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Introduction
:: generalized fuzzy relational equations (FREs) are

equations of the form R � S = T , where R, S, and T

are binary fuzzy relations, and � denotes a general
composition introduced by Radim Belohlavek in [3]

:: problem: given two of the relations, determine the
third one for which the equality R � S = T holds

:: the aim of the current research: extension of the
previous work on generalized FREs by developing a
method for constructing all minimal solutions and,
consequently, for determining the whole solution set

Preliminaries
:: an aggregation structure 〈L1,L2,L3,�〉, where Li are

complete lattices and � : L1 × L2→ L3 is a function
which commutes with suprema in both arguments;
define operations:

◦� : L1 × L3→ L2, a1 ◦� a3 =
∨

2{a2 | a1 � a2 ≤3 a3}
�◦ : L3 × L2→ L1, a3 �◦ a2 =

∨
1{a1 | a1 � a2 ≤3 a3}

op
�◦ : L3 × L2→ L1, a3

op
�◦ a2 =

∧
1{a1 | a1 � a2 ≥3 a3}

:: consider two important examples of aggreg. struct.;
in both cases, 〈L,∧,∨,⊗,→, 0, 1〉 is a complete
residuated lattice; Li = L and ≤i is either ≤ or the
dual of ≤

1. L1 = 〈L,≤〉, L2 = 〈L,≤〉, L3 = 〈L,≤〉, � = ⊗:

a1 ◦� a3 =
∨
{a2 | a1 ⊗ a2 ≤ a3} = a1→ a3

a3 �◦ a2 =
∨
{a1 | a1 ⊗ a2 ≤ a3} = a2→ a3

2. L1 = 〈L,≤〉, L2 = 〈L,≤−1〉, L3 = 〈L,≤−1〉, � =→:

a1 ◦� a3 =
∧
{a2 | a1→ a2 ≥ a3} = a1 ⊗ a3

a3 �◦ a2 =
∨
{a1 | a1→ a2 ≥ a3} = a3→ a2

:: for fuzzy relations R ∈ LX×Y
1 , S ∈ LY×Z

2 , let a fuzzy
relation R � S ∈ LX×Z

3 be defined by

(R � S)(x, z) =
∨

3 y∈Y (R(x, y) �S(y, z))

:: product � generalizes both sup-t-norm product (◦)
and inf-residuum product (/):
for the setting of Example 1: R � S = R ◦ S
for the setting of Example 2: R � S = R/S

:: for R ∈ LX×Y
1 and S ∈ LY×Z

3 , let R/� S ∈ LX×Z
2 and

R�/ S ∈ LX×Z
1 be defined by

(R/� S)(x, z) =
∧

2 y∈Y (R(x, y) ◦� S(y, z))

(R�/ S)(x, z) =
∧

1 y∈Y (R(x, y) �◦S(y, z))

Minimal Solutions
:: assumption: 〈L1,L2,L3,�〉 be an aggreg. struct.

such that � commutes with infima in the first arg.

:: scalar-by-scalar equation is expression

u� s = t, (1)

where u ∈ L1, s ∈ L2, t ∈ L3

Theorem 1 If equation (1) is solvable then for each
solution r ∈ L1 we have r ∈ [t op

�◦ s, t�◦ s].

:: vector-by-vector equation is expression

(
u1 . . .un

)
�

s1
...
sn

 = t, (2)

where (uj) ∈ LY
1 , (sj)

−1 ∈ LY
2 , t ∈ L3, j ∈ J

Theorem 2 If there is j′ ∈ J such that uj′� sj′ = t is
solvable then equation (2) has a minimal solution
R = (r1 . . . rn) such that

rj =

{
t

op
�◦ sj for j = j′,

01 otherwise.

:: vector-by-matrix equation is expression

(
u1 . . .un

)
�

s11 . . . s1p
... . . . ...

sn1. . .snp

 =
(
t1 . . .tp

)
, (3)

where (uj) ∈ LY
1 , (sjk) ∈ LY×Z

2 , (tk) ∈ LZ
3 , j ∈ J, k ∈ K

:: equation (3) can be rewritten using the table T:

Tjk =

{
uj � sjk for j ∈ J

tk for j = n + 1

:: now, we need to suppose L1 is a chain and �◦ = op
�◦

:: important result: when we put the greatest solution
into the equation (3), the k-th column of T consists
of the values equal to tk or the values that are
strictly smaller than tk; this allows us to binarize
table T: Bjk = 1 if Tjk = tk, Bjk = 0 if Tjk <3 tk

:: we say that Jcov ⊆ J is a covering of the last row of
B if maxj∈Jcov Bjk = 1 for all k ∈ K; we say that
Jcov ⊆ J is a minimal covering of the last row of B if
there is no covering J ′cov such that J ′cov ⊂ Jcov

Theorem 3 Let R̂ = (r̂1 . . . r̂n) be the greatest solution
of a solvable equation (3). Then every minimal solution
R̆ = (r̆1 . . . r̆n) of (3) is of the form:

r̆j =

{
r̂j for j ∈ Jcov,

01 otherwise,

where Jcov is a minimal covering of the last row of B.

Algorithm
:: algorithm requires the table B and returns a family

of (almost) minimal coverings of the last row in B

:: let Jcov ⊆ J denote a set of row-indices in table B
representing an (almost) minimal covering, let
Kunc ⊆ K denote a set of uncovered column-indices
of the last row in table B, and let Bj ⊆ K denote a
set of column-indices representing the j-th row in
table B, i.e.

k ∈Bj iff Bjk = 1

for all k ∈ K

:: the crucial part of algorithm is calculating a minimal
covering: in a given step of computation, the
problem of finding a minimal covering can be
identified with the set cover problem

:: since the set cover problem is NP-hard optimization
problem, we apply the greedy approach

:: such approach guarantees a known approximation
ratio of the algorithm (note, the approximation ratio
tells us how far the obtained solution is from a
minimal solution in the worst case)

Probabilistic algorithm for computing all minimal
solutions based on greedy approach:

Require: binary table B of dimension (n + 1)× p, last
row of B is full of 1s

Ensure: family C of (almost) minimal coverings of the
last row in table B
C ← ∅
J ← {1, 2, . . . , n}
repeat

Jcov ← ∅
Kunc← {1, 2, . . . , p}
while (Kunc 6= ∅) and (Jcov 6= J) do

select j ∈ J for which |Bj ∩Kunc| is largest
Jcov ← Jcov ∪ {j}
Kunc← Kunc \Bj

end while
if Kunc = ∅ then
C ← C ∪ {Jcov}
randomly choose j ∈ Jcov

remove j-th row from table B
J ← J \ {j}

end if
until Kunc 6= ∅
return C

Example
:: we assume a five-element Gödel chain and a

vector-by-matrix sup-t-norm eq. U ◦ S = T , where

S =



0.50 0.50 0.25 0.50
1.00 1.00 0.00 0.25
1.00 0.50 0.00 0.00
0.25 0.75 0.00 0.25
0.75 0.00 0.75 0.75
0.25 0.50 0.00 1.00


, T =

(
0.75 0.75 0.25 0.50

)

:: the equation is solvable with the greatest solution
being

R̂ =
(

1.00 0.75 0.75 1.00 0.25 0.50
)

:: tables T and B, respectively:

r1⊗s11 =0.50 r1⊗s12 =0.50 r1⊗s13 =0.25 r1⊗s14 =0.50

r2⊗s21 =0.75 r2⊗s22 =0.75 r2⊗s23 =0.00 r2⊗s24 =0.25

r3⊗s31 =0.75 r3⊗s32 =0.50 r3⊗s33 =0.00 r3⊗s34 =0.00

r4⊗s41 =0.25 r4⊗s42 =0.75 r4⊗s43 =0.00 r4⊗s44 =0.25

r5⊗s51 =0.25 r5⊗s52 =0.00 r5⊗s53 =0.25 r5⊗s54 =0.25

r6⊗s61 =0.25 r6⊗s62 =0.50 r6⊗s63 =0.00 r6⊗s64 =0.50

t1 =0.75 t2 =0.75 t3 =0.25 t4 =0.50

0 0 1 1
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

:: minimal coverings: {1, 2}, {1, 3, 4}, {2, 5, 6}, {3, 4, 5, 6}

:: minimal solutions of U ◦ S = T :

R̆1 = (1.00 0.75 0.00 0.00 0.00 0.00)

R̆2 = (1.00 0.00 0.75 1.00 0.00 0.00)

R̆3 = (0.00 0.75 0.00 0.00 0.25 0.50)

R̆4 = (0.00 0.00 0.75 1.00 0.25 0.50)

Future Research
:: complexity issues, efficient computation of all

solutions (removing duplicities)
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