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1. Introduction

• In education, evaluations of the student’s knowledge,
skills, and abilities are often subjective.

• Teachers often make these evaluations by using words
from natural language like “good”, “excellent”.

• Traditionally, these evaluations are first transformed
into exact numbers.

• This transformation, however, ignores the uncertainty
of the original estimates.

• We show that taking this uncertainty into account helps
on all stages of education process:

– in planning education,

– in teaching itself, and

– in assessing the education results.
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2. Applications to Planning Education and to Teach-
ing Itself

Here, interval and fuzzy techniques help us:

• to better plan the order in which the material is pre-
sented and the amount of time allocated for each topic;

• to find the most efficient way of teaching inter-disciplinary
topics;

• to stimulate students by explaining historical (infor-
mal) motivations behind different concepts and ideas.
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3. Interval and Fuzzy Techniques in Assessment

In assessment, interval and fuzzy techniques help:

• to design a better grading scheme for test and assign-
ments – that stimulates more effective learning,

• to provide a more adequate individual grading of con-
tributions to group projects – by taking into account

– subjective estimates of different student contribu-
tions, and

– the uncertainty of these estimates;

• to provide a more adequate description of the student
knowledge and of the overall teaching effectiveness.
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Planning the Order in Which

the Material Is Presented. I
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4. Planning the Order in Which the Material is
Presented

• In general, it is not clear what is the best order of
presenting the material.

• The change in order often drastically changes the learn-
ing efficiency, sometimes in a counter-intuitive way.

• E.g.: it is usually assumed that students learn math
concepts better if concrete examples come first.

• However, empirically, the abstract-first approach often
enhances learning.

• We describe a simple model explaining why presenta-
tion order affects the learning efficiency.

• We then show how this explanation can be used:

– to avoid inhibition of learning

– and to enhance the student learning.
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5. Learning: A Natural Geometric Representa-
tion

• The process of learning means that we change the state
of a student:

– from a state in which the student did not know the
material (or does not have the required skill)

– to a state in which the student has (some) knowl-
edge of the required material.

• Let s0 denote the original state of a student.

• Let S denote the set of all the states corresponding to
the required knowledge or skill:

– we start with a state s0 6∈ S, and

– we end up in a state s which is in the set S.

• It is natural to define a metric d(s, s′) as the difficulty
(time, effort, etc.) needed to go from state s to state s′.
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6. Geometric Interpretation (cont-d)

• Our objective is to help the students learn in the easiest
(fastest, etc.) way.

• In terms of the metric d, this means that we want to
go:

– from the original state s0 6∈ S
– to the state s ∈ S for which the effort d(s0, s) is the

smallest possible.

• In geometric terms, the smallest possible effort means
the shortest possible distance.

• Thus, our objective is to find the state s ∈ S which is
the closest to s0.

• Such closest state is called the projection of the original
state s0 on the set S.
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7. Learning Complex Material: Geometric Inter-
pretation

• Let Si, 1 ≤ i ≤ n, denote the set of states in which a
student has learned the i-th part of the material.

• Our objective: reach a state which belongs to the in-

tersection S
def
= S1 ∩ . . . ∩ Sn.

• In these terms, if we present the material in the order
S1, S2, . . . , Sn, this means that:

– we first project s0 onto the set S1, resulting is a
state s1 ∈ S1 which is the closest to s0;

– then, we project s1 onto the set S2, resulting is a
state s2 ∈ S2 which is the closest to s1; etc.

• By the time the students have learned Sn, they have
somewhat forgotten S1 – so we must repeat.

• Thus, starting from the state sn, we again sequentially
project onto the sets S1, S2, etc.
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8. The Above Geometric Interpretation Makes Com-
putational Sense

• The above “sequential projections” algorithm is actu-
ally actively used in many applications.

• For convex sets Si:

– we get a known Projections on Convex Sets (POCS)
method;

– POCS guarantees (under reasonable conditions) con-
vergence to a point from S1 ∩ . . . ∩ Sn;

– in our terms, this means that the students will even-
tually learn all parts of the necessary material.

• In the general (not necessarily convex) case:

– the convergence is not always guaranteed,

– but the method is still efficiently used, and often
converges.
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9. The Simplest Case: Two-Part Knowledge

• In this case, there are only two options:

– we begin by studying S1, then, we study S2, then,
if needed, we study S1 again, etc.

– we begin by studying S2, then, we study S1, then,
if needed, we study S2 again, etc.

• The amount of knowledge is reasonably small – other-
wise, we would have divided into more than 2 pieces.

• In geometric terms, this means that the original state
s0 is close to the desired intersection set S1 ∩ S2.

• Since all the states are close to each other, we can
approximate the borders of Si by linear expressions.

• Thus, these borders are straight lines (or planes in 3-D
space).
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10. Resulting Geometric Configuration
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Here:

• 2α is the angle between the borders of S1 and S2;

• β is the angle between the direction s̃s0 and the mid-
line.
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11. First Option: S1 then S2
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• Here, s0s1 ⊥ S1, so d1
def
= d(s̃, s1) is d1 = d0 ·cos(α−β).

• On the next step, the angle is 2α, so
d2 = d1 · cos(2α) = d0 · cos(α− β) · cos(2α).

• In general, dk = d(sk, s̃) = d0 · cos(α− β) · cosk−1(2α).
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12. Second Option: S2 then S1
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• Here, s0s1 ⊥ S1, so d1
def
= d(s̃, s1) is d1 = d0 · cos(α+β).

• On the next step, the angle is 2α, so
d2 = d1 · cos(2α) = d0 · cos(α + β) · cos(2α).

• In general, dk = d(sk, s̃) = d0 · cos(α + β) · cosk−1(2α).
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13. Analysis and Recommendations

• If we start w/S1, we get dk = d0 ·cos(α−β)·cosk−1(2α).

• If we start w/S2, we get dk = d0 ·cos(α+β)·cosk−1(2α).

• In general, cos(α− β) 6= cos(α + β).

• This explains why the effectiveness of learning depends
on the order in which the material is presented.

• Starting w/S1 is better iff cos(α−β) < cos(α+β), i.e.,
iff α− β > α + β.

• Resulting recommendation: start with the material that
we know the least.

• This ties in with a natural commonsense recommenda-
tion to concentrate on one’s deficiencies.

• This explains why studying more difficult (abstract)
ideas first enhances learning.



Applications to . . .

Interval and Fuzzy . . .

Planning the Order in . . .

Distributing Effort . . .

Back to Traditional . . .

Inter-Disciplinary . . .

Explaining . . .

Grading and Assessment

Home Page

Title Page

JJ II

J I

Page 16 of 134

Go Back

Full Screen

Close

Quit

Planning the Order in Which

the Material Is Presented. II
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14. Outline

• In general, human being are rational decision makers.

• However, in many situations, they exhibit unexplained
“inertia”, reluctance to switch to a better decision.

• We show that this seemingly irrational behavior can be
explained if we take uncertainty into account.

• We also explain how this phenomenon can be utilized
in education.
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15. Traditional Approach to Human Decision Mak-
ing: A Brief Reminder

• Situation: we have alternatives A1, . . . , An.

• Idea: alternatives are characterized by their “utility
values” u(A1), . . . , u(An).

• Preference: Ai is preferable to Aj if and only if

u(Ai) > u(Aj).

• Empirical testing: we need to compare

– empirically “testable” behavior (such as preferring
one alternative Ai to another alternative Aj) and

– difficult-to-test comparison between the (usually un-
known) utility values.

• Conclusion: empirical testing is difficult.
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16. A Testable Consequence of the Traditional Ap-
proach to Decision Making

• Fact: for every two alternatives Ai and Aj:

– either u(Ai) > u(Aj), i.e., the alternative Ai is bet-
ter,

– or u(Aj) > u(Ai), i.e., the alternative Aj is better.

• Comment: exact equality of u(Ai) and u(Aj) is highly
improbable.

• In the first case u(Ai) > u(Aj),

– if we originally only had Ai, and then we add Aj,
then we stick with Ai;

– on the other hand, if we originally only had Aj, and
then we add Ai, then we switch our choice to Ai.

• Similarly, in the second case u(Aj) > u(Ai).
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17. The Above Testable Consequence is in Perfect
Agreement with Common Sense

• Claim: the above behavior is in perfect agreement with
common sense.

• Case 1: the alternative Ai is preferable to the alterna-
tive Aj.

• Expected behavior: choose Ai irrespective of whether
we started with only Ai or only Aj.

• Case 2: the alternative Aj is preferable to the alterna-
tive Ai.

• Expected behavior: choose Aj irrespective of whether
we started with only Ai or only Aj.
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18. For Close Alternatives, Decision Makers Do
Not Behave in This Rational Fashion

• Empirical result: when the alternatives are close in
value, decision maker exhibit “inertia”.

• Example: selecting between two similar retirement plans
Ai and Aj.

• Case 1: we start with the plan Ai and then add Aj.

• Typical behavior: stick to Ai.

• Case 2: we start with the plan Aj and then add Ai.

• Typical behavior: stick to Aj.

• Why this is counter-intuitive:

– if Ai is better, then in Case 2, people should switch
to Ai;

– if Aj is better, then in Case 1, people should switch
to Aj.
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19. Maybe Human Behavior Is Irrational?

• How can we explain this seemingly irrational behavior?

• One possible explanation is that many people do often
make bad (irrational) decisions:

– waste money on gambling,

– waste one’s health or alcohol and drugs, etc.

• However, the above inertial behavior occurs among the
most successful (otherwise rational) people.

• It is therefore reasonable to look for an explanation of
this seemingly irrational behavior.

• It turns out that

– we can come up with such an explanation

– if we take into account uncertainty related to deci-
sion making.
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20. How to Take Into Account Uncertainty in De-
cision Making Situations

• In practice, we can predict the consequences of alter-
natives only approximately, with some accuracy ε.

• So, instead of the exact values u(Ai) and u(Aj), we
only know approximate values ũi and ũj.

• The actual utility values can be within intervals
ui = [ũi − ε, ũi + ε] and uj = [ũj − ε, ũj + ε].

• If the estimates are close, i.e., if |ũi − ũj| < 2ε, then

– there exist values ui ∈ ui and uj ∈ uj s.t. ui < uj;
and

– there exist values ui ∈ ui and uj ∈ uj s.t. ui > uj.

• Thus, switching may decrease utility.

• So, it is prudent not to switch (especially since often
switching comes with a penalty).
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21. Another Case when Inertia is Beneficial: Con-
trol of a Mobile Robot

• We change direction based on the moment-by-moment
measurements of the robot’s location and/or velocity.

• Measurements are never 100% accurate.

• The resulting measurement noise leads to random de-
viations – shaking and “wobbling”.

• Each change in direction requires that energy from the
robot’s battery go to the robot’s motor.

• So, this wobbling drains the batteries and slows down
the robot’s motion.

• Natural idea: only change if it’s clear (beyond uncer-
tainty) that this will improve the performance.

• Result: UTEP robot’s 1st place at 1997 AAAI compe-
tition.
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22. Asymmetric Paternalism: Practical Applica-
tion of Present-Biased Preferences

• Fact: the decision-making inertia is used in practice,
to encourage desirable behavior.

• Example: a kid can drink either a healthy fruit juice
or a soda drink which has no health value.

• Traditional paternalism: prohibit undesirable choices.

• Problem: this enforcement rarely works.

• More efficient idea:

– at first provide only the desired alternative,

– and then introduce all the other alternatives.

• Example: have only healthy drinks for the first few
weeks of school, but then allow all the choices.

• Result: due to inertia, kids tend to stick to their origi-
nal healthier choice.
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23. How Does Our Explanation Help?

• Fact: asymmetric paternalism works.

• Natural question: do we need any explanation to make
it work?

• Problem: sometimes this approach works, and some-
times it does not.

• Additional problem: it is not known how to predict
when it will work.

• Our solution: this approach works when |ũi− ũj| < 2ε.

• Comment: for fuzzy numbers,

– we can get a similar answer for “not switching with
a given confidence”,

– if we similarly compare the intervals (α-cuts) for
u(Ai) and u(Aj) corresponding to this level α.
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24. Potential Applications to Education

• Current applications: in economy and in health.

• Our idea: use it in education.

• Example:

– when the students just come to class from recess or
from home, it is difficult to get their attention;

– once they get engaged in the class, it is difficult for
them to stop when the bell rings.

• Objective: prevent students from switching to a passive
state Aj.

• How to use this phenomenon:

– to start a class with engaging fun material, to get
them into the studying state Ai;

– they will (hopefully) remain in Ai even when a
somewhat less fun necessary material is presented.
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25. Deciding Which Teaching Method Is Better:
Formulation of the Problem

• Pedagogy is a fast developing field.

• New methods, new ideas and constantly being devel-
oped and tested.

• New methods and new idea may be different in many
things:

– they may differ in the way material is presented,

– they may also differ in the way the teacher’s effort
is distributed among individual students.

• To perform a meaningful testing, we need to agree on
the criterion.

• Once we have selected a criterion, a natural question
is: what is the optimal way to teaching the students.
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26. How Techniques Are Compared Now: A Brief
Description

• The success of each individual student i can be natu-
rally gauged by this student’s grade xi.

• So, for two different techniques T and T ′, we know the
corresponding grades x1, . . . , xn and x′1, . . . , x

′
n′.

• In pedagogical experiments, the decision is usually made
based on the comparison of the average grades

E
def
=
x1 + . . .+ xn

n
and E ′

def
=
x′1 + . . .+ x′n′

n′
.

• Example: we had x1 = 60, x2 = 90, hence E = 75.
Now, we have x′1 = x′2 = 70, and E ′ = 70. In T ′:

– the average grade is worse, but

– in contrast to T , no one failed.
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27. Towards Selecting the Optimal Teaching Strat-
egy: Possible Objective Functions

• Fact: the traditional approach – of using the average
grade as a criterion – is not always adequate.

• Conclusion: other criteria f(x1, . . . , xn) are needed.

• Maximizing passing rate: f = #{i : xi ≥ x0}.
• No child left behind: f(x1, . . . , xn) = min(x1, . . . , xn).

• Best school to get in: f(x1, . . . , xn) = max(x1, . . . , xn).

• Case of independence: decision theory leads to
f = f1(x1) + . . .+ fn(xn) for some functions fi(xi).

• Criteria combining mean E and variance V to take
into account that a larger mean is not always better:

f(x1, . . . , xn) = f(E, V ).

• Comment: it is reasonable to require that f(E, V ) is
increasing in E and decreasing in V .
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28. Towards Selecting the Optimal Teaching Strat-
egy: Formulation of the Problem

• Let ei(xi) denote the amount of effort (time, etc.) that
is needed for i-th student to achieve the grade xi.

• Clearly, the better grade we want to achieve, the more
effort we need.

• So, each function ei(xi) is strictly increasing.

• Let e denote the available amount of effort.

• In these terms, the problem of selecting the optimal
teaching strategy takes the following form:

Maximize f(x1, . . . , xn)

under the constraint

e1(x1) + . . .+ en(xn) ≤ e.
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29. Explicit Solution: Case of Independent Stu-
dents

• Maximize: f1(x1) + . . .+ fn(xn) under the constraint

e1(x1) + . . .+ en(xn) ≤ e.

• Observation: the more efforts, the better results, so we
can assume e1(x1) + . . .+ en(xn) = e.

• Lagrange multiplier: maximize

J =
n∑

i=1

fi(xi) + λ ·
n∑

i=1

ei(xi).

• Equation
∂J

∂xi
= 0 leads to f ′i(xi) + λ · e′i(xi) = 0.

• Thus, once we know λ, we can find all xi.

• λ can be found from the condition
n∑

i=1

ei(xi(λ)) = e.
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30. Explicit Solution: “No Child Left Behind”

• In the No Child Left Behind case, we maximize the
lowest grade.

• There is no sense to use the effort to get one of the
student grades better than the lowest grade.

• It is more beneficial to use the same efforts to increase
the grades of all the students at the same time.

• In this case, the common grade xc that we can achieve
can be determined from the equation

e1(xc) + . . .+ en(xc) = e.

• Students may already have knowledge x
(0)
1 ≤ x

(0)
2 ≤ . . .

• In this case, we find the largest k for which
e1(x

(0)
k ) + . . . + ek(x

(0)
k ) ≤ e and then x ∈ [x

(0)
k , x

(0)
k+1)

s.t.
e1(x) + . . .+ ek−1(x) + ek(x) = e.
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31. Explicit Solution: “Best School to Get In”
Case

• Best-School-to-Get-In means maximizing the largest
possible grade xi.

• The optimal use of effort is, of course, to concentrate
on a single individual and ignore the rest.

• Which individual to target depends on how much gain
we will get:

– first, for each i, we find xi for which ei(xi) = e, and
then

– we choose the student with the largest value of xi
as a recipient of all the efforts.
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32. Need to Take Uncertainty Into Account

• We assumed that:

– we know exactly the benefits f(x1, . . . , xn) of achiev-
ing knowledge levels xi;

– we know exactly how much effort ei(xi) is needed
for each level xi, and

– we know exactly the level of knowledge xi of each
student.

• In practice, we have uncertainty:

– we only know the average benefit u(x) of grade x
to a student;

– we only know the average effort e(x) needed to
bring a student to the level x; and

– the grade x̃i is only an approximate indication of
the student’s level of knowledge.
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33. Average Benefit Function

• Objective function: f(x1, . . . , xn) = u(x1)+ . . .+u(xn).

• Usually, the benefit function is reasonably smooth.

• In this case, if (hopefully) all grades are close, we can
keep only quadratic terms in the Taylor expansion:

u(x) = u0 + u1 · x+ u2 · x2.

• So, the objective function takes the form

f(x1, . . . , xn) = n · u0 + u1 ·
n∑

i=1

xi + u2 ·
n∑

i=1

x2i .

• Fact: E =
1

n
·

n∑
i=1

xi and M =
1

n
·

n∑
i=1

x2i = V + E2.

• Conclusion: f depends only on the mean E and on the
variance V .
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34. Case of Interval Uncertainty

• Situation: we only know intervals [xi, xi] of possible
values of xi.

• Fact: the benefit function u(x) is increasing (the more
knowledge the better).

• Conclusion:

– the benefit is the largest when xi = xi, and

– the benefit is the smallest when xi = xi.

• Resulting formula: [f, f ] =

[
n∑

i=1

u(xi),
n∑

i=1

u(xi)

]
.

• Reminder: for quadratic u(x) and exactly known xi,
we only need to know E and M .

• New result: under interval uncertainty, we need all n
intervals.
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35. Case of Fuzzy Uncertainty

• In many practical situations, the estimates x̃i come
from experts.

• Experts often describe the inaccuracy of their estimates
in terms of imprecise words from natural language.

• A natural way to formalize such words is to use fuzzy
logic:

– for each possible value of xi ∈ [xi, xi],

– we describe the degree µi(xi) to which xi is possible.

• Alternatively, we can consider α-cuts {x : µi(xi) ≥ α}.

• For each α, the fuzzy set y = f(x1, . . . , xn) has α-cuts

y(α) = f(x1(α), . . . ,x1(α)).

• So, the problem of propagating fuzzy uncertainty can
be reduced to several interval propagation problems.
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Back to the Future:

Advanced Control

Techniques Justify–on a New

Level–Traditional Education

Practices
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36. Teaching Is Not Easy

• Education is one of the oldest human activities.

• We need to help students move:

– from their original state, in which they only know
the basics of the studied material,

– to the desired state, in which they have mastered
the corresponding knowledge.

• Students have different starting knowledge, different
learning styles.

• The differences between the students change with time:
a student may lag behind or catch up.

• It is desirable to take the present state of a student
into account when selecting a teaching method.



Applications to . . .

Interval and Fuzzy . . .

Planning the Order in . . .

Distributing Effort . . .

Back to Traditional . . .

Inter-Disciplinary . . .

Explaining . . .

Grading and Assessment

Home Page

Title Page

JJ II

J I

Page 42 of 134

Go Back

Full Screen

Close

Quit

37. How to Gauge the Student’s State of Knowl-
edge: Fuzzy Techniques Are Needed

• At the end of a course, we can gauge this state of knowl-
edge against well-defined learning objectives.

• Gauging a state of knowledge is not so easy on the
intermediate stages.

• Skilled educators often have a good grasp of where each
student stands.

• Even students themselves usually have a good intuitive
understanding on where they stand on different topics.

• These estimates are usually formulated by words from
a natural language (“good grasp”, “struggling”, etc.).

• It is thus reasonable to use fuzzy techniques to estimate
students’ levels of knowledge.
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38. Control Is Needed in Education

• Once we know the current state, we need to decide on
the best strategy of reaching the desired state.

• This is a typical engineering problem.

• Techniques for solving this problem are known as con-
trol techniques.

• Thus, we conclude that we need to use control tech-
niques in education.
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39. From Traditional Control to Decentralized Con-
trol

• Traditional control theory assumes that there is a sin-
gle deciding agent.

• This assumption makes perfect sense in simple situa-
tions, when there are few parameters to control.

• In such situations, a centralized controller can control
all these parameters.

• However, for a complex system, the number of param-
eters can be huge.

• It becomes difficult for a centralized controller to con-
trol the values of all these parameters.

• Good news is that many of these parameters describe
local subsystems.

• In such cases, decisions can be made locally.
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40. From Traditional Control to Decentralized Con-
trol (cont-d)

• When we control a single ship, in many cases, we need
to make centralized decisions.

• However, when we control a fleet of ships, many deci-
sions are better left to the ship captains.

• Unnecessary centralization creates a decision bottle-
neck, resulting in decision delays.

• Excessive centralization decreases reliability: if center
fails, the system fails.

• Many successful complex systems are decentralized;
the Internet is one good example.

• On the other hand, over-centralized economic control
in Eastern Europe led to economic disasters.
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41. Control: Reminder

• In general, a current state of a system is characterized
by one or several parameters x = (x1, . . . , xn).

• It is convenient to use, as the parameters xi, the dif-
ferences between the actual and the desired value.

• We usually know how the state of the system changes
with time: ẋi = fi(x, u).

• Once we fix the control strategy u(x), we get ẋi =

Fi(x), where Fi(x)
def
= fi(x, u(x)).

• Once we have reached the desired state x = 0, we
should stay in this state, i.e., we should have Fi(0) = 0.

• When control is efficient, the differences xi are small.

• In this case, terms quadratic (and higher order) in Fi

can safely ignored, so ẋi =
n∑

j=1

Fij · xj.
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42. Simple Example of a Control Situation

• Let us consider a simple case when the state of each
subsystem is characterized by a single parameter.

• In this case, n parameters xi mean that we have n
subsystems, each of which is described by the corr. xi.

• In the centralized control, only the central authority
can influence the state of the i-th system.

• In the education example, this means that only the
teacher provides feedback to each student.

• For such centralized control, the rate Fi(x) depends
only on the state xi: ẋi = Fii · xi.

• If Fii is positive, then any deviation from the ideal state
will increase in time, so Fii = −ki for some ki > 0.

• If we start with a deviation xi(0) = ∆i 6= 0, then
xi(t) = ∆i · exp(−ki · t).
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43. Case of Centralized Control (cont-d)

• In general, we have xi(t) = ∆i · exp(−ki · t).

• The larger ki, the faster we get back to the ideal state.

• Our goal is to keep the system as close to the ideal
state as possible.

• Thus, we should use the largest possible value of ki.

• There are usually some physical limitations on the val-
ues of ki.

• For example, a car can accelerate or decelerate only so
much.

• If we denote the corresponding limit by k, then we
conclude that for each subsystem, we should use ki = k.

• The resulting dynamics takes the form ẋi = −k · xi,
and the resulting solution is xi(t) = ∆i · exp(−k · t).
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44. Case of Decentralized Control

• In the decentralized case, each subsystem can also be
influenced by other subsystems.

• In the education example, a student also gains infor-
mation from other students.

• The effect of other students depends on the difference
xj − xi between their levels of knowledge: d · (xj − xi).

• Thus, the equation becomes ẋi = −k·xi+d·
∑
j 6=i

(xj−xi).

• The values k and d reflect the ability of an instructor
and of a fellow student to convey information.

• Of course, an instructor is usually skilled in teaching
while the students are still learning themselves.

• So, we should expect that k � d.
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45. Decentralized Control Is Better

• We have ẋi = −k · xi + d ·
∑
j 6=i

(xj − xi).

• The solution takes the form

xi(t) = ∆i ·
(

1− 1

n

)
· exp(−(k + d · n) · t)+

∆i

n
· exp(−k · t).

• For centralized control, we have xi(t) = ∆i ·exp(−k ·t).

• Asymptotically, for large t, the term exp(−(k+d ·n) ·t)
decreases much faster than exp(−k · t).

• Thus, decentralized control is better.
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46. Decentralized Control Is Also Better In More
Realistic Situations

• We considered the case when only one of the variables
deviates from the ideal state.

• In education terms, only one student lags behind, while
all other students show perfect knowledge.

• What if several students lag behind – and other stu-
dents are ahead?

• It is reasonable to assume that xi(0) are random and
independent; then, for s(0) ≈ ∆i/

√
n, we have

xi(t) = (∆i − s(0)) · exp(−(k + d · n) · t)+

s(0) · exp(−k · t).

• For large n, we have
√
n times smaller deviation than

for centralized case, when xi(t) ∼ ∆i · exp(−ki · t).
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47. How to Apply These Results to Education

• In education, decentralization means that students should
also teach each other.

• This idea is well known in pedagogy, e.g., in collabora-
tive learning.

• In Computer Science, a similar idea is known as pair
programming, where several students help each other.

• It was noticed that students themselves like teamwork,
especially the new generation, “Millennials”.

• While the collaborative learning methods are actively
used, they are only used on the qualitative level.

• To use the advanced control techniques, we need to use
these methods on quantitative level.
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48. How Can We Use These Methods on Quanti-
tative Level?

• Students should effectively help each other.

• For that, they should know where other students stand.

• This may seem a return to pre-privacy times when all
the grades were publicly posted.

• However, what we propose is different.

• The main drawback of the old system was that usually,
it used to report an overall grade on a test.

• The old system encouraged competition.

• Instead of encouraging competition, we want to encour-
age collaboration.

• We propose to post level of knowledge of each student
on each topic.
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49. How Can We Use These Methods on Quanti-
tative Level (cont-d)

• We propose to post level of knowledge of each student
on each topic.

• So, students will be able to team together and improve
their knowledge in all the topics.

• Students with deficiencies in some areas will benefit
from help – and will help others in other topics.

• Of course, as every other collaboration, this cannot be
forced.

• We need to convince students that this idea works.

• A simple mathematical model presented in this talk is
one of the ways to convince students and instructors.
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Degree-Based Ideas and

Techniques Can Facilitate

Inter-Disciplinary

Collaboration

and Education
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50. Need for Interdisciplinary Collaboration and
Education

• Need for collaboration: a successful computational re-
search requires an intensive collaboration between

– domain scientists – who provide the necessary in-
formation and metadata, and

– computer scientists who provide the corresponding
computations.

• Moreover:

– since we combine data obtained by different subdo-
mains,

– we also need collaboration between representatives
of these subdomains.

• Need for education: for the collaboration to be success-
ful, we need to educate each other.
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51. Inter-Disciplinary Collaboration and Educa-
tion: Typical Communication Situations

• Collaboration:

– Situation: a computer scientist has a new idea on
how to better organize the geosciences’ data.

– This idea, if properly understood and jointly im-
plemented, can benefit the geosciences.

– How to convey the computer science idea to a geo-
scientist?

• Education:

– Situation: a computer scientist wants to teach, to a
geoscientist, a few existing computer science ideas.

– In the long run, this will benefit the geosciences.

– How to convey the computer science idea to a geo-
scientist?
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52. First Possibility: Just Convey This Idea in
Computer Science Terms

• Idea: simply describe this idea in computer science
terms.

• Problem: many of these terms are usually very specific.

• Even many computer scientists may be not very famil-
iar with these terms.

• The only serious way for a geoscientists to understand
these terms is to take several CS courses.

• It is unrealistic to expect such deep immersion in rou-
tine inter-disciplinary collaboration.
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53. Second Possibility: Try to Illustrate This Idea
in the Domain Science Terms

• Alternative approach: explain the idea on the example
of a geosciences problem.

• Problem: a computer scientist is usually not a specialist
in geosciences.

• Result: his/her description of the problem is, inevitably,
flawed: e.g., oversimplified.

• Consequence: the problem as described is often not
meaningful to a geoscientist.

• Since the motivation is missing, it is difficult to under-
stand the idea.
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54. A Fight Club

• As a result of the above problems, our weekly meetings
were, for a while, not very productive.

• For a while, they turned into what we called “fight
club”, when

– a geoscientist would find flaws in a geosciences model
used by a computer scientist to describe the ideas;

– a computer scientist would find flaws in the way a
geoscientist would describe his/her problem.

• And then we, serendipitously, found a solution to our
struggles.

• After we found this solution, we started thinking why
it worked.

• And we discovered an explanation via the matter-of-
degree ideology.
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55. Our Successful Empirical Approach to the Inter-
Disciplinary Collaboration Problem

• What did not work: trying to describe ideas in purely
computer science terms or on a geosciences example.

• New approach: described these ideas by their applica-
tion to a complete different area: solar astronomy.

• Fact: none of us is a specialist in solar astronomy.

• Result: this description was inevitably less technical –
and therefore, much more understandable.

• Result: we got a much better understanding of the
original computer science idea.

• Recommendation: illustrate a message on the domain
in which both parties have equal knowledge.
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56. Explanation in Terms of Degrees: General Case

• Let d1, d2 denote participants’ degrees of knowledge.

• In principle, there are max(d1, d2) levels at which at
least one participant has a correct understanding.

• Among these levels, only at min(d1, d2) levels, there is
a mutually correct understanding.

• Knowledge is more or less uniformly distributed across
different levels of sophistication.

• Thus:

– of all the correct statements that could be used by
one of the participants,

– the fraction of those that will be correctly under-

stood by both participants is equal to d =
min(d1, d2)

max(d1, d2)
.

• Conclusion: this ratio is the largest when d1 = d2.
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57. An Alternative Idea: Using an “Interpreter”

• Alternative idea: use an “interpreter”, who has a rea-
sonable understanding in both fields.

• First: a describer uses the terms of his/her domain to
convey the idea (or problem) to the interpreter.

• In this transaction, the degree of understanding

d1i =
min(d1, di)

max(d1, di)
is reasonably high.

• Second: the interpreter translates the message into the
respondent’s domain and informs the respondent.

• Here, also, the degree of understanding di2 is reason-
ably high.

• This strategy, by the way, works well too.

• We hope that the above formulas will help to optimize
this approach as well.
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Stimulating Students by

Explaining Motivations

Behind Concepts and Ideas
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58. Stimulating Students by Explaining Motiva-
tions Behind Concepts and Ideas

• Often, students do not understand why the material is
important.

• This is especially true in mathematics.

• Good teachers explain applications, so students under-
stand the need to use formulas.

• However, they still do not understand why we need
proofs – the essence of mathematics.

• Good news: we do not have to invent new reasons why
proofs are important.

• There are reasons why rigorous mathematics was de-
signed in the first place.

• What we need is convincingly convey these reasons to
students of mathematics.
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59. Paradoxes an as Explanation of Why Proofs
Are Needed

• Main reason for rigor: otherwise we get paradoxes.

• Historically first mathematical paradox: heap paradox.

• Interesting: this paradox became one of the motiva-
tions for fuzzy logic.

• Why ε-δ definitions in calculus: otherwise problems
with series like 1 + (−1) + 1 + (−1) + . . .:

(1+(−1))+(1+(−1))+. . . = 0 6= 1 = 1+(−1)+1)+. . .

• What is needed: explain paradoxes to the students be-
fore explaining the new material.

• Fuzzy can help: because fuzzy logic provides a natural
explanation of these paradoxes.
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How to Make Sure that the

Grading Scheme Encourages

Students to Learn All the

Material: Fuzzy-Motivated

Solution and Its Justification
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60. Formulation of the Problem

• The material taught in a typical semester-long class
consists of several parts.

• In many cases, it is important that a student gets rea-
sonable knowledge of all the parts of the material.

• For example, we want a medical doctor to have basic
knowledge of all types of diseases.

• It is desirable that the grading scheme:

– not only gauge how well the students learn the ma-
terial;

– the grading scheme should also encourage the stu-
dents to learn all the parts of the material.
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61. Towards a Formal Description of How a Stu-
dent Plans His or Her Studies

• A student has a limited time t that can be allocated to
learning the material.

• The student must select, for each part i = 1, 2, . . . , n,
the time ti ≥ 0 allocated for studying this part, so that

t1 + t2 + . . .+ tn = t.

• The student’s knowledge can be gauged by a propor-
tion of the material that the student learned.

• Let us assume that for each t ≥ 0, we know the amount
of knowledge a(t) learned after study time t.

• For i-th part of the material, we have a grade ai = a(ti).

• We need to select a method F to combining grades ai
into an overall grade:

a = F (a1, . . . , an).



Applications to . . .

Interval and Fuzzy . . .

Planning the Order in . . .

Distributing Effort . . .

Back to Traditional . . .

Inter-Disciplinary . . .

Explaining . . .

Grading and Assessment

Home Page

Title Page

JJ II

J I

Page 70 of 134

Go Back

Full Screen

Close

Quit

62. The Problem Reformulated in Precise Terms

• How: a student allocates times ti,
∑
ti = t, so as to

maximize his/her overall grade F (a(t1), . . . , a(tn)).

• Situation: we want the student to achieve level ≥ a0
in all topics.

• We want to select F (a1, . . . , an) so that:

– if it is possible to find time allocation for which
a(ti) ≥ a0 for all i,

– then the allocation selected by the student will sat-
isfy this property.

• Usually: the overall grade is computed as the weighted
average of grades ai:

F (a1, . . . , an) =
n∑

i=1

wi · ai.

• In this case: selecting F means selecting weights.
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63. The Desired Property Is Not Always Satisfied
for the Current Grading System: Example

• We want the same level of knowledge a0 for all parts
of the material.

• Thus, it is reasonable to take equal weights wi = 1/n.

• E.g.: a (steep) learning curve: a(t) = t2 when t ≤ 1.

• Ideal case: a student spends time t/n on each topic.

• If (t/n)2 ≥ a0, we get good knowledge on all topics.

• Resulting grade: the overall grade is (t/n)2.

• Another strategy: spend time 1 on each of t topics and
0 on all n− t others.

• Result: perfect knowledge 1 > a0 on selected t topics,
no knowledge 0 < a0 of others.

• Resulting grade:
1 · t+ 0 · (n− t)

n
=
t

n
.
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64. The Desired Property Is Not Always Satisfied
for the Current Grading System (cont-d)

• Reminder: we have two strategies:

– in the first, the student gets good knowledge of all
topics, and grade (t/n)2;

– in the second, the students gets no knowledge of
some topics, and grade t/n.

• Problem: since t/n < 1, we have (t/n)2 < (t/n).

• Conclusion: students prefer the new strategy to the
ideal one.

• Result:

– even when the students have resources to attain
good knowledge of all topics,

– the grading system discourages such learning.
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65. Heuristic Idea Motivated by Fuzzy Logic

• We want the student to know:

– the 1st part of the material and

– the second part and . . .

– the n-th part.

• For each i, we know the degree ai to which the student
knows the i-th part of the material.

• Thus, according to fuzzy methodology, we should ap-
plying a fuzzy “and”-operation (t-norm) to degrees ai.

• A natural requirement that F (a1, a1) = a1 is satisfied
only by one fuzzy “and”-operation: min(a1, a2).

• If we use this “and”-operation, we get the grading
scheme

a = F (a1, . . . , an) = min(a1, . . . , an).
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66. The New Grading Scheme Is Better for the
Above Example

• Ideal strategy: the student spends time t/n on each
topic, gaining knowledge a1 = . . . = an = (t/n)2.

• Resulting overall grade:

F (a1, . . . , an) = min(a1, . . . , an) = (t/n)2.

• Alternative strategy: the student spends time 1 on each
of n topics and time 0 on all other topics.

• Resulting knowledge: a1 = . . . = at = 1, at+1 = . . . =
an = 0.

• Resulting overall grade:

F (a1, . . . , an) = min(a1, . . . , an) = min(1, . . . , 1, 0, . . . , 0) = 0.

• Conclusion: students will now prefer to attain good
knowledge of all topics.
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67. What We Do in This Talk

• In this talk, we show the above-described behavior of
the min grading scheme is not accidental.

• First, we prove that:

– if we use the fuzzy-motivated min grading scheme,

– then the student would always prefers to equally
distribute effort between different topics.

• This is exactly what we want to achieve.

• Second, we prove that min grading scheme is the only
one for which students study as desired.

• To describe these results in precise terms, let us first
define the problem in precise terms.
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68. Formal Definitions

• We say that a function a(t1, . . . , tn) is (non-strictly)
increasing if t1 ≤ t′1 , . . . , and tn ≤ t′n imply

a(t1, . . . , tn) ≤ a(t′1, . . . , t
′
n).

• By a learning curve, we mean a continuous increasing
function a(t) : R0 → [0, 1].

• We say that a function F (a1, . . . , an) is idempotent if
for every a, we have F (a, . . . , a) = a.

• For n ≥ 2, by a n-grading scheme, we mean a contin-
uous non-strictly increasing idempotent function

F : [0, 1]n → [0, 1].

• Let t > 0 and n ≥ 2. By a (t, n)-learning strategy, we
mean a tuple of values t1 ≥ 0, . . . , tn ≥ 0 for which

t1 + . . .+ tn = t.
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69. Formal Definitions (cont-d)

• Let S be a set of (t, n)-learning strategies, and let
(t1, . . . , tn) ∈ S.

• We say that the learning strategy is uniformly a0-successful
if a(ti) ≥ a0 for all i.

• By an overall grade, we mean the value F (a(t1), . . . , a(tn)).

• We say that the learning strategy is (S, F )-optimal if
its overall grade is ≥ than for all other strategies ∈ S.

• We say that a grading scheme encourages students to
learn all the material if for every a(t), t, a0, S,

– if, in the set S, there exists a uniformly a0-successful
(t, n)-learning strategy,

– then every (S, F )-optimal (t, n)-learning strategy is
uniformly a0-successful.
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70. Main Result

Theorem. For every integer n ≥ 2:

• the min grading scheme

F (a1, . . . , an) = min(a1, . . . , an)

encourages students to learn all the material;

• vice versa, if an n-grading scheme F (a1, . . . , an) en-
courages students to learn all the material, then

F (a1, . . . , an) = min(a1, . . . , an).
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71. Resulting Recommendations Are Not That Un-
usual

• Resulting recommendation: an overall grade for the
class is the smallest of the grades for each module.

• At first: this may sound like a very radical idea.

• However: it is in line with what is usually done.

• Example: in our university, for a student to pass Cal-
culus I, s/he need to pass every module.

• This corresponds to minimum.

• In some computer science classes, the student has to
pass both the tests and the labs.

• Similarly, to get a degree:

– it is not sufficient for a student to have a good GPA,

– the student must get satisfactory grades on all re-
quired classes.
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72. Proof of the Theorem: Part 1

• Let us first prove that the min grading scheme encour-
ages students to learn all the material, i.e., that

– if there exists a uniformly a0-successful (t, n)-learning
strategy,

– then every min-optimal learning strategy is uni-
formly a0-successful.

• Indeed, for a uniformly a0-successful strategy, by defi-
nition, we have ai = a(ti) ≥ a0 for all i.

• Thus, the overall grade a = F (a1, . . . , an) = min(a1, . . . , an)
corresponding to this strategy is also a ≥ a0.

• For the optimal strategy s, the grade is ≥ a thus ≥ a0:

min(a(t1), . . . , a(tn)) ≥ a0.

• ∀i : a(ti) ≥ min(a(t1), . . . , a(tn)), so a(ti) ≥ a0 – i.e.,
the strategy s is indeed uniformly a0-successful.



Applications to . . .

Interval and Fuzzy . . .

Planning the Order in . . .

Distributing Effort . . .

Back to Traditional . . .

Inter-Disciplinary . . .

Explaining . . .

Grading and Assessment

Home Page

Title Page

JJ II

J I

Page 81 of 134

Go Back

Full Screen

Close

Quit

73. Part 2: Reduction to Case ai > 0

• Let us now assume that a grading scheme F (a1, . . . , an)
encourages students to learn all the material.

• Let us prove that F (a1, . . . , an) = min(a1, . . . , an).

• It is sufficient to prove the above formula for the case
when all the values ai are positive.

• Indeed:

– once we prove this formula for all positive ai,

– we can use continuity to extend it to the case when
some of the values ai are equal to 0.

• In view of this observation, in the remaining part of
this proof, we will assume that ai > 0 for all i.
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74. Part 2, Lemma 2

• Let us prove that for all m > 0, ε ∈ (0,m), and i:

F (1, . . . , 1 (i− 1 times),m− ε, 1 . . . , 1) < m.

• Let us take a0 = m and a piece-wise linear f-n a(t) s.t.:

a(0) = 0, a(1−ε) = m−ε, a(1) = m, a

(
1 +

ε

n− 1

)
= 1.

• For ti = 1, we get a(t1) = . . . = a(tn) = m ≥ a0.

• For this successful strategy, grade is F (m, . . . ,m) = m.

• For t′i = 1− ε and t′j = 1 +
ε

n− 1
for j 6= i, t′1 + . . . = t,

a(t′i) = a(1− ε) = m− ε < m, a(t′j) = 1, and grade is

F (1, . . . , 1 (i− 1 times),m− ε, 1 . . . , 1).

• For a student to prefer the successful strategy, this
grade must be < m. Q.E.D.
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75. Part 2 (cont-d)

• We know: F (1, . . . , 1 (i−1 times),m−ε, 1 . . . , 1) < m.

• In the limit ε→ 0, we get

F (1, . . . , 1 (i− 1 times),m, 1 . . . , 1) ≤ m.

• For any ai, let us denote m = min(a1, . . . , an), and let
i be the index for which ai = m.

• By monotonicity, F (a1, . . . , ai−1, ai, ai+1, . . . , an) ≤

F (1, . . . , 1 (i− 1 times), ai, 1, . . . , 1) =

F (1, . . . , 1 (i− 1 times),m, 1, . . . , 1) ≤ m.

• Similarly, since m = ai ≤ aj for all j, by monotonicity:

m = F (m, . . . ,m) ≤ F (a1, . . . , ai−1, ai, ai+1, . . . , an).

• These two inequalities prove that

F (a1, . . . , ai−1, ai, ai+1, . . . , an) = m = min(a1, . . . , an). Q.E.D.
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What is Wrong

with Teaching to the Test:

Uncertainty Techniques Help

in Understanding

the Controversy
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76. What Is “Teaching to the Test”?

• In the last few decades, in the US school education,
state-wide math tests have been developed.

• Student performance on these tests is very important:

– Funding of individual schools is largely determined
by the test results.

– Schools are disbanded and teachers are fired if the
test results are unsatisfactory several years in a row.

• So schools make sure that the students pass these tests.

• As a result:

– instead of spending most of time teaching the ma-
terial – as it was in the past –

– teachers now spend a significant amount of time
teaching “to the test”.
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77. The Results of Teaching to the Test Are Not
As Spectacular As the Proposers Hoped

• The main idea behind the tests sounds reasonable:

– if we do not gauge how well students are doing,

– then how will we know which schools are doing bet-
ter and which schools need improvement?

• The authors of this idea expected that with testing,
the students’ knowledge will drastically improve.

• Alas, these expectations turned out to be too opti-
mistic:

– In some states and some school districts, there has
been some improvement.

– However, overall, this program has not been a spec-
tacular success as its proponents hoped.

– In some cases, with the introduction of state-wide
testing, the students’ knowledge actually decreased.
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78. Teaching to the Test: A Current Controversy

• On the one hand, many politicians believe that tests
are a good idea.

• On the other hand, most teachers believe that the en-
tire approach is flawed.

• In the media, this controversy gets personal and nasty:

– politicians accuse the teacher community of defend-
ing weak under-preforming teachers;

– teachers accuse politicians of ignorance-motivated
interference with a complex teaching process.

• The situation is more complex than the simplified me-
dia picture:

– several knowledgable politicians, with successful teach-
ing experience, are in favor of the tests;

– many very good teachers are strongly against the
current emphasis on these tests.
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79. Population Is Somewhat Confused

• One of the frustrating aspects of the current contro-
versy is that the general population is confused.

• On the one hand:

– it is reasonable to require accountability, and

– this accountability logic naturally leads to the cur-
rent testing program.

• On the other hand:

– respected teachers are against this program, and

– empirical evidence also shows that it has not led to
spectacular successes –

– contrary to natural expectations motivated by ac-
countability.
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80. What We Do in This Talk

• In this talk, we argue that:

– the confusion – and, to some extent, the contro-
versy itself –

– is largely due to the simplification of the complex
pedagogical process.

• Specifically, we argue that:

– if properly take uncertainty into account,

– then the situation becomes much clearer.
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81. The Background of Our Main Idea

• In general, it is assumed that learning comes from rep-
etitions:

– once a student has repeated a certain procedure
certain number of times,

– the student have mastered it.

• This is why an important part of learning each idea of
high school mathematics is practice. For example:

– unless students do a lot of exercises where they have
to add fractions,

– they will master this skill well enough to be able to
easily add two fractions, and

– this will hinder their progress in the following math-
ematical topics like dealing with polynomials.
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82. The Background of Our Main Idea (cont-d)

• In general:

– the only way to learn to write is to practice writing,

– the only way to learn a foreign language is to prac-
tice it, etc.

• The required number of repetitions depends:

– on the complexity of the topic,

– on the match between this particular topic and the
student’s individual interests and prior skills, etc.

• However, the fact remains:

– for every topic and for every student,

– there is a number of iterations after which the stu-
dent will master this topic.

• From this viewpoint, let us analyze both the traditional
teaching process and teaching to the test.
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83. Analysis of the Traditional Teaching Process

• The main objective of school math is that after grad-
uation, students should have certain skills.

• These skills often build on each other, so that one skill
requires another one.

• For example, to be able to solve quadratic equations,
we need to know how to add, how to subtract, etc.

• Let us consider two skills A and B, s.t. B requires that
the student also have learned skill A.

• Let us assume that the student needs nA iterations to
master skill A, and nB iterations to master skill B.

• Let us denote by r the proportion of problems of type
B that involve using skill A.

• Then, during nB exercises needed to master skill B,
the student, in effect, performs r · nB exercises of A.
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84. Analysis of the Traditional Teaching Process
(cont-d)

• Reminder:

– during nB exercises needed to master skill B,

– the student, in effect, performs r · nB exercises of
skill A.

• Corollary: it is sufficient to have nA − r · nB exercises
in skill A in Year 1.

• Fact: this number nA − r · nB is smaller than nA.

• Corollary: by the end of Year 1, the students have not
yet fully mastered skill A.

• Comment: this is normal in education – the skills come
with practice.
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85. How Situation Changes When We Teach to
the Test

• According to the school program, Year 1 is devoted to
teaching skill A.

• We want to test how well the students learned after
this year.

• However, by the end of Year 1, the students only had
nA − r · nB < nA exercises.

• So, they have not yet mastered the skill A.

• The argument “Is this how much we want our gradu-
ates to know about A?” sounds convincing.

• So, a pressure is placed on schools to improve the score
on the test at the end of Year 1.

• The only way to do it is to increase the number of
skill-A-related exercises in Year 1 to nA.
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86. Teaching to the Test: A Seemingly Positive
Result

• The test grades for Year 1 go up – because:

– in the past, the students did not have enough ex-
ercises to master skill A, while

– now, they have enough exercises, so they do master
skill A at the end of Year 1.

• The progress is visible, results are good.

• But are they?
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87. Teaching To The Test: School Graduates Knowl-
edge

• The main school objective – to make sure that the
graduates learn both skills A and B.

• Let us show that with respect to this criterion, we
should not expect any significant improvement.

• Indeed:

– in the past, we had a total of nA exercises in skill A:

– now, the students have nA + r · nB exercises in
skill A.

• In both cases, we have enough exercises to master skillA.

• So, in both cases, we should have the same reasonably
positive result.
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88. Teaching to the Test: A Serious Problem

• The problem is that school time is limited.

• Schools have additional r · nB repetitions of skill A in
Year 1.

• This time has to come at the expense of something else.

• Clearly, it comes at the expense of other topics that
are not explicitly included in the statewide test.

• As a result,

– while students’ knowledge of the topics included in
the test (like skills A and B) does not decrease,

– the students’ mastery of some other skills will nec-
essarily drastically decrease.

• This is what teachers object to when they object to
“teaching to the test”.
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89. We Clarified the Problem – but What Is a
Solution?

• In order to compare different schools & teachers, we
need to gauge the student success.

• In the ideal world, we should design better tests – this
is one of the few things with which everyone agrees.

• However, even with the existing tests, we can drasti-
cally improve the situation if we no longer require that

– at the end of each school year,

– students should have a perfect knowledge of all the
topics that they learned during this year.

• This requirement comes from the “crisp” thinking.

• This thinking that does not take uncertainty into ac-
count – a student either mastered the skill or did not.
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90. Towards a “Fuzzy” Solution

• In reality, after a few exercises of the skill A, a student
usually achieves mastery to a degree.

• As a result, in the traditional approach, the student
will have an imperfect score on A at the end of Year 1.

• This is OK, as long as this score is what we should
expect after nA − r · nB exercises, so that: that

– after additional r · nB exercises involving skill A in
Year 2

– the student will achieve the true mastery of skill A.

• Any increase of this satisfaction level should be dis-
couraged because

– it would indicate that the teachers are over-emphasizing
skill A in Year 1, while

– they could use fewer exercises of A and spend this
time teaching the students some other useful skills.
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91. How Fuzzy Logic Can Help

• Fuzzy logic has been explicitly designed to handle sit-
uations in which some property is true to a degree.

• This is exactly the situation that we have encountered.

• So, fuzzy logic seems to be a perfect tool for this anal-
ysis.
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92. Our Idea Is More General than Teaching-to-
the-Test Controversy

• Our main objective is to help in understanding and
resolving the “teaching to the test” controversy.

• However, the same idea can be applied to all levels of
education as well.

• We should not aim for perfect knowledge on interme-
diate classes.

• For example, college students taking a computer sci-
ence sequence:

– may be somewhat shaky about programming at the
end of the first class,

– but their basic skills are reinforced in the following
classes.

• We used this idea in our previous research to plan an
optimal teaching schedule, and it worked.
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Interval and Fuzzy

Techniques in Assessment
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93. Assessment is Important

• Objective: improve the efficiency of education.

• Important: to assess this efficiency, i.e., to describe this
efficiency in quantitative terms.

• This is important on all education levels:

– elementary schools

– middle schools

– high schools

– universities

• Quantitative description is needed because

– it allows natural comparison of different strategies
of teaching and learning

– and selection of the best strategy.
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94. Need for Value-Added Assessment

• Traditional assessment: by the amount of knowledge
that the students have after taking this class.

• Example: the average score of the students on some
standardized test.

• Comment: this is actually how the quality of elemen-
tary/high school classes is now estimated in the US.

• Limitation: the class outcome depends

– not only on the quality of the class, but

– also on how prepared were the students when they
started taking this class.

• A more adequate assessment should estimate the added
value that the class brought to the students.



Applications to . . .

Interval and Fuzzy . . .

Planning the Order in . . .

Distributing Effort . . .

Back to Traditional . . .

Inter-Disciplinary . . .

Explaining . . .

Grading and Assessment

Home Page

Title Page

JJ II

J I

Page 105 of 134

Go Back

Full Screen

Close

Quit

95. Current Approaches to Value-Added Assess-
ment and their Limitations

• Main idea: subtracting the outcome from the input.

• Example: subtract

– the average grade after the class (on the post-test)

– the average grade on similar questions asked before
the class (on the pre-test).

• Comment: the existing techniques take into account
additional parameters influencing learning.

• Main limitation: actually, the amount of knowledge
learned depends on the initial knowledge.

• Additional limitation: the assessment values come from
grading, and are therefore somewhat subjective.
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96. Natural Idea: Using Interval and Fuzzy Tech-
niques

• Reminder: assessments are subjective.

• Conclusion: it is natural to use interval and fuzzy tech-
niques to process the corresponding values.

• In this talk: we describe how to the use fuzzy tech-
niques.

• Result: interval and fuzzy techniques help us over-
come both limitations of the existing value-added as-
sessments.
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97. Traditional Approach: Reminder

• Reminder: the post-test result y depends on the pre-
test result x as y ≈ x+ a :
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98. Linear Dependence instead of Addition: Idea

• Problem: the difference y− x actually changes with x.

• Natural next approximation: y ≈ m · x+ a.

• Observation: for f-s f1(x) = m1 · x + a1 and f2(x) =
m2 ·x+a2 corr. to two teaching strategies, we may have

• f1(x1) < f2(x1) for some x1 and

• f1(x2) > f2(x2) for some x2 > x1.

• Interpretation:

– for weaker students, with prior knowledge x1 < x2,
the second strategy is better, while

– for stronger students, with prior knowledge
x2 > x1, the first strategy is better.

• Conclusion: the new model provides a more nuanced
comparison between different teaching strategies.
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99. Ideal Case: Perfect Learning

• Ideal case: no matter what the original knowledge is,
the resulting knowledge is perfect, y ≡ 1; then m = 0.
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100. Example 2: Minimizing Failure Rate

• Main idea: to avoid failure, we concentrate on the stu-
dents with low x; then f(x) = m · x+ a, with m < 1.
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101. Example 3: Emphasis on Strong Students

• Idea: concentrate most of the effort on top students.

• Result: f(x) = m · x+ a, with m > 1.
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102. How to Determine the Coefficients m and a:
Ideal Case of Crisp Estimates

• We know: pre-test grades x1, . . . , xn and post-test grades
y1, . . . , yn.

• Problem: find m and a for which yi ≈ m · xi + a.

• Least Squares method:
n∑

i=1

(yi − (m · xi + a))2 → min
m,a

.
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103. Case of Interval Uncertainty: Analysis

• Fact: the grade depends on assigning partial credit for
partly correct solutions.

• Known: partial credit is somewhat subjective.

• How to avoid this subjectivity: letter grades such as A
(corresponding to 90 to 100) are more objective.

• Conclusion: instead of the exact grade xi, we have an
interval x = [xi, xi] of possible grades.

• Value-added assessment: describe the dependence y =
f(x) of the outcome grade y on the input grade x:

• we consider all the students for whom the input
grade is within the interval x;

• then, y = f(x) is the set of all possible outcome
grades for these students.
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104. Which Interval-to-Interval Functions Are Rea-
sonable

• Example: suppose that

– when the pre-test grade x is in x1 = [80, 90], then
the post-test grade y is in y1 = f(x1) = [85, 95];

– when x ∈ x2 = [90, 100], then y ∈ y2 = f(x2) =
[92, 100].

• Argument: when x ∈ x1 ∪ x2, then x ∈ x1 or x ∈ x2,
so y ∈ y1 or y ∈ y2.

• Conclusion: f(x1 ∪ x2) = f(x1) ∪ f(x2).

• Similar conclusion: f(x) =
⋃
x∈x

f([x, x]).

• Notation: [f(x), f(x)]
def
= f([x, x]).

• Result: all reasonable functions f(x) have the form

f([x, x]) = [y, y], where y
def
= min

x∈[x,x]
f(x); y

def
= max

x∈[x,x]
f(x).
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105. Case of Interval Uncertainty: Algorithm

• Idea: based on [xi, xi] and [y
i
, yi], we use Least Squares

to find values s.t. y
i
≈ m · xi + a and yi ≈ m · xi + a.
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106. Case of Fuzzy Uncertainty

• Interval assumption: we assumed that the interval [x, x]
is guaranteed to contain the actual (unknown) value x.

• In reality: the bounds that we know are “fuzzy”, i.e.,
they contain x only with some degree of confidence α.

• Conclusion: we have different intervals [x(α), x(α)] cor-
responding to different degrees α.

• Observation: this is equivalent to knowing a fuzzy set
with given α-cuts [x(α), x(α)].

• Resulting algorithm: for each α, we find the interval-
values linear function

[m(α) · x+ a(α),m(α) · x+ a(α)]

corresponding to this α.
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107. How to Use the Resulting Interval and Fuzzy
Estimates to Compare Different Teaching Strate-
gies

• From the input fuzzy grades X1, . . . , Xn, we extract
α-cuts corresponding to their α-cuts Xi(α).

• We know input-output functions corresponding fj([x, x])
corresponding to different strategies j.

• We apply these functions to intervals Xi(α) and get
fuzzy estimates Y1,j, . . . , Yn,j for post-test results.

• For each j, we apply the objective function to values
Y1,j, . . . , Yn,j.

• Thus, we get the fuzzy estimate Vj of the quality of the
j-th strategy.

• We then use fuzzy optimization techniques to select
the teaching strategy with the largest value Vj.
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Appendix:

Tastle-Wierman (TW)

Dissention and Consensus

Measures

and Their Potential

Role in Education



Applications to . . .

Interval and Fuzzy . . .

Planning the Order in . . .

Distributing Effort . . .

Back to Traditional . . .

Inter-Disciplinary . . .

Explaining . . .

Grading and Assessment

Home Page

Title Page

JJ II

J I

Page 119 of 134

Go Back

Full Screen

Close

Quit

108. Introduction

• In many practical situations, we have to use expert es-
timates to gauge the value of a quantity.

• Expert estimates x1, . . . , xn rarely agree exactly:

– sometimes, the expert estimates mostly agree with
each other, so we can say that they are in consensus;

– sometimes, the expert estimates strongly disagree.

• It is thus desirable to come up with numerical measures
of dissention and consensus.

• In education, traditionally the mean grade x̄
def
=

n∑
i=1

xi

n
is used to gauge the results.

• Mean grades are the same if everyone gets Cs or some
student fail.

• We thus need to supplement the mean with a criterion
of how similar the grades are.
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109. Tastle-Wierman (TW) Dissention and Con-
sensus Measures

• W. J. Tastle and M. J. Wierman define the measure of
dissention D(x) as the mean value of the quantity

− log2

(
1− |xi − x̄|

dx

)
,

where and dx
def
= x+ − x− is the width of the interval

[x−, x+] of possible values of the estimated quantity:

D(x)
def
= −1

n
·

n∑
i=1

log2

(
1− |xi − x̄|

dx

)
.

• A consensus is, intuitively, an opposite to dissention;
so, a consensus measure C(x) is

C(x) = 1−D(x).
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110. TW Dissention and Consensus Measures: Al-
ternative Formulas

• Often, several experts come up with the same estimate.

• In this case, we have:

– the estimates x1, . . . , xm, and

– the frequency p1, . . . , pm of experts who come up
with these estimates.

• Here, the dissention formula can be reformulated as

D(x) = −
m∑
j=1

pi · log2

(
1− |xj − x̄|

dx

)
,

where

x̄
def
=

m∑
j=1

pj · xj.
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111. Remaining Problem and What We Do

+ Wierman and Tastle show that their measure capture
the intuitive meaning of dissention and consensus.

− It is not clear, from their analysis, whether these are
the only possible measures that capture this intuition.

− It is also not clear what other possible measures cap-
ture this same intuition.

+ In this talk, we show that the TW measures can be
naturally derived from a fuzzy logic formalization.

+ We show that the TW measures appear if we use:

– one of the simplest t-conorms – algebraic sum – and

– one of the simplest membership functions – a tri-
angular one.

+ We also explain what will happen if we use more com-
plex t-conorms and/or membership functions.
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112. How to Formalize the Intuitive Idea Behind
Dissention

• Ideal case of complete consensus: all expert estimates
x1, . . . , xn coincide; thus, xi = x̄.

• Dissention means that some xi are different:

(x1 is different from x̄) ∨ . . .∨ (xn is different from x̄).

• According to the general fuzzy methodology, to assign
a degree to this statement, we must do the following:

– first, we should assign reasonable degrees d 6=(a, b)
to statements of the type “a is different from b”;

– then, we should select an appropriate t-conorm (“or”-
operation) t∨(a, b);

– finally, we compute

d(x) = t∨(d6=(x1, x̄), . . . , d 6=(xn, x̄)).
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113. Let Us Use the Simplest Possible Techniques

• One of the general ideas of using fuzzy methodology is
that:

– out of all possible techniques which are consistent
with our intuition,

– we should use the computationally simplest tech-
niques.

• Indeed, if a simple formula already captures the mean-
ing, there is no sense in using more complex formulas.

• If our knowledge is well described by a triangular mem-
bership function, why use a more complex one?

• If our understanding of an “and”-operation is captured
by t&(a, b) = a · b, why use more complex t-norms?
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114. Selecting a Membership Function d6=(a, b)

• First idea: a 6= b if and only if c
def
= |a− b| 6= 0.

• Thus, for a membership function µ 6=0(c), we have

d 6=(a, b) = µ 6=0(|a− b|).

• For c = 0, the statement “c 6= 0” is false, so µ6=0(0) = 0.

• For a, b ∈ [x, x], the largest possible distance c = |a−b|
is c = x− x = dx.

• It therefore makes sense to set µ 6=0(dx) = 1.

• Thus, the desired triangular membership function is

µ 6=0(c) =
c

dx
.

• Hence d 6=(a, b) = µ 6=0(|a− b|) =
|a− b|
dx

.
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115. Selecting the t-Conorm: First Try

• Computationally, the simplest t-conorm is the maxi-
mum t∨(a, b) = max(a, b).

• Let us consider two situations with the same range
[x−, x+] = [−1, 1] (and dx = x+ − x− = 2):

1. half of the experts selected 1 and half −1;

2. one expert selected 1, one −1, and all other experts
selected 0.

• In both cases, the mean is x̄ = 0, so d6=(±1, 0) = 0.5
and d6=(0, 0) = 0 < 0.5. Thus, in both cases,

t∨

(
|x1 − x̄|
dx

, . . . ,
|xn − x̄|
dx

)
= max(0.5, . . .) = 0.5.

• The resulting degrees are the same, but:

– in the first case, there is a “maximal” dissention;

– in the second case, only two experts disagree.
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116. Selecting t-Conorm, Resulting Formula, and
Its Relation to TW Measures

• Reminder: d(x) = t∨(d6=(x1, x̄), . . . , d 6=(xn, x̄)), with

d6=(xi, x̄) =
|xi − x̄|
dx

.

• t∨(a, b) = max(a, b) is not adequate.

• Conclusion: use the next simplest t-conorm t∨(a, b) =
a+ b− a · b :

d(x) = t∨

(
d6=

(
|x1 − x̄|
dx

, . . . ,
|xn − x̄|
dx

))
.

• Relation with TW’s D(x): D(x) = −1

n
· log2(1−d(x)).

• Proof: uses log2(1− t∨(a, b)) = log2(1−a)+log2(1−b).

• Conclusion: we have the desired fuzzy justification of
the TW measures.
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117. Towards a More General Result

• The above justification is based on a rather ad hoc use
of a special function − log2(1− a).

• What remains unclear is how unique is this function
(and thus, how unique are the TW formulas).

• We are looking for a function z(x) for which, for t∨(a, b) =
a+ b− a · b, we have

z(t∨(a, b)) = z(a) + z(b).

• In other words, we are looking for a “measure” z(x) for
which:

– the measure that “a or b” is true is equal to

– the sum of the measures that a is true and that b
is true.
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118. Example

• Vectors x = (x1, x2) and x′ = (x′1, x
′
2) are different if

x1 6= x′1 or x2 6= x′2.

• Thus, the degree to which x differs from x′ equals the
result of applying the “or” operation to:

– the degree to which x1 is different from x′1, and

– the degree to which x2 is different from x′2.

• It is thus reasonable to be able to transform these de-
grees into a “measure of the difference” z(d) for which:

– the measure corresponding to two-coordinate vec-
tors should be equal to

– the sum of the measures corresponding to both co-
ordinates.

• Thus, we want z(t∨(a, b)) = z(a) + z(b).
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119. Main Result

Proposition. Let t∨(a, b) = a + b − a · b. A monotonic
function z : [0, 1]→ IR satisfies the property

z(t∨(a, b)) = z(a) + z(b),

for every a and b if and only if z(x) = −k · log2(x) for some
constant k.

Discussion.

• We already know that the function z(x) = − log2(x)
satisfies the desired property.

• What we prove that the functions z(x) = −k · log2(x)
are the only ones that satisfy this property.
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120. t-Conorms: Reminder

• What if we use a different t-conorm?

• Most widely used are Archimedean t-conorms, for which,
for some monotonic f(x), we have

t∨(a, b) = f−1(f(a) + f(b)− f(a) · f(b)).

• A general t-conorm can be obtained:

– by setting Archimedean t-conorms on several (maybe
infinitely many) subintervals of the interval [0, 1],

– by taking t∨(a, b) = max(a, b) when a and b are not
in the same Archimedean subinterval.

• Conclusion: for every t-norm and for every ε > 0, there
exists an ε-close Archimedean t-conorm.

• So, from the practical viewpoint, we can always safely
assume that the t-conorm is Archimedean.
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121. What If We Use a Different T-Conorm and/or
a Different Membership Function?

• Reminder: d(x) = t∨(µ6=0(|x1 − x̄|), . . . , µ 6=0(|x1 − x̄|)),
where

t∨(a, b) = f−1(f(a) + f(b)− f(a) · f(b)).

• Resulting formulas: for F (z)
def
= f(µ 6=0(z)), we get:

D(x) = − log2(1− f(d(x))) =

− log2(1− F (|x1 − x̄|))− . . .− log2(1− F (|xb − x̄|)).

• Conclusion: for a general t-conorm and a general µ 6=0(c),
it is reasonable to describe the degree of dissention as

D(x) = −1

n
·

n∑
i=1

log2(1− F (|xi − x̄|)),

where F (z) = f(µ6=0(z)) and f(z) is a function for
which t∨(a, b) = f−1(f(a) + f(b)− f(a) · f(b)).
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122. Corresponding Mathematical Result

Proposition. Let

t∨(a, b) = f−1(f(a) + f(b)− f(a) · f(b))

be an Archimedean t-conorm. A monotonic function

z : [0, 1]→ IR

satisfies the property

z(t∨(a, b)) = z(a) + z(b),

for every a and b if and only if

z(x) = −k · log2(1− f(x))

for some constant k.
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123. Conclusions

• Problem: estimate how close the estimates of different
experts are.

• W. J. Tastle and M. J. Wierman:

– proposed numerical measures of dissention and con-
sensus, and

– showed that these measures indeed capture the in-
tuitive ideas of dissent and consensus.

• We show that the Tastle-Wierman (TW) formulas can
be naturally derived from fuzzy logic.

• We also show that the TW measures can be used to
gauge how different the students’ grades are.
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