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Introduction

The spirit of this paper can be summarized by the following
quotation, taken from Lawere:

In spite of its geometric origin, topos theory has in recent years
some-times been perceived as a branch of logic, partly because of
the contributions to the clarification of logic and set theory which
it has made possible. However, the orientation of many topos
theorists could perhaps be more accurately summarized by the
observation that what is usually called mathematical logic can be
viewed as a branch of algebraic geometry, and it is useful to make
this branch explicit in itself.



This paper is a preliminary study of applying the concepts of
algebraic geometry over fields to the theory of MV-algebras.
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Now, McNaughton functions are functions from [0, 1]” to [0, 1], so
that in the theory of (M11), the MV algebra [0, 1] plays a
fundamental role.

On the other hand, there are reasons to be interested in other MV
algebras, because every MV algebra can be viewed as the
Lindenbaum algebra of some many-valued logic, and as such, it
has logical relevance.



This is why we try to generalize somewhat the theory of (M11) to
MV algebras as general as possible.



In order to develop our theory we proceed along lines of algebraic
geometry over varieties in universal algebra.



We note that in algebraic geometry the central notion is the one of
polynomial. One has three possibilities:

» considering coefficient-free algebraic geometry; this allows one
to evaluate polynomials in arbitrary fields;

» considering Diophantine algebraic geometry: this means that
the field where coefficients are taken coincides with the field
where polynomials are evaluated;

» considering general, non-Diophantine algebraic geometry,
where polynomials take coefficients in a field K and are
evaluated in an extension L of K.



It turns out that all these three possibilities can be extended to
universal algebra.



It turns out that all these three possibilities can be extended to
universal algebra.

Since universal algebra subsumes the equational theory of MV
algebras, we can consider what happens in universal algebraic
geometry

» coefficient-free,
» Diophantine
» non-Diophantine

over MV algebras.



Because of the completeness theorem, we can say that all
information for this connection is already provided by the MV
algebra [0, 1].



However, since we are interested in a Diophantine and
Non-Diophantine approach to MV algebraic geometry, we would
like to go beyond [0, 1] and consider an MV algebra A.

This corresponds to adding to tukasiewicz logic the atomic
diagram of A.



Of course in the generalization we lose something



However, many concepts of the theory of McNaughton functions
still make sense, like

» the category of algebraic sets and Z-maps (here replaced by
polynomial maps) and

> the category of MV algebras and homomorphisms, as well as
> the equivalence between them.



Term algebras:

Let X be a non-empty set of elements called variables, let F be a
type of algebra.

The set of terms over X and F, denoted T(X, F), is the least set
of strings of symbols such that X C T(X), if t1,...,t, € T(X)
and f € F has arity n then then f(t1,...,t,) € T(X).

T(X,F) is called a term algebra.



MV — algebras and polynomials
Let A be an MV algebra and n be a positive integer. Let F4 be the
language of MV algebras plus a constant symbol ¢, for every a € A.

Define A[xi, ..., x5] (the MV algebra of polynomials in n variables
with constants in A) to be the quotient T,(X, Fa)/Ca,

where C,4 is the congruence generated by the axioms for
MV-algebras and the complete diagram of A.



MV — Polynomial functions:

In MV algebras (and in universal algebra in general) it is crucial to
distinguish polynomials and polynomial functions.

Equal polynomials induce the same function everywhere,

but two polynomials can induce the same function on some
MV-algebra without being equal.



Given an MV algebra A and an MV term p(x1,..., xn) € Tp(X, A)
we may define a function pa : A" — A as follows:

1) if p(x1,..., xn) = x;, then pa(a1,..., an) = aj;

2) if p(x1,..., xn) = c, for some a € A, then pa(ai,..., a) = a;

3)if p(x1,..., xn) = p1(x1,.-., Xn) D p2(Xx1,..., Xn), then
pA(ala B an) = plA(a17 B an) Da P2A(317 ) an);

4)if p(x1,..., xp) = p1(x1,..., xn) @ p2(x1,..., Xn), then
pa(ai, ..., an) = pra(ar,---, an) ©ap2alar, ..., an);

5) paat, ..., an) = (palar, ..., an))™.



We call ps the MV — polynomial — function induced on A by p.

We note that polynomial functions on an MV algebra A form an
MV algebra, which we will denote by PF,(A). We write p =4 q if
Pa = ga.

If two terms over an algebra A are the same polynomial, then they
induce the same function on A, but not conversely. However we
have the following characterization:



Proposition
Two terms p, q in n variables give the same polynomial on an

MV-algebra A
if and only if

there is an extension A" of A[x1, ..., x| such that p,q are
congruent modulo = .



McNaughton functions and McNaughton Theorem:

We recall the notion of McNaughton functions and McNaughton
Theorem.

A function f from [0, 1]" to [0, 1] is called a McNaughton function
if it is continuous and there are k linear polynomials with integer
coefficients such that for every y € [0,1]” there is j such that

F(x) = pj(x).

Then McNaughton Theorem says that McNaughton functions form
an MV-algebra isomorphic to the free MV-algebra on n generators.



Truncated functions and a
generalized McNaughton Theorem:

The classical McNaughton Theorem of the previous subsection
implies that free MV algebras can be represented as MV
polynomials on [0, 1]".

However, these polynomials can also be represented as truncated
infima of suprema of affine functions from [0, 1]” to R with integer
coefficients.



This idea can be extended to any MV-algebra A, so to relate
truncated infima of suprema of affine functions from A” to =(A)
(where = is the inverse Mundici functor, and MV-polynomial
functions on A.

The advantage of this idea is that it works in an arbitrary
MV-algebra, where we do not have the notion of continuity as we
have in [0, 1].



Let A be an MV algebra with associated ¢u-group (G, u). A
(G, u)-affine term (with integer coefficients) from A” to G is a
term (in the language of groups) of the form

f(x1,...,Xn) = 8 + mix1 + ...+ mpx,, where g € G and
my,...,m, € Z.

Note that we identify a variable x; with the corresponding
projection.



Let (G, u) be an fu-group associated to an MV algebra A. For an
element g € G, we define the truncating function

p(g) =(gVO)Au.

This defines a function p: G — A.



A (G, u)-term is a term (in the language of ¢-groups) of the form
Vi A, fij(x), where fj is affine, that is, a finite infimum of finite
suprema of affine terms.

A truncated (G, u) term is an expression of the form po t, where t
is a (G, u)-term.

A truncated (G, u)-function is one defined by a truncated
(G, u)-term.



We let TF,(G, u) be the set of all truncated (G, u) functions in n
variables.

We note that the set TF,(G, u) of truncated (G, u) functions is an
MV-algebra.

In fact, we can define t @ u=po(t+u)and -t =u—t.



Since the inverse Mundici functor = gives a bijection between MV
algebras and /Zu-groups, we can write without ambiguity TF,(A)
for TF,(Z(A)).

This notation will be useful in stating the next theorem, which
clarifies:

the relation between truncated (G, u)-terms and MV-polynomials:



Theorem

Let A be an MV algebra, with associated {u group (G, u). Then

MV polynomials and truncated (G, u)-terms define the same
functions from A" to A. That is,

the MV algebras TF,(A) and PF,(A) coincide.



Polyhedra and McNaughton functions for MV — chains:

We can exploit McNaughton Theorem to give the following
characterization of zerosets of polynomials in MV chains.

Given an MV algebra A, an affine function on A is a function of
the form X;mjx; + r, where m; are integers and r € =(A).



Proposition

Let A be an MV chain. The zerosets of a polynomial

p(X1y ...y Xn, 31,...,3m) € A[x1, ..., xn] coincide with finite
unions of polyhedra of the form

{xla(x) = 0},

where a(x) is an affine function on A.



With the same kind of argument one can prove the following
analogue of McNaughton Theorem itself for MV-chains.

Call McNaughton function over A a function f : A” — A for which
there is a covering of A" by finitely many polyhedra Py, ..., Py of
the form {x|a(x) > 0}, such that f on each polyhedron is affine.



Proposition
Let A be an MV chain. Let p € A[xi,...,xn]. Then p defines a
McNaughton function from A" to A.

Conversely,

every McNaughton function from A" to A is definable by a
polynomial.



Algebraic Sets:

In this section we focus on Diophantine algebraic geometry: that
is, we take the same algebra A both to define constants in
polynomials and to evaluate polynomials.

Definition
Let A be an MV-algebra. Let S C A[x,..., x5], S # 0.

Consider the set

{(a1,..., an) € A" | p(a1,.... an) =0, VYp(x1, ..., xn) € S}.
Denote this set by V/(S), called the algebraic set determined by
S.



Clearly if we let | = id(S), the ideal of A[x1,..., x| generated by
S, then V(1) = V(S).

Thus

algebraic sets are determined by ideals.



Definition
Call an ideal J C A[xi, ..., xp] singular if V(J) = 0. Otherwise
call J non- singular.



Proposition

Suppose we have a non-empty X C A". Then let
I(X)={pe€Ax,..., xa] | p(¥) =0, ¥y € X} where
y=W1-s ¥n), Yi €A

Then 1(X) is an ideal of A[x1, ..., Xx].



Point ideals and point radicals:

Call an ideal J C A[x] a point ideal if for some
a=(a1,..., an) € A" we have J = /(3).



We consider the fixpoints of the adjunction (/, V):
For an ideal | C A[X] let v/ = (N{I(3) | I C 1(3)}.

We call pt\ﬁ the point radical of /.

Note it is an ideal as well.



We have the following Nullstellensatz theorem:

Theorem
The ideals J such that I(V(J)) = J are exactly the point-radical
ideals.

Proposition

There is a one-one correspondence between point — radicals and
algebraic sets.



Some properties of V/(I):

In partial analogy with regular algebraic geometry over fields, the
following is true:
Proposition

Let A be an MV algebra. Let I,J, Ji be ideals of A[xi, ..., Xn].
Then,

1) 1 C Jimplies V(J) C V(I);
2) V(0) = A" V(A ..., xa]) =0;
3) if Ais an MV chain then V(I NJ) =
4) V(Zkdi) = Ny V(Ji)-

V(HuV(J),



Coordinate algebras:

Here again we are in Diophantine geometry.

Definition
Let Z C A" be a non-empty algebraic set.

By the co-ordinate MV-algebra of Z we mean the MV-algebra
Alx]/1(2).



Definition
Let Z1 C A", Z, C A™ be algebraic sets. A mapping ¢ : 21 — 2>
is called a polynomial map

iff
there are polynomials p1,..., pm € A[x1,..., Xp] such that
o(at, ..., an) = (p1(a1,---, an)y.--, pm(ai,..., an)) for every

(al,...,an) € /.



Let Z(A) be the collection of all algebraic subsets of A”. Then
with polynomial maps as morphisms, Z(A) becomes a category.

We have the following duality:



Theorem
The categories of all algebraic sets with polynomial maps as

morphisms is dually isomorphic to the category of Coordinate
MV — algebras.



Let Z = V(I), with Z # (;
let F(Z, A) be the MV algebra of polynomial maps from Z to A.
Then:

Proposition
A[X]/! is isomorphic to F(Z, A).



Corollary
Let A be an MV algebra. Then F(Z, A) is a quotient of TF,(A).



Logic of polynomials:

The completeness theorem of tukasiewicz infinite valued logic can
be phrased in several ways. One way is this, for [0, 1] valued logic,
if o is a wff in the variables vq,..., v,, and if the value of o for all
values of the v; is always 1, then in the Lindenbaum algebra

[c] = 1, where [o] is the class of o.



Now [o] can be interpretated as a function [o] : [0, 1]” — [0, 1] by
[o](r1,..., ) equals the value of o with the assignment v; = r;.
Note that this value is independent of the representative chosen
form [o].

With this interpretation the completeness theorem can be phrased
as: if the function [o] equals 1 on [0, 1]”, then [o] =1 in the
Lindenbaum algebra.



We can apply this idea to our context and we get what we call
polynomial completeness.

We introduce the following notion:



Definition
An MV algebra A is polynomially complete if for every n, the
only polynomial in n variables inducing the zero function on A" is

the zero polynomial.



Note that A is polynomially complete if and only if pt\@ =0in
Alx1, ..., x| for every n.

For instance we have:

Proposition
Every divisible MV chain is polynomially complete.



For polynomially complete MV algebras, our generalized
McNaughton Theorem becomes particularly interesting, because
we can speak freely about polynomials rather than polynomial

functions.



A characterization of polynomially complete MV chains:

We do not have a complete characterization of polynomially
complete MV algebras, however in this paper we give one for MV
chains.

Theorem
Let C be an MV chain. The following are equivalent:
1. C is polynomially complete;

2. every polynomial p € C[x,...,xp| which induces the zero
function on C induces the zero function on DH(C), where
DH(C) is the divisible hull of C.



Corollary
» Every MV chain can be embedded in a polynomially complete
MYV chain.
» Every simple infinite MV chain is polynomially complete.
» No discrete MV chain A is polynomially complete.

» No MV chain A of finite rank is polynomially complete.



Now it is natural to conjecture that the theorem extends to MV
algebras:

Any MV algebra A is polynomially complete
if and only if
every polynomial p € A[xi, ..., x,] which induces zero on A"

induces zero also on DH(A)", where DH(A) is the divisible hull of
A.



tukasiewicz logic with constants:

Like classical algebraic geometry, MV algebraic geometry can be
studied by three different viewpoints: geometric (the algebraic
sets), algebraic (coordinate algebras) and logical (theories and
models).

While the first two approaches are studied in the previous sections
of this paper, we are left with giving the basics of logic for
Diophantine MV algebraic geometry.

We must define tukasiewicz logic with constants in a fixed MV
algebra A, which, according to the Diophantine approach, will be
both the MV algebra where the constants of polynomials are taken
and the MV algebra where polynomials are evaluated.



In order to begin the study of tukasiewicz logic with constants in a
fixed MV algebra A, denoted by L (4), by adding constants
denoting elements of A.



Like any other logic we must specify the syntax and semantics of
L(a)- First, formulas are defined inductively as follows:

variables X1, Xo, ... are formulas;

v

v

constants c, for every a € A are formulas;

if «is a formula, then —« is a formula;

v

v

if a, B is a formula, then o — 3 is a formula.



The semantics of L (4) is given in terms of valuation functions v
from variables to elements of A. The value of a formula « in a
valuation v is an element v(¢p) of A defined by:

» v(X;) when X is a variable;
» a when the formula is the constant c,;
> v(—a) = ~v(a);

» v(a— B) = v(a) = v(B).



Now the notions of satisfaction, model, tautology, semantic
consequence are like Lukasiewicz Logic. In particular, a model of a
formula « is a valuation v such that v(a) = 1. A formula « is a
tautology if v(a)) =1 for every valuation v.

A formula « is a semantic consequence of a set of formulas © if
every model of © is also a model of a.



In Loo(a) we give also a deductive system, extending the one of
(CDM), section 4.3 with axioms for constants. The axioms are:

» a— (f—a);
> (= B) = ((B—7) = (@—=7);
(= B) = B) = ((B = a) = a)

(ma = =B8) = (8 = a);

v

v

v

Carab — (Ca = Cb);

v

(Ca — Cb) — Ca*@bs
> Cax — T1Cy;

» C; — Ca*.



The only rule is Modus ponens, defined as usual: from « and
o — 3 derive S.

The notions of provable formula, proof, possibly with hypotheses,
and theory are standard. The same holds for Lindenbaum MV
algebra. We denote by Lind(A) the Lindenbaum algebra of L a):
that is, the set of all formulas of L4y modulo mutual provability.
However, Lind(A) is simply the polynomial MV algebra in
countably many variables:

Theorem
For every MV algebra A, the MV algebras Lind(A) and
Alx1, %2, ...] are isomorphic.



We will say that a logic is complete if tautologies coincide with
provable formulas (by logic here we mean any set of strings
equipped with a deductive system and a set of valuation functions
taking values in one or more MV algebras).

Clearly, for every A, every provable formula of L4 is a tautology.
The converse implication does not hold in general, but we have a
characterization in terms of polynomial completeness:

Theorem
For every MV algebra A, the logic Ly 4 is complete if and only if
A is polynomially complete.



We can summarize the main results as follows:

» We identify polynomial functions over any MV algebra with a
kind of truncated functions;

» we give a form of Nullstellensatz for A[xi, ..., xa];

» we give a universal algebraic duality between algebraic sets
and their coordinate algebras;

> we introduce the definition of polynomially complete MV
algebra (i.e. one where polynomials and polynomial functions

coincide) and we give a characterization of polynomially
complete MV chains;

> we give a completeness theorem for tukasiewicz logic with
constants.

The results obtained so far suggest that a study of non-Diophantine
algebraic geometry for MV algebras deserves to be pursued.



