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ABSTRACT

We prove that the well-known axiomatic system of MV-algebras is

not independent. The axiom of commutativity can be deleted and the

remaining axioms are shown to be independent.

We describe an independent axiomatic system for
MV-algebras. The concept of an MV-algebra was introduced
by C. C. Chang [1] as an axiomatization of the  Lukasiewicz
many-valued logic. The definition used in nowadays is taken
from the monograph [2] (with a different order of axioms):

DEFINITION

By an MV-algebra is meant an algebra A = (A;⊕,¬, 0) of
type (2, 1, 0) satisfying the following axioms

(M1) x⊕ 0 = x

(M2) ¬¬x = x

(M3) x⊕ y = y ⊕ x

(M4) (x⊕ y)⊕ z = x⊕ (y ⊕ z)

(M5) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

(M6) x⊕ ¬0 = ¬0.

We show that the axiomatic system (M1)–(M6) is redundant.

THEOREM

An algebra A = (A;⊕,¬, 0) of type (2, 1, 0) is an MV-algebra
if and only if it satisfies the axioms (M1), (M2), (M4), (M5),
(M6).

Proof

We need to show that (M3) follows from the axioms (M1),
(M2), (M4), (M5) and (M6). For this, take y = 0 and
substitute z by y in (M4) to obtain

(x⊕ 0)⊕ y = x⊕ (0⊕ y).

Applying (M1), we get
(1) x⊕ y = x⊕ (0⊕ y).
Further, take x = 0 and substitute y by x in (M5) to compute

¬(¬0⊕ x)⊕ x = ¬(¬x⊕ 0)⊕ 0

thus, applying (M1) and (M2), we obtain
(2) ¬(¬0⊕ x)⊕ x = x.

For the next step, we start with (2) where instead of all x is
0⊕ x. Thus we have

0⊕ x = ¬(¬0⊕ (0⊕ x))⊕ (0⊕ x).

The right hand side of the last identity can be reduced using
(1) twice and (2) as follows

¬(¬0⊕(0⊕x))⊕(0⊕x) = ¬(¬0⊕(0⊕x))⊕x = ¬(¬0⊕x)⊕x = x.

Therefore, we have
(3) 0⊕ x = x.

Now, put ¬(¬x⊕ y) instead of x in (M4) to obtain

¬(¬x⊕ y)⊕ (y ⊕ z) = (¬(¬x⊕ y)⊕ y)⊕ z.

Since
(¬(¬x⊕y)⊕y)⊕ z = (¬(¬y⊕x)⊕x)⊕ z = ¬(¬y⊕x)⊕ (x⊕ z)
by (M5) and (M4), we get

(4) ¬(¬x⊕ y)⊕ (y ⊕ z) = ¬(¬y ⊕ x)⊕ (x⊕ z).
For y = ¬0 in (M5) we compute

¬(¬x⊕ ¬0)⊕ ¬0 = ¬(¬¬0⊕ x)⊕ x.

From this, applying (M6), (M2) and (3), we have

¬0 = ¬(0⊕ x)⊕ x,

which, using (3) again, give us
(5) ¬0 = ¬x⊕ x.

Now, put ¬y instead of y and y instead of z in (4) to obtain

¬(¬x⊕ ¬y)⊕ (¬y ⊕ y) = ¬(¬¬y ⊕ x)⊕ (x⊕ y).

By (5) and (M2) we reduce this to

¬(¬x⊕ ¬y)⊕ ¬0 = ¬(y ⊕ x)⊕ (x⊕ y).

Using (M6), we have
(6) ¬0 = ¬(y ⊕ x)⊕ (x⊕ y).
Finally, we are going to prove that x⊕ y = y ⊕ x. Using (3)
and (M2) we compute

x⊕ y = 0⊕ (x⊕ y) = ¬¬0⊕ (x⊕ y).

Further, with (6) and (M5),

¬¬0⊕ (x⊕ y) = ¬(¬(y ⊕ x)⊕ (x⊕ y))⊕ (x⊕ y) =

= ¬(¬(x⊕ y)⊕ (y ⊕ x))⊕ (y ⊕ x)

which is equal to ¬¬0⊕ (y ⊕ x) by (6), where x is substituted
by y and vice versa. Since ¬¬0⊕ (y⊕x) = 0⊕ (y⊕x) = y⊕x,
by (M2) and (3), we are done. 2

THEOREM

The axioms (M1), (M2), (M4), (M5) and (M6) are
independent.

Proof

Denote by B the two-element set {0, 1}.

(I) Consider an algebra (B;⊕,¬, 0) where ⊕ is a constant
operation: x⊕ y = 0 for all x, y ∈ B and ¬0 = 0, ¬1 = 1. One
can easily check that this algebra satisfies (M2), (M4), (M5),
(M6) but not (M1) since 1⊕ 0 = 0 6= 1.

(II) Now, let (B;⊕) be a join-semilattice and ¬x = 1 for all
x ∈ B. Then (B;⊕,¬, 0) satisfies (M1), (M4), (M5) and (M6)
but, trivially, not (M2).

(III) Let C = ({0, 1, 2};⊕,¬, 0) be an algebra of type (2, 1, 0)
where the operation ⊕ and ¬ are defined by the following
tables:

⊕ 0 1 2

0 0 1 1
1 1 1 2
2 2 1 2

x 0 1 2

¬x 1 0 2

Evidently C satisfies (M1), (M2), (M6). We can show that
(M4) is not satisfied: take x = 0, y = 1, z = 2. Then

(0⊕ 1)⊕ 2 = 1⊕ 2 = 2 6= 1 = 0⊕ 2 = 0⊕ (1⊕ 2).

It remains to prove that C satisfies (M5).
(a) If y = 0 then (M5) is reduced to x = ¬(1⊕ x)⊕ x which is
plain to check.
(b) If y = 1 then (M5) is 1 = ¬(0⊕ x)⊕ x which one can
easily check.
(c) For y = 2 is (M5) as follows:
¬(¬x⊕ 2)⊕ 2 = ¬(¬2⊕ x)⊕ x which also holds for each
x ∈ {0, 1, 2}.

(IV) Let D = ({0, 1, 2};⊕,¬, 0) be an algebra of type (2, 1, 0)
where the operations ⊕ and ¬ are defined by the following
tables:

⊕ 0 1 2

0 0 1 0
1 1 1 1
2 2 1 2

x 0 1 2

¬x 1 0 2

Evidently D satisfies (M1), (M2) and (M6). We can show
that (M5) is not satisfied: take x = 0, y = 2. Then

¬(¬0⊕2)⊕2 = ¬(1⊕2)⊕2 = ¬1⊕2 = 0 6= 2 = ¬¬2 = ¬(¬2⊕0)⊕0.

It remains to prove that D satisfies (M4).
(a) If z = 0 or z = 2 then (M4) is reduced to x⊕ y = x⊕ y

which is always true.
(b) If z = 1 then (M4) is (x⊕ y)⊕ 1 = x⊕ (y ⊕ 1) which is
evidently true.

(V) Finally, let (B;⊕) be a join-semilattice and ¬ be the
identity mapping on B. Then clearly (M1), (M2) and (M4)
are satisfied. To prove (M5) we mention that for x = y it is
trivial as well as for the general case {x, y} = {0, 1} since

¬(¬1⊕ 0)⊕ 0 = 1⊕ 0 = 1 = 1⊕ 1 = ¬(¬0⊕ 1)⊕ 1.

It remains to show that (M6) is violated. For this, take x = 1.

Then clearly the left-hand side of (M6) equals to 1 but the
right-hand side is 0. 2

Open problem

It is an open problem whether another axiom, different from
(M3), can be removed from (M1)–(M6) to obtain an
axiomatic system of MV-algebras. After a preliminary
inspection, the author conjectures that this is not possible.
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