Representations of MV-algebras and consequences

Antonio Di Nola

University of Salerno

Representation of MV-algebras as subdirect product

Theorem

Every MV-algebra is a subdirect product of MV-chains.

Examples of MV-chains

The standard MV-algebra $([0, 1], \oplus, \neg, 0)$ where $x \oplus y = \min\{x + y, 1\}$ and $\neg x = 1 - x$, for any $x, y \in [0, 1]$.

The Chang's MV-algebra $C = \Gamma(\mathbb{Z} \overrightarrow{\times} \mathbb{Z}, (1, 0)).$

The nonstandard MV-algebra (*[0,1], \oplus , \neg , 0) where an element of *[0,1] is a nonstandard real between *0 and *1.

Representation of MV-algebras as algebras of functions

Theorem

Any semisimple MV-algebra is a subdirect product of subalgebras of [0,1]. In other words, the semisimple MV-algebras are exactly the bold algebras of fuzzy sets.

Theorem

Each MV-algebra A is, up to isomorphisms, a subalgebra of the algebra of functions valued in $[0,1]^*$ and defined on an opportune set X, being $[0,1]^*$ an ultrapower of [0,1] which only depends on the cardinality of A.

Theorem

Each MV-algebra with limitated cardinality embeds in a fixed MV-algebra of functions valued in a not standard ultrapower of [0, 1].

Representation of MV-algebras by sheaves

Let A be an MV-algebra. For each $M \in Max(A)$, consider

$$O(M) = \bigcap \{ m \in Min(A) \mid m \subseteq M \}.$$

O(M) is a primary ideal and, so, A/O(M) is a local MV-algebra.

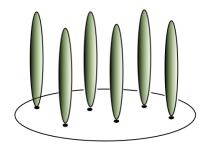
$$\bigcap \{ O(M) \mid M \in \mathsf{Max}(A) \} = \{ 0 \}.$$

Let $\mathcal{F} = (Max(A), \pi, E)$ be a sheaf such that E is the disjoint union of the quotients A/O(M) for each $M \in Max(A)$ and $\pi : E \to Max(A)$ is a local homeomorphism such that $\pi^{-1}(M) = A/O(M)$.

Representation of MV-algebras by sheaves

Theorem

Every MV-algebra is isomorphic to the MV-algebra of all global sections of the sheaf \mathcal{F} .



Local MV-algebras

Proposition

For any MV-algebra A, the following are equivalent:

- (a) for any $x \in A$, $\operatorname{ord}(x) < \infty$ or $\operatorname{ord}(\neg x) < \infty$,
- (b) for any $x, y \in A, x \odot y = 0$ implies $x^n = 0$ or $y^n = 0$ for some $n \in \omega$,
- (c) for any $x, y \in A$, $\operatorname{ord}(x \oplus y) < \infty$ implies $\operatorname{ord}(x) < \infty$ or $\operatorname{ord}(y) < \infty$,
- (d) $\{x \in A : \operatorname{ord}(x) = \infty\}$ is a proper ideal of A,
- (e) A has only one maximal ideal,
- (f) for any $x \in A$, there is an integer $n \ge 1$ such that $(nx)^2 \in \{0,1\}$,
- (g) Rad(A) is a prime ideal.

An MV-algebra A is called *local* if one of the previous equivalent conditions holds.

Local MV-algebras

Theorem

The class of local MV-algebras is a universal class. Indeed an MV-algebra A is local iff for each $x \in A$, $x \leq \neg x$, $\neg x \leq x$ or $(d(x, \neg x))^2 = 0$.

Theorem

Let A be an MV-algebra and P an ideal of A. Then A/P is local iff P is primary,

where P is primary iff if $x \odot y \in P$ then $x^n \in P$ or $y^n \in P$ for some $n \in \omega$.

An example of local MV-algebras

Now we give an example of local MV-algebras which is a kind of prototypical local MV-algebra. Indeed, let X be an arbitrary nonempty set, U an MV-algebra, and $\mathbf{K}(U^X)$ the subset of the MV-algebra U^X as follows:

 $\mathbf{K}(U^X) = \{ f \in U^X \mid f(X) \subseteq [a]_{\mathsf{Rad}(U)} \text{ for some } a \in U \}.$

 $\mathbf{K}(U^X)$ shall be called the *the full MV-algebra of quasi constant functions* from X to U. Of course any element f from $\mathbf{K}(U^X)$ shall be said *quasi constant* function from X to U. Any subalgebra of $\mathbf{K}(U^X)$ shall be called an algebra of quasi constant functions.

 $\mathbf{K}(U^X)$ is a local MV-algebra.

Theorem

Every local MV-algebra can be embedded into an MV-algebra of quasi costant functions.

Perfect MV-algebras

Definition

An MV-algebra A is called *perfect* if for every nonzero element $x \in A$, $ord(x) = \infty$ iff $ord(\neg x) < \infty$.

Theorem

The class of perfect MV-algebra is universal. Indeed, an MV-algebra A is perfect iff A satisfies $\sigma \& \tau$, where σ is the wff

$$(\forall x)(x^2 \oplus x^2 = (x \oplus x)^2)$$

and τ is the wff

$$(\forall x)(x^2 = x \Rightarrow (x = 0 \text{ OR } x = 1)).$$

Perfect MV-algebras

Definition

A proper ideal *P* of an MV-algebra *A* is called *perfect* iff for every $a \in A$, $a^n \in P$ for some $n \in \omega$ iff $(\neg a)^m \notin P$ for all $m \in \omega$.

Theorem

Let A be an MV-algebra and P an ideal of A. Then A/P is perfect iff P is perfect.

An example of perfect MV-algebra is the Chang's MV-algebra C.

In what follows, **Perfect**, **Local**, V(C) and V(**Perfect**) will respectively indicate the classes of local and perfect MV-algebras and the varieties generated by C and all perfect MV-algebras.

Some pertinent facts about perfect MV-algebras

Proposition

The following hold:

- 1. The only finite perfect MV-algebra is $\{0,1\}.$
- 2. Every nonzero element in a perfect MV-algebra $A \neq B(A)$ generates a subalgebra isomorphic to the Chang algebra C.
- 3. Subdirect irreducible algebras in V(C) are all perfect MV-chains.
- 4. V(Perfect) = V(C).
- 5. **Perfect** = $V(C) \cap \text{Local}$.
- 6. A is perfect iff $A = \langle \mathsf{Rad}(A) \rangle = \mathsf{Rad}(A) \cup \neg \mathsf{Rad}(A)$
- 7. $x \in \operatorname{Rad}(A)$ iff $\operatorname{ord}(x) = \infty$.
- 8. Perfect is closed under homomorphic images and subalgebras.
- 9. A is perfect iff any proper ideal of A is perfect.
- 10. A is perfect iff $\{0\}$ is a perfect ideal.

Localization

Let A be an MV-algebra and P a prime ideal of A. Let

 $\mathcal{L}(P) = \{A' \mid A' \text{ is a subalgebra of } A \text{ and } P \text{ is maximal in } A'\}$

and

$$\omega_P(A) = \{ Q \in \operatorname{Spec}(A) \mid Q \subseteq P \}.$$

Theorem

Let A be an MV-algebra and $P \in \text{Spec}(A)$. For any subalgebra $A' \in \mathcal{L}(P)$, Spec(A'/O(P)) is homeomorphic to a subspace of Spec(A). In particular Spec(A'/O(P)) is homeomorphic to $\omega_P(A)$.

The Boolean and the perfect skeletons of an MV-algebra

Theorem For each MV-algebra *A*,

$$B(A) = \{x \in A \mid x \oplus x = x\}$$

is the greatest Boolean subalgebra of A, that is B(A) is the Boolean skeleton of A.

Theorem For each MV-algebra *A*,

 $P(A) = \operatorname{Rad}(A) \cup \neg \operatorname{Rad}(A)$

is the greatest perfect subalgebra of A, that is P(A) is the perfect skeleton of A.

The local skeleton of an MV-algebra

Theorem

For each MV-algebra A,

$$\mathcal{L}(A) = \left\{ x \in A \mid \text{ for every } P \in \operatorname{Spec}(A), rac{x/P}{\operatorname{Rad}(A/P)} = r_x \in [0,1]
ight\}$$

is the greatest local subalgebra of A, that is $\mathcal{L}(A)$ is the local skeleton of A.

The V(C)-skeletons of an MV-algebra

Let V(C) the variety generated by the Chang's MV-algebra C.

Theorem

Let A be an MV-algebra. The following are equivalent

A ∈ V(C).
 A/ Rad(A) ≅ B(A).
 for x ∈ A, 2x² = (2x)².¹

Theorem

For each MV-algebra A,

$$A_0 = igcap_{M\in\mathsf{Max}(A)}(M\cup
eg M) = \langle B(A)\cup\mathsf{Rad}(A)
angle$$

is the greatest subalgebra of A such that $A_0 \in V(C)$, that is A_0 is the V(C)-skeleton of A.

¹Remember Cignoli-Torrens' DL-algebras.

The $V(S_n)$ -skeleton of an MV-algebra

For any $n \in \omega$, we can define the following MV-algebras.

$$S_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$$

Lemma

Let A be an MV-chain. Then for $n \in \omega$ there exists the greatest subalgebra $F_n(A)$ of A such that $F_n(A) \in V(S_n)$.

Theorem

Let A be an MV-algebra and consider A as subdirect product of a family of MV-chains $\{A_i\}_{i \in I}$. Then for $n \in \omega$,

 $W_n(A) = \{x \in A \mid x_i \in F_n(A_i) \text{ for every } i \in I\}$

is the greatest subalgebra of A, such that $W_n(A) \in V(S_n)$, that is $W_n(A)$ is the $V(S_n)$ -skeleton of A.

The $V(S_n^{\omega})$ -skeleton of an MV-algebra

For any $n \in \omega$, we can define the following MV-algebras.

$$S_n^{\omega} = \Gamma(\mathbb{Z} \overrightarrow{\times} \mathbb{Z}, (n, 0))$$

Theorem

Let A be an MV-algebra. Then for $n \in \omega$,

 $W_n^{\omega}(A) = \{x \in A \mid x / \operatorname{Rad}(A) \in F_n(A / \operatorname{Rad}(A))\}$

is the greatest subalgebra of A, such that $W_n^{\omega}(A) \in V(S_n^{\omega})$, that is $W_n^{\omega}(A)$ is the $V(S_n^{\omega})$ -skeleton of A.

Definition

An ideal *H* of an MV-algebra *A* is called *retractive* iff there is a homomorphism $h: A/H \rightarrow A$ such that $\pi_H \circ h$ is the identity map of A/H, where π_H is the canonical projection from *A* to A/H.

Theorem

Let A be a local MV-algebra. Then the following are equivalent:

(i) there is a subgroup \mathbb{R}' of \mathbb{R} and an abelian $\ell\text{-group}\ G$ such that

$$A\cong \Gamma(\mathbb{R}'\overrightarrow{\times} G,(1,0))$$

(*ii*) A is radical retractive.

(iii) A is the coproduct of A/Rad(A) and $\langle Rad(A) \rangle$, in symbols $A = A/Rad(A) \amalg \langle Rad(A) \rangle$.

Let A be an MV-algebra. For any $X \subseteq A$ the set

 $Cl_A(X) = \{ (x \oplus \varepsilon) \odot \neg \tau \mid x \in X, \, \epsilon, \tau \in \mathsf{Rad}(A) \}$

is the set of clouds of infinitesimals around elements of X.

Proposition

Let A be a local MV-algebra and S be a simple subalgebra of A. Then $Cl_A(S)$ is a subalgebra of A (hence it is local) and is the coproduct of S and $\langle Rad(A) \rangle$:

 $Cl_A(S) \cong S \amalg \langle Rad(A) \rangle.$

Let A be an MV-algebra. An element x of A is called *finite* iff $ord(x) < \infty$ and $ord(\neg x) < \infty$. Let Fin(A) denote the set of all finite elements of A.

Theorem

Let A be an MV-algebra. Then the following are equivalent:

(i) A is local and $Fin(A) \cup \{0\}$ is a subalgebra of A;

(ii) there is a subgroup \mathbb{R}' of \mathbb{R} and an $\ell\text{-group}\ G$ such that

$$A = \Gamma\left(\left(\mathbb{R}' \overrightarrow{\times} G\right), (1,0)
ight).$$

In this case, $Fin(A) \cup \{0\}$ is the biggest simple subalgebra of A.

So local MV-algebras in which the finite elements together with 0 form a subalgebra, are coproducts of a simple MV-algebra and a perfect one. Further, they can be described by considering the unit interval of a subgroup \mathbb{R}' of \mathbb{R} and adding clouds of infinitesimals for each $r \in \mathbb{R}'$.

But this is a very special case. In general such representation cannot be used for any local MV-algebra. Think for example of $\Gamma(\mathbb{R} \times G, (1, 1))$.

Theorem

Every local MV-algebra can be embedded into a local MV-algebra whose radical is retractive.

Local MV-algebras of finite rank

Definition

Let *n* be a positive integer. Then a local MV-algebra *A* is said to be of rank *n* iff $A/Rad(A) \cong S_n$. A local MV-algebra *A* is said to be of *finite rank* iff *A* is of rank *n* for some integer *n*.

Let FINRANK denote the class of all local MV-algebras of finite rank and $FINRANK_n$ denote the class of local MV-algebras of rank n.

Proposition

Let A be a local MV-algebra. Then the following are equivalent:

- (i) $A \in FINRANK$ and A is an MV-chain;
- (ii) $A \cong \Gamma(Z \xrightarrow{\times} G, (n, g))$ for some integer *n*, with *G* a totally ordered abelian group and *g* element of the positive cone of *G*.

Local MV-algebras of finite rank

Theorem

Let A be an MV-algebra. Then the following are equivalent:

(i) $A \in \text{FINRANK}_n$; (ii) $A \cong \Gamma(Z \xrightarrow{\times} G, (n, g))$ with G abelian l-group and $g \in G$.

Theorem

Every local MV-algebra of rank n can be embedded into a local MV-algebra of rank n whose radical is retractive.

Indeed, $A \cong \Gamma(Z \times G, (n, g))$ for some integer *n*, with *G* abelian I-group and $g \in G$. It is not difficult to prove that *A* embeds in $B = \Gamma(Z \times G, (n, 0))$ which is a local algebra of rank *n* whose radical is retractive.

Where local MV-algebras meet varieties

Definition

Let *I*, *J* be subsets of \mathbb{N} . We denote by FINRANK(*I*, *J*) the class of local MV-algebras *A* of finite rank such that either *A* is simple and $A \cong A/\operatorname{Rad}(A)$ is embeddable into a member of $\{S_i \mid i \in I\}$, or *A* is not simple and $A/\operatorname{Rad}(A)$ is embeddable into a member of $\{S_j \mid j \in J\}$.

 $Theorem \\ \text{Loc}(V(S_{n_1}, ..., S_{n_h}; S_{m_1}^{\omega}, ..., S_{m_k}^{\omega})) = \\ \text{FINRANK}(\{n_1, ..., n_h\}, \{m_1, ..., m_k\}).$

Theorem

The class $\text{Loc}(V(S_{n_1}, ..., S_{n_h}; S_{m_1}^{\omega}, ..., S_{m_k}^{\omega}))$ is universal.

Where local MV-algebras meet varieties

Theorem

Let A be an MV-algebra and n a positive integer. The following statements are equivalents:

1) $A \in V(S_n^{\omega})$ and A satisfies the following formula

$$au_n$$
 : ($orall x$) $\left((2x=1) \lor \left(x^2=0\right) \lor \left((n+1)x=1 \land \left(x^{n+1}=0\right)\right)\right)$,

2) A is a local MV-algebra of rank d, with d divisor of n.

Where local MV-algebras meet varieties

Theorem

For a given arbitrary nonsimple MV-chain A of rank n it is:

$$ISP_u(A) = ISP_u(\Gamma(\mathbb{Z} \xrightarrow{\times} \mathbb{Z}, (n, d_A))),$$

where d_A is the maximum m such that S_m is embeddable in A.

Theorem

Let A be an MV-algebra and n a positive integer. Then the following statements are equivalent:

1)
$$A \in ISP_U(Loc_{n,0})$$
.

2) $A \in \operatorname{Loc}(V(S_n^{\omega})).$

Theorem

All MV-algebras are weak Boolean products of indecomposable MV-algebras.

Theorem

Weak Boolean products of MV-chains are, up to isomorphisms, just those algebras A having the lattice reduct L(A) that is a dual Stone algebra (*dual Stone* MV-algebras).

Theorem

Weak Boolean products of simple MV-chains are exactly the hyperarchimedean MV-algebras.

Weak Boolean products of finite MV-chains are the *liminary* MV-algebras, that is MV-algebras whose quotients by prime ideals are finite MV-chains

Definitions

An MV-algebra A is quasi local iff for any $x \in A$ there exist $b \in B(A)$ and $n \ge 1$ such that $nx \oplus b = 1$ and $n(x^*) \oplus b^* \ne 1$.

An MV-algebra A is *quasi perfect* iff it is quasi local and for any $x \in A$ and $b \in B(A) \setminus \{1\}$ if $(x \oplus b) \notin M$, for every $M \in Max(A)$ then there exists $M' \in Max(A)$ such that $\neg x \oplus b \in M$.

Theorem

Weak Boolean products of local MV-algebras are *quasi local* MV-algebras.

Weal Boolean products of perfect MV-algebras are *quasi perfect* MV-algebras.

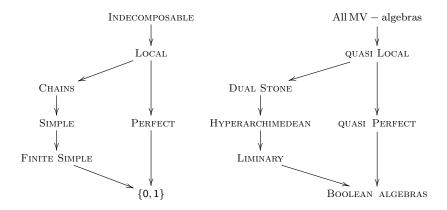


Figure: Classes of MV-algebras and correspondent weak boolean products

Definition

An MV-algebra A is called *quasi local of finite rank* iff it is quasi local and there exists an integer n such that for all $a \in A$ and $b \in B(A) \setminus \{1\}$ if for every $M \in Max(A)$, $(a \oplus b) \notin M$ then there exists $M_0 \in Max(A)$ such that $(a^*)^n \oplus b \in M_0$.

Theorem

Weak Boolean products are quasi local MV-algebras of finite rank.

Theorem

Let A be an MV-algebra and V any proper subvariety of MV. Then the following are equivalent:

(i)
$$A \in V$$
;
(ii) $A \in WBP(Loc(V))$.

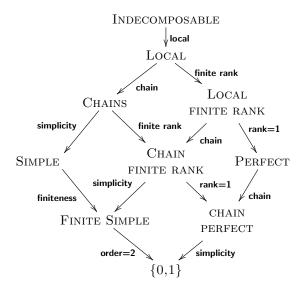


Figure: Class of algebras as factors of weak boolean products

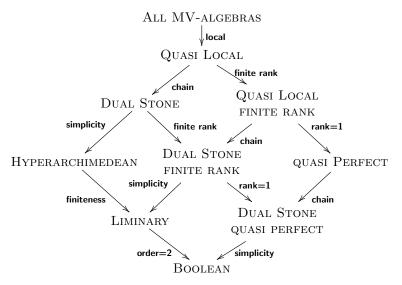


Figure: Class of algebras generated by classes in Figure 2 by means of Weak Boolean product

Propositional Logic of perfect MV-algebras

Let **Luk** denote the Łukasiewicz propositional logic with usual axioms and rule of inference.

Let $\mathbf{Luk}_{\mathcal{P}}$ be the axiomatic extension of \mathbf{Luk} by adding the following axiom

 $(2\alpha^2) \leftrightarrow (2\alpha)^2.$

Proposition

A wff of Luk_P is valid on all perfect MV-chains iff it is provable in Luk_P .

Propositional Logic of perfect MV-algebras

Let **Luk** denote the Łukasiewicz propositional logic with usual axioms and rule of inference.

Let $\mathbf{Luk}_{\mathcal{P}}$ be the axiomatic extension of \mathbf{Luk} by adding the following axiom

 $(2\alpha^2) \leftrightarrow (2\alpha)^2.$

Proposition

A wff of Luk_P is valid on all perfect MV-chains iff it is provable in Luk_P .

First order Logic of perfect MV-algebras

Let ${\boldsymbol{\mathsf{L}}}$ denote the first order Łukasiewicz logic with usual axioms and rule of inference.

Let $\ {}^{\sim}\boldsymbol{Luk}_{\mathcal{P}}$ be the axiomatic extension of \boldsymbol{L} by adding the following axiom

 $(2\alpha^2) \leftrightarrow (2\alpha)^2.$

Proposition

A wff of \tilde{Luk}_P is valid on all perfect MV-chains iff it is provable in \tilde{Luk}_P .

Presheaf of local MV-algebras

Let A be an MV-algebra and Spec(A) the spectrum of prime ideals of A endowed with the Zariski topology.

Let O(Spec(A)) be the category of open sets of Spec(A) having a morphism from U to V iff $U \subseteq V$.

For each open set U of Spec(A), let $A_U = \mathcal{L}(\prod_{P \in U} A/P)$.

Theorem

The map $\mathcal{F} : \mathbf{O}(\operatorname{Spec}(A))^{op} \to \operatorname{Loc}$ defined as $\mathcal{F}(U) = A_U$ for each $U \in \operatorname{Ob}(\mathbf{O}(\operatorname{Spec}(A))^{op})$ is a presheaf of local MV-algebras.

Presheaf of perfect MV-algebras

Let $\{A_i\}_{i \in I}$ be a family of MV-algebras and let $A = \prod_{i \in I} A_i$. By *pseudo-diagonal* of A is meant the set of all $a \in A$ such that $ord(a_i) = ord(a_j)$ for all $i, j \in I$. We will indicate the pseudo-diagonal of A by $p\delta_{i \in I}A_i$.

Proposition

The pseudo-diagonal of a family of perfect MV-algebras is a perfect MV-algebra.

Proposition

Let A be an MV-algebra. The MV-algebra $A_P = \langle P \rangle / O(P)$ is the unique perfect MV-algebra with maximal ideal P/O(P).

Presheaf of perfect MV-algebras

Let ${\mathcal P}$ be the full subcategory of the category of MV-algebras whose objects are perfect MV-algebras.

Let A be an MV-algebra and O(Spec(A)) be the category of open sets of Spec(A) as before.

For each $U \in Ob(O(Spec(A)))$, let $A_U = p\delta_{P \in U}A_P$.

Theorem

The map $\mathcal{F} : \mathbf{O}(\operatorname{Spec}(A))^{op} \to \mathcal{P}$ defined as $\mathcal{F}(U) = A_U$ for each $U \in \operatorname{Ob}(\mathbf{O}(\operatorname{Spec}(A))^{op})$ is a presheaf of perfect MV-algebras.