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Introduction
This poster contributes to the field of reasoning with graded
if-then rules and presents a link between two logic systems:
fuzzy logic programming (FLP) in sense of Vojtáš and fuzzy
attribute logic (FAL) in sense of Belohlavek and Vychodil.
Both the systems play an important role in computer science
and artificial intelligence as they can be used for approximate
knowledge representation and inference, description of
dependencies found in data, representing approximate
constraints in relational similarity-based databases, etc.

Although these systems are technically different and were
developed to serve different purposes, they share common
features:
:: they are based on residuated structures of truth degrees,

:: use truth-functional interpretation of logical connectives,

:: can describe if-then dependencies in problem domains
while treating with inexact matches,

:: models of theories form closure systems and semantic
entailment can be expressed by means of least models.

It is therefore appealing to look closer at their mutual
relationship. Furthermore, a possible link between the two
systems can bring forth some new results.

Residuated Structures

We consider a complete lattice L = 〈L,∧,∨, 0, 1〉 with L

representing a set of degrees (bounded by 0 and 1 representing
the full falsity and full truth) and the corresponding order ≤.
In order to express truth functions of general logical
connectives, we assume that L is equipped by a collection of
pairs of the form 〈⊗,→〉 such that 〈L,⊗, 1〉 is a commutative
monoid, and ⊗ and → satisfy the adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (1)

for any a, b, c ∈ L. As usual, ⊗ and → serve as truth functions
of binary logical connectives “fuzzy conjunction” and “fuzzy
implication”. If ⊗ and → satisfy (1), then
L = 〈L,∧,∨,⊗,→, 0, 1〉 is called a complete residuated lattice.
Note that there are complete lattices that cannot be equipped
with adjoint operations. On the other hand, there are
complete lattices with multiple possible adjoint operations.

An L-set A in universe U is a map A : U → L, A(u) being
interpreted as “the degree to which u belongs to A”. LU

denotes the collection of all L-sets in U . By {a/u} we denote
an L-set A in U such that A(u) = a and A(v) = 0 for v 6= u.
An L-set A ∈ LU is called crisp if A(u) ∈ {0, 1} for all u ∈ U .

For a ∈ L and A ∈ LU , we define L-sets a⊗ A by
(a⊗A)(u) = a⊗A(u) for all u ∈ U . For A,B ∈ LU , we define
a subsethood degree of A in B:

S(A,B) =
∧
u∈U
(
A(u)→ B(u)

)
.

Fuzzy Attribute Logic

Let L be a complete residuated lattice and Y be a nonempty
set of attributes. A fuzzy attribute implication (FAI) is an
expression Ai B, where A,B ∈ LY . For an L-set M ∈ LY of
attributes, we define a degree ||Ai B||M ∈ L to which
Ai B is true in M by

||Ai B||M = S(A,M)∗→ S(B,M),

where ∗ is an unary operation on L satisfying: (i) 1∗ = 1,
(ii) a∗ ≤ a, (iii) (a→ b)∗ ≤ a∗→ b∗, and (iv) a∗∗ = a∗ for all
a, b ∈ L. The operation ∗ is called a hedge and can be seen as
a truth function of a connective “very true”. We use ∗ as a
parameter of the interpretation of Ai B.

We consider semantic entailment based on satisfaction of
FAIs in models. Recall that M is a model of an L-set T of
FAIs if T (Ai B) ≤ ||Ai B||M for all A,B ∈ LY . Denoting
the set of all models of T by Mod(T ), we define a degree
||Ai B||T to which Ai B semantically follows from T by

||Ai B||T =
∧
M∈Mod(T ) ||Ai B||M .

Fuzzy Logic Programming

According to Vojtáš, we consider a complete lattice L on the
unit interval with multiple adjoint operations. A language L
for a fuzzy logic program (FLP) is given by a finite nonempty
set R of relation symbols, a finite set F of function symbols
and a denumerable set of variables. Moreover, L also contains
symbols for binary logical connectives
:: c1,c2, . . . (fuzzy conjunctions),

:: i1,i2, . . . (fuzzy implications),

:: and symbols for aggregations ag1,ag2, . . .

Terms, formulas, substitutions and theories are defined as
usual. A definite program P is a theory such that
:: finitely many formulas have assigned a nonzero degree,

:: assigned degrees are rational numbers from [0, 1],

:: each formula with a nonzero degree is either atomic or in
the form ψ

i

ϕ, where ψ is atomic and ϕ does not
contain any implication.

Notions of a Herbrand universe, a Herbrand base and a
structure for P are defined as usual. For a structure M , M(χ)
is interpreted as a degree to which the atomic ground formula
χ is true under M . The notion of a formula being true in M

can be extended to all formulas in an obvious way.

Structure M is called a model for theory T if T (χ) ≤M(χ)
for each formula χ. The collection of all models of T will be
denoted by Mod(T ). A pair 〈a, θ〉 consisting of a ∈ (0, 1] and
a substitution θ is a correct answer for a program P and a
query ϕ if M(ϕθ) ≥ a for each M ∈Mod(P ).

Representing FAIs by FLPs
Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice
on the real unit interval in this section. We also consider only
FAIs of the form Ai B, where both A and B are finite (i.e.,
there are finitely many attributes y ∈ Y such that A(y) > 0 or
B(y) > 0). We call these fuzzy attribute implications finitely
presented FAIs.

Theorem 1. For each finite theory T of finitely presented FAIs and a

finitely presented Ai B there is a definite program P such that

||Ai B||T ≥ a iff for each attribute y ∈ Y such that

a⊗B(y) > 0, the pair 〈a⊗B(y), ∅〉 is a correct answer for the

program P and atomic formula y.

Proof. We can assume that T is crisp. If it is not, we can
take a corresponding crisp theory T ′ given by

T ′ = {Ai T (Ai B)⊗B |T (Ai B)⊗B * A}.

We consider a language L with only nullary relation symbols
y1, y2, . . . , yk that correspond to attributes which appear in the
FAIs from T to a nonzero degree and a nullary relation symbol
e. Clearly, R is a finite set and the Herbrand base BP of any
program P in L is equal to R. In addition, we assume that L
contains the following logical connectives and aggregations:

:: i (interpreted by the residuum → in L),

:: c (interpreted by the infimum ∧ in L),

:: a unary aggregation ts (interpreted by an idempotent
truth-stressing hedge ∗),

:: for each rational a ∈ (0, 1] a binary aggregation sha
(interpreted by M ](sha(ϕ, ψ)) = (a→M ](ϕ)) ∧M ](ψ)).

Since all FAIs in T are finitely presented, for any C i D ∈ T
and arbitrary attribute y ∈ Y , we can consider a rule of FLP

y

its
(
shC(z1)(z1, e) c · · · c shC(zn)(zn, e)

)
, (2)

where z1, . . . , zn are exactly the attributes which belong to C

to a nonzero degree provided that C 6= ∅. In the special case
of C = ∅, we can let (2) be just the fact y. Notice that (2) is
a properly defined rule of a definite program written in a
language L. We denote the rule (2) by y i

C.
Moreover, for any finite crisp T of finitely presented FAIs, we
can consider an L-set of rules PT defined by

PT (y

i

C) =
∨
{D(y) |D ∈ LY such that C i D ∈ T}

for all y ∈ Y and C ∈ LY . Furthermore, we put PT (e)=1.
Clearly, PT is a definite program in L in sense of Vojtáš.

The proof then continues by observing that
||Ai B||T = a > 0 iff ||Ai a⊗B||T = 1 iff
||∅i a⊗B||T∪{∅iA} = 1 iff a⊗B(y) ≤ ||∅i {1/y}||T∪{∅iA}
for all y ∈ Y such that B(y) > 0. The latter is true iff for
each y ∈ Y such that B(y) > 0, the pair 〈a⊗B(y), ∅〉 is a
correct answer for the program PT∪{∅iA} and query y.

Example
Let L be the standard  Lukasiewicz structure and ∗ be the
identity. Consider a set of attributes of cars
Y ={lA, lM , hAT , hFE , hP} which mean: “a car has low age”,
“has low mileage”, “has automatic transmission”, “has high
fuel economy” and “has high price” respectively. Let T being
a set containing the following FAIs over Y :{

0.7/lA, 0.9/lM , 0.4/hAT
}
i
{
0.6/hFE , 0.9/hP

}
,{

0.8/lA
}
i
{
0.7/lM

}
.

Using Theorem 1, we can find a FLP PT that corresponds to
FAIs from T . The program PT will contain the following rules:

hFE
0.6its

(
sh0.7(lA, e) c sh0.9(lM , e) c sh0.4(hAT , e)

)
,

hP
0.9its

(
sh0.7(lA, e) c sh0.9(lM , e) c sh0.4(hAT , e)

)
,

lM
0.7its

(
sh0.8(lA, e)

)
.

Obviously, the aggregator ts can be omitted.

Now, we can use the results from FLP and Theorem 1 to
characterize ||Ai B||T using computed answers for program
PT∪{∅iA} and queries y ∈ Y with B(y) > 0.

For example, a user asks a question “How much expensive are
quite new cars with automatic transmission?”, i.e., more
precisely “To what degree a ∈ L, is the FAI
{0.6/lA, 1/hAT}i {1/hP} true in T?”. To get the answer, we

first extend PT to PT∪{∅iA} by adding facts lA
0.6iand

hAT
1 ito the program. Then, we can easily compute an

answer to query hP (all substitutions are ∅):

hP,

0.9⊗
(
sh0.7(lA, e) c sh0.9(lM , e) c sh0.4(hAT , e)

)
,

0.9⊗
(
sh0.7(lA, e) c sh0.9(0.7⊗ sh0.8(lA, e), e) c sh0.4(hAT , e)

)
,

0.9⊗
(
sh0.7(0.6, 1) c sh0.9(0.7⊗ sh0.8(0.6, 1), 1) c sh0.4(1, 1)

)
,

0.9⊗
(
0.7→ 0.6 ∧ 0.9→ (0.7⊗ (0.8→ 0.6)) ∧ 0.4→ 1

)
,

0.5.

Using Theorem 1 and the computed answer 〈0.5, ∅〉, we
immediately get ||{0.6/lA, 1/hAT}i {1/hP}||T =0.5.
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Conclusion

We have shown that fuzzy attribute implications can be
reduced to fuzzy logic programs and semantic entailment of
fuzzy attribute implications can be described via correct
answers for fuzzy logic programs and queries. The results
have shown a new theoretical insight and a link of two
branches of rule-based reasoning methods.
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