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Representation of MV-algebras as subdirect product

Theorem
Every MV-algebra is a subdirect product of MV-chains.

Examples of MV-chains

The standard MV-algebra ([0, 1],⊕,¬, 0)
where x ⊕ y = min{x + y , 1} and ¬x = 1− x , for any x , y ∈ [0, 1].

The Chang’s MV-algebra C = Γ(Z−→×Z, (1, 0)).

The nonstandard MV-algebra (∗[0, 1],⊕,¬, 0)
where an element of ∗[0, 1] is a nonstandard real between ∗0 and
∗1.



Representation of MV-algebras as algebras of functions

Theorem
Any semisimple MV-algebra is a subdirect product of subalgebras
of [0, 1]. In other words, the semisimple MV-algebras are exactly
the bold algebras of fuzzy sets.

Theorem
Each MV-algebra A is, up to isomorphisms, a subalgebra of the
algebra of functions valued in [0, 1]∗ and defined on an opportune
set X , being [0, 1]∗ an ultrapower of [0, 1] which only depends on
the cardinality of A.

Theorem
Each MV-algebra with limitated cardinality embeds in a fixed
MV-algebra of functions valued in a not standard ultrapower of
[0, 1].



Representation of MV-algebras by sheaves

Let A be an MV-algebra. For each M ∈ Max(A), consider

O(M) =
⋂
{m ∈ Min(A) | m ⊆ M}.

O(M) is a primary ideal and, so, A/O(M) is a local MV-algebra.⋂
{O(M) | M ∈ Max(A)} = {0}.

Let F = (Max(A), π,E ) be a sheaf such that E is the disjoint
union of the quotients A/O(M) for each M ∈ Max(A) and
π : E → Max(A) is a local homeomorphism such that
π−1(M) = A/O(M).



Representation of MV-algebras by sheaves

Theorem
Every MV-algebra is isomorphic to the MV-algebra of all global
sections of the sheaf F .



Local MV-algebras

Proposition

For any MV-algebra A, the following are equivalent:

(a) for any x ∈ A, ord(x) <∞ or ord(¬x) <∞,

(b) for any x , y ∈ A, x � y = 0 implies xn = 0 or yn = 0 for some
n ∈ ω,

(c) for any x , y ∈ A, ord(x ⊕ y) <∞ implies ord(x) <∞ or
ord(y) <∞,

(d) {x ∈ A : ord(x) =∞} is a proper ideal of A,

(e) A has only one maximal ideal,

(f ) for any x ∈ A, there is an integer n ≥ 1 such that
(nx)2 ∈ {0, 1},

(g) Rad(A) is a prime ideal.

An MV-algebra A is called local if one of the previous equivalent
conditions holds.



Local MV-algebras

Theorem
The class of local MV-algebras is a universal class. Indeed an
MV-algebra A is local iff for each x ∈ A, x ≤ ¬x , ¬x ≤ x or
(d(x ,¬x))2 = 0.

Theorem
Let A be an MV-algebra and P an ideal of A. Then A/P is local iff
P is primary,

where P is primary iff if x � y ∈ P then xn ∈ P or yn ∈ P for
some n ∈ ω.



An example of local MV-algebras

Now we give an example of local MV-algebras which is a kind of
prototypical local MV-algebra. Indeed, let X be an arbitrary
nonempty set, U an MV-algebra, and K(UX ) the subset of the
MV-algebra UX as follows:

K(UX ) = {f ∈ UX | f (X ) ⊆ [a]Rad(U) for some a ∈ U}.

K(UX ) shall be called the the full MV-algebra of quasi constant
functions from X to U. Of course any element f from K(UX ) shall
be said quasi constant function from X to U. Any subalgebra of
K(UX ) shall be called an algebra of quasi constant functions.

K(UX ) is a local MV-algebra.

Theorem
Every local MV-algebra can be embedded into an MV-algebra of
quasi costant functions.



Perfect MV-algebras

Definition

An MV-algebra A is called perfect if for every nonzero element
x ∈ A, ord(x) =∞ iff ord(¬x) <∞.

Theorem
The class of perfect MV-algebra is universal. Indeed, an
MV-algebra A is perfect iff A satisfies σ&τ , where σ is the wff

(∀x)(x2 ⊕ x2 = (x ⊕ x)2)

and τ is the wff

(∀x)(x2 = x ⇒ (x = 0 OR x = 1)).



Perfect MV-algebras

Definition

A proper ideal P of an MV-algebra A is called perfect iff for every
a ∈ A, an ∈ P for some n ∈ ω iff (¬a)m /∈ P for all m ∈ ω.

Theorem
Let A be an MV-algebra and P an ideal of A. Then A/P is perfect
iff P is perfect.

An example of perfect MV-algebra is the Chang’s MV-algebra C .

In what follows, Perfect, Local, V (C ) and V (Perfect) will
respectively indicate the classes of local and perfect MV-algebras
and the varieties generated by C and all perfect MV-algebras.



Some pertinent facts about perfect MV-algebras

Proposition

The following hold:

1. The only finite perfect MV-algebra is {0, 1}.
2. Every nonzero element in a perfect MV-algebra A 6= B(A)

generates a subalgebra isomorphic to the Chang algebra C .

3. Subdirect irreducible algebras in V (C ) are all perfect
MV-chains.

4. V (Perfect) = V (C ).

5. Perfect= V (C )∩Local.

6. A is perfect iff A = 〈Rad(A)〉 = Rad(A) ∪ ¬Rad(A)

7. x ∈ Rad(A) iff ord(x) =∞.

8. Perfect is closed under homomorphic images and subalgebras.

9. A is perfect iff any proper ideal of A is perfect.

10. A is perfect iff {0} is a perfect ideal.



Localization

Let A be an MV-algebra and P a prime ideal of A. Let

L(P) = {A′ | A′ is a subalgebra of A and P is maximal in A′}

and
ωP(A) = {Q ∈ Spec(A) | Q ⊆ P}.

Theorem
Let A be an MV-algebra and P ∈ Spec(A). For any subalgebra
A′ ∈ L(P), Spec(A′/O(P)) is homeomorphic to a subspace of
Spec(A). In particular Spec(A′/O(P)) is homeomorphic to ωP(A).



The Boolean and the perfect skeletons of an MV-algebra

Theorem
For each MV-algebra A,

B(A) = {x ∈ A | x ⊕ x = x}

is the greatest Boolean subalgebra of A, that is B(A) is the
Boolean skeleton of A.

Theorem
For each MV-algebra A,

P(A) = Rad(A) ∪ ¬Rad(A)

is the greatest perfect subalgebra of A, that is P(A) is the perfect
skeleton of A.



The local skeleton of an MV-algebra

Theorem
For each MV-algebra A,

L(A) =

{
x ∈ A | for every P ∈ Spec(A),

x/P

Rad(A/P)
= rx ∈ [0, 1]

}
is the greatest local subalgebra of A, that is L(A) is the local
skeleton of A.



The V (C )-skeletons of an MV-algebra

Let V (C ) the variety generated by the Chang’s MV-algebra C .

Theorem
Let A be an MV-algebra. The following are equivalent

1. A ∈ V (C ).

2. A/Rad(A) ∼= B(A).

3. for x ∈ A, 2x2 = (2x)2.1

Theorem
For each MV-algebra A,

A0 =
⋂

M∈Max(A)

(M ∪ ¬M) = 〈B(A) ∪ Rad(A)〉

is the greatest subalgebra of A such that A0 ∈ V (C ), that is A0 is
the V (C )-skeleton of A.

1Remember Cignoli-Torrens’ DL-algebras.



The V (Sn)-skeleton of an MV-algebra

For any n ∈ ω, we can define the following MV-algebras.

Sn = {0, 1

n
, . . . ,

n − 1

n
, 1}

Lemma
Let A be an MV-chain. Then for n ∈ ω there exists the greatest
subalgebra Fn(A) of A such that Fn(A) ∈ V (Sn).

Theorem
Let A be an MV-algebra and consider A as subdirect product of a
family of MV-chains {Ai}i∈I . Then for n ∈ ω,

Wn(A) = {x ∈ A | xi ∈ Fn(Ai ) for every i ∈ I}

is the greatest subalgebra of A, such that Wn(A) ∈ V (Sn), that is
Wn(A) is the V (Sn)-skeleton of A.



The V (Sωn )-skeleton of an MV-algebra

For any n ∈ ω, we can define the following MV-algebras.

Sω
n = Γ(Z−→×Z, (n, 0))

Theorem
Let A be an MV-algebra. Then for n ∈ ω,

W ω
n (A) = {x ∈ A | x/Rad(A) ∈ Fn(A/Rad(A)}

is the greatest subalgebra of A, such that W ω
n (A) ∈ V (Sω

n ), that is
W ω

n (A) is the V (Sω
n )-skeleton of A.



Local MV-algebras with retractive radical

Definition

An ideal H of an MV-algebra A is called retractive iff there is a
homomorphism h : A/H → A such that πH ◦ h is the identity map
of A/H, where πH is the canonical projection from A to A/H.

Theorem
Let A be a local MV-algebra. Then the following are equivalent:

(i) there is a subgroup R′ of R and an abelian `-group G such
that

A ∼= Γ(R′−→×G , (1, 0))

(ii) A is radical retractive.

(iii) A is the coproduct of A/Rad(A) and 〈Rad(A)〉, in symbols
A = A/Rad(A)q 〈Rad(A)〉.



Local MV-algebras with retractive radical

Let A be an MV-algebra. For any X ⊆ A the set

ClA(X ) = {(x ⊕ ε)� ¬τ | x ∈ X , ε, τ ∈ Rad(A)}

is the set of clouds of infinitesimals around elements of X .

Proposition

Let A be a local MV-algebra and S be a simple subalgebra of A.
Then ClA(S) is a subalgebra of A (hence it is local) and is the
coproduct of S and 〈Rad(A)〉:

ClA(S) ∼= S q 〈Rad(A)〉.



Local MV-algebras with retractive radical

Let A be an MV-algebra. An element x of A is called finite iff
ord(x) <∞ and ord(¬x) <∞. Let Fin(A) denote the set of all
finite elements of A.

Theorem
Let A be an MV-algebra. Then the following are equivalent:

(i) A is local and Fin(A) ∪ {0} is a subalgebra of A;

(ii) there is a subgroup R′ of R and an `-group G such that

A = Γ
((

R′−→×G
)
, (1, 0)

)
.

In this case, Fin(A) ∪ {0} is the biggest simple subalgebra of A.



Local MV-algebras with retractive radical

So local MV-algebras in which the finite elements together with 0
form a subalgebra, are coproducts of a simple MV-algebra and a
perfect one. Further, they can be described by considering the unit
interval of a subgroup R′ of R and adding clouds of infinitesimals
for each r ∈ R′.

But this is a very special case. In general such representation
cannot be used for any local MV-algebra. Think for example of
Γ(R−→×G , (1, 1)).

Theorem
Every local MV-algebra can be embedded into a local MV-algebra
whose radical is retractive.



Local MV-algebras of finite rank

Definition

Let n be a positive integer. Then a local MV-algebra A is said to
be of rank n iff A/Rad(A) ∼= Sn. A local MV-algebra A is said to
be of finite rank iff A is of rank n for some integer n.

Let FinRank denote the class of all local MV-algebras of finite
rank and FinRankn denote the class of local MV-algebras of rank
n.

Proposition

Let A be a local MV-algebra. Then the following are equivalent:

(i) A ∈ FinRank and A is an MV-chain;

(ii) A ∼= Γ(Z
−→×G , (n, g)) for some integer n, with G a totally

ordered abelian group and g element of the positive cone of
G .



Local MV-algebras of finite rank

Theorem
Let A be an MV-algebra. Then the following are equivalent:

(i) A ∈ FinRankn;

(ii) A ∼= Γ(Z
−→×G , (n, g)) with G abelian l-group and g ∈ G .

Theorem
Every local MV-algebra of rank n can be embedded into a local
MV-algebra of rank n whose radical is retractive.

Indeed, A ∼= Γ(Z
−→×G , (n, g)) for some integer n, with G abelian

l-group and g ∈ G . It is not difficult to prove that A embeds in
B = Γ(Z

−→×G , (n, 0)) which is a local algebra of rank n whose
radical is retractive.



Where local MV-algebras meet varieties

Definition

Let I , J be subsets of N. We denote by FinRank(I , J) the class
of local MV-algebras A of finite rank such that either A is simple
and A ∼= A/Rad(A) is embeddable into a member of {Si | i ∈ I},
or A is not simple and A/Rad(A) is embeddable into a member of
{Sj | j ∈ J}.

Theorem
Loc(V (Sn1 , ...,Snh ; Sω

m1
, ...,Sω

mk
)) =

FinRank({n1, ..., nh}, {m1, ...,mk}).

Theorem
The class Loc(V (Sn1 , ...,Snh ;Sω

m1
, ...,Sω

mk
)) is universal.



Where local MV-algebras meet varieties

Theorem
Let A be an MV-algebra and n a positive integer. The following
statements are equivalents:

1) A ∈ V (Sω
n ) and A satisfies the following formula

τn : (∀x)
(
(2x = 1) ∨

(
x2 = 0

)
∨
(
(n + 1) x = 1 ∧

(
xn+1 = 0

)))
,

2) A is a local MV-algebra of rank d , with d divisor of n.



Where local MV-algebras meet varieties

Theorem
For a given arbitrary nonsimple MV-chain A of rank n it is:

ISPu(A) = ISPu(Γ(Z−→×Z, (n, dA))),

where dA is the maximum m such that Sm is embeddable in A.

Theorem
Let A be an MV-algebra and n a positive integer. Then the
following statements are equivalent:

1) A ∈ ISPU(Locn,0).

2) A ∈ Loc(V (Sω
n )).



Weak Boolean Products

Theorem
All MV-algebras are weak Boolean products of indecomposable
MV-algebras.

Theorem
Weak Boolean products of MV-chains are, up to isomorphisms,
just those algebras A having the lattice reduct L(A) that is a dual
Stone algebra (dual Stone MV-algebras).

Theorem
Weak Boolean products of simple MV-chains are exactly the
hyperarchimedean MV-algebras.
Weak Boolean products of finite MV-chains are the liminary
MV-algebras, that is MV-algebras whose quotients by prime ideals
are finite MV-chains



Weak Boolean Products

Definitions

An MV-algebra A is quasi local iff for any x ∈ A there exist
b ∈ B(A) and n ≥ 1 such that nx ⊕ b = 1 and n(x∗)⊕ b∗ 6= 1.

An MV-algebra A is quasi perfect iff it is quasi local and for any
x ∈ A and b ∈ B(A) \ {1} if (x ⊕ b) /∈ M, for every M ∈ Max(A)
then there exists M ′ ∈ Max(A) such that ¬x ⊕ b ∈ M.

Theorem
Weak Boolean products of local MV-algebras are quasi local
MV-algebras.
Weal Boolean products of perfect MV-algebras are quasi perfect
MV-algebras.



Weak Boolean Products
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Figure: Classes of MV-algebras and correspondent weak boolean
products



Weak Boolean Products

Definition

An MV-algebra A is called quasi local of finite rank iff it is quasi
local and there exists an integer n such that for all a ∈ A and
b ∈ B(A) \ {1} if for every M ∈ Max(A), (a⊕ b) /∈ M then there
exists M0 ∈ Max(A) such that (a∗)n ⊕ b ∈ M0.

Theorem
Weak Boolean products are quasi local MV-algebras of finite rank.

Theorem
Let A be an MV-algebra and V any proper subvariety of MV. Then
the following are equivalent:

(i) A ∈ V;

(ii) A ∈WBP(Loc(V)).



Weak Boolean Products
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Weak Boolean Products
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Propositional Logic of perfect MV-algebras

Let Luk denote the  Lukasiewicz propositional logic with usual
axioms and rule of inference.

Let LukP be the axiomatic extension of Luk by adding the
following axiom

(2α2)↔ (2α)2.

Proposition

A wff of LukP is valid on all perfect MV-chains iff it is provable in
LukP .



Propositional Logic of perfect MV-algebras

Let Luk denote the  Lukasiewicz propositional logic with usual
axioms and rule of inference.

Let LukP be the axiomatic extension of Luk by adding the
following axiom

(2α2)↔ (2α)2.

Proposition

A wff of LukP is valid on all perfect MV-chains iff it is provable in
LukP .



First order Logic of perfect MV-algebras

Let L denote the first order  Lukasiewicz logic with usual axioms
and rule of inference.

Let ˜LukP be the axiomatic extension of L by adding the following
axiom

(2α2)↔ (2α)2.

Proposition

A wff of ˜LukP is valid on all perfect MV-chains iff it is provable in
˜LukP .



Presheaf of local MV-algebras

Let A be an MV-algebra and Spec(A) the spectrum of prime ideals
of A endowed with the Zariski topology.

Let O(Spec(A)) be the category of open sets of Spec(A) having a
morphism from U to V iff U ⊆ V .

For each open set U of Spec(A), let AU = L(
∏

P∈U A/P).

Theorem
The map F : O(Spec(A))op → Loc defined as F(U) = AU for
each U ∈ Ob(O(Spec(A))op) is a presheaf of local MV-algebras.



Presheaf of perfect MV-algebras

Let {Ai}i∈I be a family of MV-algebras and let A =
∏

i∈I Ai . By
pseudo-diagonal of A is meant the set of all a ∈ A such that
ord(ai ) = ord(aj) for all i , j ∈ I . We will indicate the
pseudo-diagonal of A by pδi∈IAi .

Proposition

The pseudo-diagonal of a family of perfect MV-algebras is a
perfect MV-algebra.

Proposition

Let A be an MV-algebra. The MV-algebra AP = 〈P〉/O(P) is the
unique perfect MV-algebra with maximal ideal P/O(P).



Presheaf of perfect MV-algebras

Let P be the full subcategory of the category of MV-algebras
whose objects are perfect MV-algebras.

Let A be an MV-algebra and O(Spec(A)) be the category of open
sets of Spec(A) as before.

For each U ∈ Ob(O(Spec(A))), let AU = pδP∈UAP .

Theorem
The map F : O(Spec(A))op → P defined as F(U) = AU for each
U ∈ Ob(O(Spec(A))op) is a presheaf of perfect MV-algebras.


