R. Belohlavek, J. Outrata, M. Trnecka: Impact of Boolean factorization on classification

Department of Computer Science, Palacky University, Olomouc (17. listopadu 12, CZ–77146 Olomouc, Czech Republic)

Introduction

- :: classification of Boolean data: objects described by Boolean (binary, yes-no) input attributes and assigned a (many-valued) class label
- :: preprocessing of data to improve the quality of classification wanted for Boolean data with a clear semantics
- :: in our previous papers: preprocessing based on Boolean matrix factorization (BMF) replacing input attributes by factors computed from the attributes
- :: factors = (some) formal concepts (from Formal Concept Analysis) of input data clear meaning, easy interpretation
- :: classification using a smaller number of factors as new attributes, yet with improvement of the quality
- :: how various BMF algorithms impact the quality of classification?

Boolean Matrix Factorization (BMF)

= decomposition of Boolean matrix I to Boolean matrices A and B s.t. I is (approximately) equal to $A \circ B$, $(A \circ B)_{ij} = \vee_{l=1}^k A_{il} \cdot B_{lj}.$

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\circ
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

- $:: I \dots$ object-attribute Boolean data, $A \dots$ object-factor (usage) matrix, $B \dots$ factor-attribute (basis vector) matrix
- \sim discovery of k factors (as new Boolean attributes) that (approximately) explain the data factor l represented by lth column of A and lth row of B:

 $A_{il} = 1 \dots$ factor l applies to object i $B_{lj} = 1 \dots$ attribute j is a manifestation of factor l

:: $(A \circ B)_{ij}$... "object i has attribute j iff there is a factor l such that l applies to i and j is a manifestation of l"

Problem 1, discrete basis problem (Miettinen et al., 2008): For I and positive k, find A and B minimizing

 $||I - A \circ B|| = \sum_{i,j} |I_{ij} - (A \circ B)_{ij}|.$

... the importance of the first k (most important) factors

Problem 2 (Belohlavek, Vychodil, 2010):

For I and positive integer ε , find A and B with k as small as possible such that $||I - A \circ B|| \le \varepsilon$.

...the need to account for (and thus to explain) a prescribed portion of data

:: NP-hard optimization problems \Rightarrow approximation algorithms

BMF in preprocessing

Boolean data for classification $\langle X, Y, I, c \rangle$:

 $X = \{1, \dots, n\}$... objects

 $Y = \{1, \dots, m\}$...input Boolean attributes

 $I \subseteq X \times Y$... object-attribute relational Boolean data $c: X \to C$... class attribute, mapping assigning to

each object $i \in X$ its class label $c(i) \in C$

Preprocessing

- :: (approximately) decompose I to A and B, either as Problem 1 or Problem 2
- :: $\langle X, F, A, c \rangle$... new Boolean data for classification, $F = \{1, \dots, k\}$... factors = new Boolean attributes

Classification

:: use any classification model (e.g. a decision tree) developed for $\langle X, F, A, c \rangle$ to classify objects described by the original Boolean attributes from Y:

for object represented by vector P, apply the model to $\mathbf{g}(\mathbf{P})$ using transformations $g:\{0,1\}^m \to \{0,1\}^k$ and $h:\{0,1\}^k \to \{0,1\}^m$ between the space of the original attributes and the space of factors

$$(\mathbf{g}(\mathbf{P}))_{\mathbf{l}} = \wedge_{\mathbf{i}=1}^{\mathbf{m}} (\mathbf{B}_{\mathbf{l}\mathbf{j}} \to \mathbf{P}_{\mathbf{j}})$$
 and $(h(Q))_j = \vee_{l=1}^k (Q_l \cdot B_{lj})$

- :: usually k < m (\Rightarrow reduction of dimensionality of data) and g is not an injective mapping
- ightarrow assigning to objects in $\langle X, F, A, c \rangle$ with equal g(P) representations transformed from the objects in $\langle X, Y, I, c \rangle$ with different P representations and different assigned class labels the majority class label of those class labels

BMF Algorithms

- :: Tiling/GreCon (Geerts et al./Belohlavek, Vychodil) columns of A and rows of B are objects and attributes of tiles/formal concepts of I greedily selected to maximize the drop of $||I A \circ B||$
- :: GreConD (Belohlavek, Vychodil) as GreCon, formal concepts computed on demand (instead of in advance)
- :: Asso (Miettinen et al.) for k required factors, greedy selection of rows of B from rows of C and computation of columns of A so that $A \circ B$ approximates $I, C \dots m \times m$ matrix, $C_{ij} = 1$ if confidence of association rule $\{i\} \Rightarrow \{j\}$ in I is at least parameter τ
- :: GreEss (Belohlavek, Trnecka) as GreConD, formal concepts selected from intervals in concept lattice of *I* defined by factors/formal concepts from first factorization of Boolean matrix of so-called essential 1s of *I*
- :: GreEssQ (Belohlavek, Trnecka) as GreEss, formal concepts of the Boolean matrix of essential 1s of *I*, selected with additional information regarding a kind of quality of 1s

Experimental Evaluation

- :: evaluating and comparing classification accuracy of models created by machine learning methods: decision tree C4.5, Nearest Neighbor (NN), Naive Bayes (NB), neural network trained by back propagation (MLP)
- :: datasets selected from UCI ML Repository:

dataset	attrs (binary)	objects	class distribution
breast-cancer	9 (51)	277	196/81
car	6 (21)	1728	1210/384/69/65
kr-vs-kp	36 (74)	1598	835/763
mushroom	22 (125)	564	362/202
solar-flare_2	12 (45)	1066	147/211/239/95/43/331
ZOO	15 (30)	101	41/20/5/13/4/8/10

:: binary attributes were obtained by plain nominal scaling

Results

- :: for testing parts of the datasets
- :: ____ Tiling/GreCon, ___ GreConD, ___ Asso, ___ GreEss, ___ GreEssQ, ___ original input data
- x-axis ... relative decomposition error = ratio of 1s of input data left uncovered in factor decomposition

Experimental Evaluation

Observations

- :: GreEssQ outperforms all other algorithms so-called attribute concepts utilized as factors, covering areas of 1s of input data matrix covered by small number of factors
- :: poor classification performance of Asso- factors need not be rectangular areas full of 1s in input data matrix
- :: similar performance of Tiling/GreCon, GreConD and GreEss similar factorizations or strategy
- :: sometimes preprocessed data lead to better classification accuracy than original data, even with a few factors covering less than 100% of input data, e.g. for car, kr-vs-kp, mushroom or solar-flare_2 datasets
- :: car dataset: same performance of all BMF algorithms very natural found factors
- :: breast-cancer dataset: preprocessed data are (much) better classified than original data (best with 40% coverage of input data by factors!)— many superfluous attributes or large noise in input data overcome by factors

Acknowledgment

Supported by the ESF project No. CZ.1.07/2.3.00/20.0059 (R. Belohlavek) and grants No. 202/10/P360 of the Czech Science Foundation (J. Outrata) and by the IGA of Palacky University, No. PrF_20124029 (M. Trnecka).

