{R}=\left(\begin{array}{llllll}
1.00 & 0.75 & 0.75 & 1.00 & 0.25 & 0.50
\end{array}\right)
$$

：：tables \mathfrak{T} and \mathfrak{B} ，respectively：

$r_{1} \otimes s_{11}=0.50 \quad r_{1} \otimes s_{12}=0.50 \quad r_{1} \otimes s_{13}=\mathbf{0 . 2 5} \quad r_{1} \otimes s_{14}=\mathbf{0 . 5 0}$ $r_{2} \otimes s_{21}=0.75 \quad r_{2} \otimes s_{22}=0.75 \quad r_{2} \otimes s_{23}=0.00 \quad r_{2} \otimes s_{24}=0.25$ $r_{3} \otimes s_{31}=0.75 \quad r_{3} \otimes s_{32}=0.50 \quad r_{3} \otimes s_{33}=0.00 \quad r_{3} \otimes s_{34}=0.00$ $r_{4} \otimes s_{41}=0.25 \quad r_{4} \otimes s_{42}=0.75 \quad r_{4} \otimes s_{43}=0.00 \quad r_{4} \otimes s_{44}=0.25$ $r_{5} \otimes s_{51}=0.25 \quad r_{5} \otimes s_{52}=0.00 \quad r_{5} \otimes s_{53}=0.25 \quad r_{5} \otimes s_{54}=0.25$ | $r_{6} \otimes s_{61}=0.25$ | $r_{6} \otimes s_{62}=0.50$ | $r_{6} \otimes s_{63}=0.00$ | $r_{6} \otimes s_{64}=0.50$ |
| :---: | :---: | :---: | :---: |
| $t_{1}=0.75$ | $t_{2}=0.75$ | $t_{3}=0.25$ | $t_{4}=0.50$ |

Abstract

：minimal coverings：$\{1,2\},\{1,3,4\},\{2,5,6\},\{3,4,5,6\}$
minimal solutions of $U \circ S=T$
$\breve{R}_{1}=\left(\begin{array}{llllll}1.00 & 0.75 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\right)$
$\breve{R}_{2}=\left(\begin{array}{llllll}1.00 & 0.00 & 0.75 & 1.00 & 0.00 & 0.00\end{array}\right)$
$\breve{R}_{3}=\left(\begin{array}{llllll}0.00 & 0.75 & 0.00 & 0.00 & 0.25 & 0.50\end{array}\right)$
$\breve{R}_{4}=\left(\begin{array}{lllll}0.00 & 0.00 & 0.75 & 1.00 & 0.25 \\ 0.50 .50\end{array}\right.$

Future Research

：complexity issues，efficient computation of all

 solutions（removing duplicities）
References

european
social fund in social fund in the
czech republic

INVESTMENTS IN EDUCATION DEVELOPMENT

