Dealing with Uncertainties in Computing: from Probabilistic and Interval Uncertainty to Combination of Different Approaches, with Application to Geoinformatics, Bioinformatics, and Engineering

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA
vladik@utep.edu
http://www.cs.utep.edu/vladik
Interval computations website: http://www.cs.utep.edu/interval-comp

Page 1 of 53

1. General Problem of Data Processing under Uncertainty

- Indirect measurements: way to measure y that are difficult (or even impossible) to measure directly.
- Idea: $y=f\left(x_{1}, \ldots, x_{n}\right)$

Case Study

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page
44

Page 2 of 53

- Problem: measurements are never 100% accurate: $\widetilde{x}_{i} \neq$
Go Back

Full Screen

What are bounds on $\Delta y \stackrel{\text { def }}{=} \widetilde{y}-y$?

```
```

Close

```
```

```
```

Close

```
```

Quit

2. Probabilistic and Interval Uncertainty

Case Study:

- Traditional approach: we know probability distribution

Title Page
44 4

```
Page 3 of 53
```

Go Back

Full Screen

$$
x_{i} \in\left[\widetilde{x}_{i}-\Delta_{i}, \widetilde{x}_{i}+\Delta_{i}\right]
$$

- Solution: we know upper bounds Δ_{i} on $\left|\Delta x_{i}\right|$ hence

\author{

 ```
Close

```
}

\author{
Quit
}

\section*{3. Interval Computations: A Problem}

- Given: an algorithm \(y=f\left(x_{1}, \ldots, x_{n}\right)\) and \(n\) intervals \(\mathbf{x}_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]\).
- Compute: the corresponding range of \(y\) : \([\underline{y}, \bar{y}]=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \in\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, x_{n} \in\left[\underline{x}_{n}, \bar{x}_{n}\right]\right\}\).
- Fact: NP-hard even for quadratic \(f\).
- Challenge: when are feasible algorithms possible?
- Challenge: when computing \(\mathbf{y}=[\underline{y}, \bar{y}]\) is not feasible, find a good approximation \(\mathbf{Y} \supseteq \mathbf{y}\).

Title Page
Case Study: Chip Design

Combining Interval

\section*{Case Study}

Case Study: Detecting

Acknowledgments
Fuzzy Computations:

44

4

Page 4 of 53

Go Back

Full Screen
```

Close

```

\section*{4. Interval Computations: A Brief History}
- Current applications (sample):
- design of elementary particle colliders: Berz, Kyoko (USA)
- will a comet hit the Earth: Berz, Moore (USA)
- robotics: Jaulin (France), Neumaier (Austria)
- chemical engineering: Stadtherr (USA)

\section*{5. Alternative Approach: Maximum Entropy}
- Situation: in many practical applications, it is very difficult to come up with the probabilities.
- Traditional engineering approach: use probabilistic techniques.
- Problem: many different probability distributions are consistent with the same observations.
- Solution: select one of these distributions - e.g., the one with the largest entropy.
- Example - single variable: if all we know is that \(x \in\)

Title Page
- Example: simplest algorithm \(y=x_{1}+\ldots+x_{n}\).
- Measurement errors: \(\Delta x_{i} \in[-\Delta, \Delta]\).
- Analysis: \(\Delta y=\Delta x_{1}+\ldots+\Delta x_{n}\).
- Worst case situation: \(\Delta y=n \cdot \Delta\).
- Maximum Entropy approach: due to Central Limit Theorem, \(\Delta y\) is \(\approx\) normal, with \(\sigma=\Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}\).
- Why this may be inadequate: we get \(\Delta \sim \sqrt{n}\), but due to correlation, it is possible that \(\Delta=n \cdot \Delta \sim n \gg \sqrt{n}\).
- Conclusion: using a single distribution can be very misleading, especially if we want guaranteed results.
- Examples: high-risk application areas such as space

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:
Title Page

44
4

Page 7 of 53

Go Back

Full Screen
```

Close

```
```

Close

```
```

Close

``` exploration or nuclear engineering.

\section*{7. Interval Arithmetic: Foundations of Interval Tech-} niques

\section*{Case Study:}
- Interval arithmetic: for arithmetic operations \(f\left(x_{1}, x_{2}\right)\) (and for elementary functions), we have explicit formulas for the range.
- Examples: when \(x_{1} \in \mathbf{x}_{1}=\left[\underline{x}_{1}, \bar{x}_{1}\right]\) and \(x_{2} \in \mathbf{x}_{2}=\) \(\left[\underline{x}_{2}, \bar{x}_{2}\right]\), then:
- The range \(\mathbf{x}_{1}+\mathbf{x}_{2}\) for \(x_{1}+x_{2}\) is \(\left[\underline{x}_{1}+\underline{x}_{2}, \bar{x}_{1}+\bar{x}_{2}\right]\).
- The range \(\mathbf{x}_{1}-\mathbf{x}_{2}\) for \(x_{1}-x_{2}\) is \(\left[\underline{x}_{1}-\bar{x}_{2}, \bar{x}_{1}-\underline{x}_{2}\right]\).
- The range \(\mathbf{x}_{1} \cdot \mathbf{x}_{2}\) for \(x_{1} \cdot x_{2}\) is \([\underline{y}, \bar{y}]\), where
\[
\begin{aligned}
& \underline{y}=\min \left(\underline{x}_{1} \cdot \underline{x}_{2}, \underline{x}_{1} \cdot \bar{x}_{2}, \bar{x}_{1} \cdot \underline{x}_{2}, \bar{x}_{1} \cdot \bar{x}_{2}\right) ; \\
& \bar{y}=\max \left(\underline{x}_{1} \cdot \underline{x}_{2}, \underline{x}_{1} \cdot \bar{x}_{2}, \bar{x}_{1} \cdot \underline{x}_{2}, \bar{x}_{1} \cdot \bar{x}_{2}\right) .
\end{aligned}
\]
- The range \(1 / \mathbf{x}_{1}\) for \(1 / x_{1}\) is \(\left[1 / \bar{x}_{1}, 1 / \underline{x}_{1}\right]\) (if \(0 \notin \mathbf{x}_{1}\) ).

Title Page

44
4

Page 8 of 53

Go Back

Full Screen
```

```
Close
```

```
```

```
Close
```

```
- Example: \(f(x)=(x-2) \cdot(x+2), x \in[1,2]\).
- How will the computer compute it?
- \(r_{1}:=x-2\);
- \(r_{2}:=x+2\);
- \(r_{3}:=r_{1} \cdot r_{2}\).
- Main idea: perform the same operations, but with intervals instead of numbers:
- \(\mathbf{r}_{1}:=[1,2]-[2,2]=[-1,0]\);
- \(\mathbf{r}_{2}:=[1,2]+[2,2]=[3,4]\);
- \(\mathbf{r}_{3}:=[-1,0] \cdot[3,4]=[-4,0]\).
- Actual range: \(f(\mathbf{x})=[-3,0]\).
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure \(\mathbf{Y} \supseteq \mathbf{y}\).

Title Page

Page 9 of 53

\section*{Case Study:}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

\section*{Fuzzy Computations:}

44


Full Screen

Close

\section*{9. First Idea: Use of Monotonicity}
- Reminder: for arithmetic, we had exact ranges.
- Reason: +, -, • are monotonic in each variable.
- How monotonicity helps: if \(f\left(x_{1}, \ldots, x_{n}\right)\) is (non-strictly) increasing \((f \uparrow)\) in each \(x_{i}\), then
\[
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\left[f\left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right), f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)\right] .
\]
- Similarly: if \(f \uparrow\) for some \(x_{i}\) and \(f \downarrow\) for other \(x_{j}\).
- Fact: \(f \uparrow\) in \(x_{i}\) if \(\frac{\partial f}{\partial x_{i}} \geq 0\).
- Checking monotonicity: check that the range \(\left[\underline{r}_{i}, \bar{r}_{i}\right]\) of \(\frac{\partial f}{\partial x_{i}}\) on \(\mathbf{x}_{i}\) has \(\underline{r}_{i} \geq 0\).
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating ranges of \(\frac{\partial f}{\partial x_{i}}\) : straightforward interval comp.

Title Page

\section*{Case Study:}

Case Study: Detecting

Acknowledgments
Fuzzy Computations:

44

Page 10 of 53

Go Back

Full Screen

Close
- Idea: if the range \(\left[\underline{r}_{i}, \bar{r}_{i}\right]\) of each \(\frac{\partial f}{\partial x_{i}}\) on \(\mathbf{x}_{i}\) has \(\underline{r}_{i} \geq 0\), then
\[
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\left[f\left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right), f\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)\right] .
\]
- Example: \(f(x)=(x-2) \cdot(x+2), \mathbf{x}=[1,2]\).
- Case \(n=1\) : if the range \([\underline{r}, \bar{r}]\) of \(\frac{d f}{d x}\) on \(\mathbf{x}\) has \(\underline{r} \geq 0\), then
\[
f(\mathbf{x})=[f(\underline{x}), f(\bar{x})] .
\]
- \(A D: \frac{d f}{d x}=1 \cdot(x+2)+(x-2) \cdot 1=2 x\).
- Checking: \([\underline{r}, \bar{r}]=[2,4]\), with \(2 \geq 0\).
- Result: \(f([1,2])=[f(1), f(2)]=[-3,0]\).
- Comparison: this is the exact range.

Full Screen

\section*{Case Study:}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

Title Page

44


Go Back

Quit

\section*{11. Non-Monotonic Example}
- Example: \(f(x)=x \cdot(1-x), x \in[0,1]\).
- How will the computer compute it?
- \(r_{1}:=1-x\);
- \(r_{2}:=x \cdot r_{1}\).
- Straightforward interval computations:
- \(\mathbf{r}_{1}:=[1,1]-[0,1]=[0,1]\);

Title Page
- \(\mathbf{r}_{2}:=[0,1] \cdot[0,1]=[0,1]\).
- Actual range: \(\min , \max\) of \(f\) at \(\underline{x}, \bar{x}\), or when \(\frac{d f}{d x}=0\).

44


Page 12 of 53

Go Back

Full Screen

Close

\section*{12. Second Idea: Centered Form}
- Main idea: Intermediate Value Theorem
\[
f\left(x_{1}, \ldots, x_{n}\right)=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\chi) \cdot\left(x_{i}-\widetilde{x}_{i}\right)
\]

\section*{Case Study}
for some \(\chi_{i} \in \mathbf{x}_{i}\).
- Corollary: \(f\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Y}\), where
\[
\mathbf{Y}=\widetilde{y}+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \cdot\left[-\Delta_{i}, \Delta_{i}\right] .
\]
- Differentiation: by Automatic Differentiation (AD) tools.

Page 13 of 53
- Estimating the ranges of derivatives:
- if appropriate, by monotonicity, or
- by straightforward interval computations, or
- by centered form (more time but more accurate).

\section*{13. Centered Form: Example}
- General formula:
\[
\mathbf{Y}=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \cdot\left[-\Delta_{i}, \Delta_{i}\right]
\]

\section*{Case Study:}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

Title Page
- Case \(n=1: \mathbf{Y}=f(\widetilde{x})+\frac{d f}{d x}(\mathbf{x}) \cdot[-\Delta, \Delta]\).
- \(A D: \frac{d f}{d x}=1 \cdot(1-x)+x \cdot(-1)=1-2 x\).

4

4

Page 14 of 53
- Estimation: we have \(\frac{d f}{d x}(\mathbf{x})=1-2 \cdot[0,1]=[-1,1]\).
- Result: \(\mathbf{Y}=0.5 \cdot(1-0.5)+[-1,1] \cdot[-0.5,0.5]=\) \(0.25+[-0.5,0.5]=[-0.25,0.75]\).
- Comparison: actual range [0, 0.25], straightforward [0, 1].

Go Back

Full Screen

Close
- Known: accuracy \(O\left(\Delta_{i}^{2}\right)\) of first order formula
\[
f\left(x_{1}, \ldots, x_{n}\right)=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\chi) \cdot\left(x_{i}-\widetilde{x}_{i}\right) .
\]

\section*{Case Study:}

\section*{Case Study: Detecting}

Acknowledgments
Fuzzy Computations:

Title Page
- Example: \(f(x)=x \cdot(1-x)\), where \(x \in \mathbf{x}=[0,1]\).
- Split: take \(\mathbf{x}^{\prime}=[0,0.5]\) and \(\mathbf{x}^{\prime \prime}=[0.5,1]\).
- 1st range: \(1-2 \cdot \mathbf{x}=1-2 \cdot[0,0.5]=[0,1]\), so \(f \uparrow\) and \(f\left(\mathbf{x}^{\prime}\right)=[f(0), f(0.5)]=[0,0.25]\).
- 2nd range: \(1-2 \cdot \mathbf{x}=1-2 \cdot[0.5,1]=[-1,0]\), so \(f \downarrow\) and \(f\left(\mathrm{x}^{\prime \prime}\right)=[f(1), f(0.5)]=[0,0.25]\).
- Result: \(f\left(\mathbf{x}^{\prime}\right) \cup f\left(\mathbf{x}^{\prime \prime}\right)=[0,0.25]\) - exact.

Full Screen

44

4

Page 15 of 53

Go Back

\section*{15. Alternative Approach: Affine Arithmetic}
- So far: we compute the range of \(x \cdot(1-x)\) by multiplying ranges of \(x\) and \(1-x\).
- We ignore: that both factors depend on \(x\) and are, thus, dependent.
- Idea: for each intermediate result \(a\), keep an explicit dependence on \(\Delta x_{i}=\widetilde{x}_{i}-x_{i}\) (at least its linear terms).

\section*{Case Study}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page
- Implementation:
\[
a=a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta x_{i}+[\underline{a}, \bar{a}] .
\]
- We start: with \(x_{i}=\widetilde{x}_{i}-\Delta x_{i}\), i.e.,
Go Back

Full Screen
- Description: \(a_{0}=\widetilde{x}_{i}, a_{i}=-1, a_{j}=0\) for \(j \neq i\), and \([\underline{a}, \bar{a}]=[0,0]\).
\(\widetilde{x}_{i}+0 \cdot \Delta x_{1}+\ldots+0 \cdot \Delta x_{i-1}+(-1) \cdot \Delta x_{i}+0 \cdot \Delta x_{i+1}+\ldots+0 \cdot \Delta x_{n}+[0,0]\),

\section*{16. Affine Arithmetic: Operations}
- Representation: \(a=a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta x_{i}+[\underline{a}, \bar{a}]\).
- Input: \(a=a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta x_{i}+\mathbf{a}\) and \(b=b_{0}+\sum_{i=1}^{n} b_{i} \cdot \Delta x_{i}+\mathbf{b}\).
- Operations: \(c=a \otimes b\).
- Addition: \(c_{0}=a_{0}+b_{0}, c_{i}=a_{i}+b_{i}, \mathbf{c}=\mathbf{a}+\mathbf{b}\).
- Subtraction: \(c_{0}=a_{0}-b_{0}, c_{i}=a_{i}-b_{i}, \mathbf{c}=\mathbf{a}-\mathbf{b}\).
- Multiplication: \(c_{0}=a_{0} \cdot b_{0}, c_{i}=a_{0} \cdot b_{i}+b_{0} \cdot a_{i}\),
\[
\begin{gathered}
\mathbf{c}=a_{0} \cdot \mathbf{b}+b_{0} \cdot \mathbf{a}+\sum_{i \neq j} a_{i} \cdot b_{j} \cdot\left[-\Delta_{i}, \Delta_{i}\right] \cdot\left[-\Delta_{j}, \Delta_{j}\right]+ \\
\sum_{i} a_{i} \cdot b_{i} \cdot\left[-\Delta_{i}, \Delta_{i}\right]^{2}+ \\
\left(\sum_{i} a_{i} \cdot\left[-\Delta_{i}, \Delta_{i}\right]\right) \cdot \mathbf{b}+\left(\sum_{i} b_{i} \cdot\left[-\Delta_{i}, \Delta_{i}\right]\right) \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{b} .
\end{gathered}
\]

Title Page

\section*{Combining Interval}

\section*{Case Study:}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

44


Page 17 of 53

Go Back

Full Screen

Close

Quit

\section*{17. Affine Arithmetic: Example}
- Example: \(f(x)=x \cdot(1-x), x \in[0,1]\).
- Here, \(n=1, \widetilde{x}=0.5\), and \(\Delta=0.5\).
- How will the computer compute it?
- \(r_{1}:=1-x ;\)
- \(r_{2}:=x \cdot r_{1}\).
- Affine arithmetic: we start with \(x=0.5-\Delta x+[0,0]\);

Title Page
- \(\mathbf{r}_{1}:=1-(0.5-\Delta x)=0.5+\Delta x ;\)
- \(\mathbf{r}_{2}:=(0.5-\Delta x) \cdot(0.5+\Delta x)\), i.e.,
\[
\mathbf{r}_{2}=0.25+0 \cdot \Delta x-[-\Delta, \Delta]^{2}=0.25+\left[-\Delta^{2}, 0\right] .
\]
- Resulting range: \(\mathbf{y}=0.25+[-0.25,0]=[0,0.25]\).
- Comparison: this is the exact range.
18. Affine Arithmetic: Towards More Accurate Estimates
- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: \(\mathbf{Y} \supset \mathbf{y}\).
- Conclusion: affine arithmetic may lead to excess width.

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
- affine arithmetic: \(a=a_{0}+\sum a_{i} \cdot \Delta x_{i}+\mathbf{a}\);
- meaning: we keep linear terms in \(\Delta x_{i}\);

Go Back

Full Screen
- idea: keep, e.g., quadratic terms
```

Close

```
\[
a=a_{0}+\sum a_{i} \cdot \Delta x_{i}+\sum a_{i j} \cdot \Delta x_{i} \cdot \Delta x_{j}+\mathbf{a}
\]
19. Interval Computations vs. Affine Arithmetic: Comparative Analysis
- Objective: we want a method that computes a reasonable estimate for the range in reasonable time.
- Conclusion - how to compare different methods:
- how accurate are the estimates, and
- how fast we can compute them.
- Accuracy: affine arithmetic leads to more accurate ranges.
- Computation time:
- Interval arithmetic: for each intermediate result \(a\), we compute two values: endpoints \(\underline{a}\) and \(\bar{a}\) of \([\underline{a}, \bar{a}]\).
- Affine arithmetic: for each \(a\), we compute \(n+3\) values:
\[
a_{0} \quad a_{1}, \ldots, a_{n} \quad \underline{a}, \bar{a} .
\]
- Conclusion: affine arithmetic is \(\sim n\) times slower.
```

Case Study:

```

Case Study: Detecting
Acknowledgments
Fuzzy Computations:
Title Page \(y_{j}=f_{j}\left(a_{1}, \ldots, a_{n}\right)\) for solving the system.
- Example: system of linear equations.
- Solution: apply interval computations techniques to find the range \(f_{j}\left(\left[\underline{a}_{1}, \bar{a}_{1}\right], \ldots,\left[\underline{a}_{n}, \bar{a}_{n}\right]\right)\).
- Better solution: for specific equations, we often already know which ideas work best.
- Example: linear equations \(A y=b ; y\) is monotonic in \(b\).
- Idea:
- parse each equation into elementary constraints, and
- use interval computations to improve original ranges until we get a narrow range (= solution).
- First example: \(x-x^{2}=0.5, x \in[0,1]\) (no solution).
- Parsing: \(r_{1}=x^{2}, 0.5\left(=r_{2}\right)=x-r_{1}\).
- Rules: from \(r_{1}=x^{2}\), we extract two rules:

\section*{Case Study:}
\[
(1) x \rightarrow r_{1}=x^{2} ; \quad(2) r_{1} \rightarrow x=\sqrt{r_{1}}
\]
from \(0.5=x-r_{1}\), we extract two more rules:
\[
\text { (3) } x \rightarrow r_{1}=x-0.5 ; \quad \text { (4) } r_{1} \rightarrow x=r_{1}+0.5
\]
22. Solving Systems of Equations When No Algorithm Is Known: Example
- (1) \(r=x^{2}\); (2) \(x=\sqrt{r}\); (3) \(r=x-0.5\); (4) \(x=r+0.5\).
- We start with: \(\mathbf{x}=[0,1], \mathbf{r}=(-\infty, \infty)\).
(1) \(\mathbf{r}=[0,1]^{2}=[0,1]\), so \(\mathbf{r}_{\text {new }}=(-\infty, \infty) \cap[0,1]=[0,1]\).
(2) \(\mathbf{x}_{\text {new }}=\sqrt{[0,1]} \cap[0,1]=[0,1]-\) no change.
(3) \(\mathbf{r}_{\mathrm{new}}=([0,1]-0.5) \cap[0,1]=[-0.5,0.5] \cap[0,1]=[0,0.5]\).
(4) \(\mathbf{x}_{\mathrm{new}}=([0,0.5]+0.5) \cap[0,1]=[0.5,1] \cap[0,1]=[0.5,1]\).
(1) \(\mathbf{r}_{\mathrm{new}}=[0.5,1]^{2} \cap[0,0.5]=[0.25,0.5]\).
(2) \(\mathbf{x}_{\text {new }}=\sqrt{[0.25,0.5]} \cap[0.5,1]=[0.5,0.71]\);
round \(\underline{a}\) down \(\downarrow\) and \(\bar{a}\) up \(\uparrow\), to guarantee enclosure.
(3) \(\mathbf{r}_{\text {new }}=([0.5,0.71]-0.5) \cap[0.25,5]=[0.0 .21] \cap[0.25,0.5]\), i.e., \(\mathbf{r}_{\text {new }}=\emptyset\).

Title Page
- Conclusion: the original equation has no solutions.
- Example: \(x-x^{2}=0, x \in[0,1]\).
- Parsing: \(r_{1}=x^{2}, 0\left(=r_{2}\right)=x-r_{1}\).
- Rules: (1) \(r=x^{2}\); (2) \(x=\sqrt{r}\); (3) \(r=x\); (4) \(x=r\).

\section*{Case Study:}

\section*{Case Study: Detecting}
- We start with: \(\mathbf{x}=[0,1], \mathbf{r}=(-\infty, \infty)\).
- Problem: after Rule 1, we're stuck with \(\mathbf{x}=\mathbf{r}=[0,1]\).

Acknowledgments
Fuzzy Computations:

Title Page
- Solution: bisect \(\mathbf{x}=[0,1]\) into \([0,0.5]\) and \([0.5,1]\).
- For 1 st subinterval:
- Rule 1 leads to \(\mathbf{r}_{\mathrm{new}}=[0,0.5]^{2} \cap[0,0.5]=[0,0.25] ;\)
- Rule 4 leads to \(\mathbf{x}_{\text {new }}=[0,0.25]\);
- Rule 1 leads to \(\mathbf{r}_{\text {new }}=[0,0.25]^{2}=[0,0.0625] ;\)
- Rule 4 leads to \(\mathbf{x}_{\text {new }}=[0,0.0625]\); etc.
- we converge to \(x=0\).
- For 2nd subinterval: we converge to \(x=1\).

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:
Title Page
- First case: for exactly known \(a_{i}\), we have an algorithm \(y_{j}=f_{j}\left(a_{1}, \ldots, a_{n}\right)\) for solving the optimization problem.
- Example: quadratic objective function \(g\).
- Solution: apply interval computations techniques to find the range \(f_{j}\left(\left[\underline{a}_{1}, \bar{a}_{1}\right], \ldots,\left[\underline{a}_{n}, \bar{a}_{n}\right]\right)\).
- Better solution: for specific \(f\), we often already know which ideas work best.

\section*{25. Optimization When No Algorithm Is Known}
- Idea: divide the original box \(\mathbf{x}\) into subboxes \(\mathbf{b}\).
- If \(\max _{x \in \mathbf{b}} g(x)<g\left(x^{\prime}\right)\) for a known \(x^{\prime}\), dismiss \(\mathbf{b}\).
- Example: \(g(x)=x \cdot(1-x), \mathbf{x}=[0,1]\).
- Divide into \(10(?)\) subboxes \(\mathbf{b}=[0,0.1],[0.1,0.2], \ldots\)
- Find \(g(\widetilde{b})\) for each \(\mathbf{b}\); the largest is \(0.45 \cdot 0.55=0.2475\).
- Compute \(G(\mathbf{b})=g(\widetilde{b})+(1-2 \cdot \mathbf{b}) \cdot[-\Delta, \Delta]\).
- Dismiss subboxes for which \(\bar{Y}<0.2475\).
- Example: for \([0.2,0.3]\), we have

Title Page
\[
0.25 \cdot(1-0.25)+(1-2 \cdot[0.2,0.3]) \cdot[-0.05,0.05] .
\]
```

Go Back

```
- Here \(\bar{Y}=0.2175<0.2475\), so we dismiss [0.2, 0.3].
- Result: keep only boxes \(\subseteq[0.3,0.7]\).
- Further subdivision: get us closer and closer to \(x=0.5\).
- Chip design: one of the main objectives is to decrease the clock cycle.
- Current approach: uses worst-case (interval) techniques.
- Problem: the probability of the worst-case values is usually very small.
- Result: estimates are over-conservative - unnecessary over-design and under-performance of circuits.
- Difficulty: we only have partial information about the corresponding probability distributions.
- Objective: produce estimates valid for all distributions which are consistent with this information.
- What we do: provide such estimates for the clock time.

Title Page
Combining Interval
```

Case Study:

```
Case Study: Detecting

Acknowledgments
Fuzzy Computations:

\section*{27. Estimating Clock Cycle: a Practical Problem}
- Objective: estimate the clock cycle on the design stage.
- The clock cycle of a chip is constrained by the maximum path delay over all the circuit paths
\[
D \stackrel{\text { def }}{=} \max \left(D_{1}, \ldots, D_{N}\right) .
\]
- The path delay \(D_{i}\) along the \(i\)-th path is the sum of the delays corresponding to the gates and wires along this path.
- Each of these delays, in turn, depends on several factors such as:
- the variation caused by the current design practices,

Go Back

Full Screen
- environmental design characteristics (e.g., variations in temperature and in supply voltage), etc.
28. Traditional (Interval) Approach to Estimating the Clock Cycle
- Traditional approach: assume that each factor takes the worst possible value.
- Result: time delay when all the factors are at their worst.
- Problem:
- different factors are usually independent;
- combination of worst cases is improbable.
- Computational result: current estimates are \(30 \%\) above the observed clock time.
- Practical result: the clock time is set too high - chips are over-designed and under-performing.

Title Page

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

44

4

Page 29 of 53

Go Back

Full Screen

Close

Quit

\section*{29. Robust Statistical Methods Are Needed}
- Ideal case: we know probability distributions.
- Solution: Monte-Carlo simulations.
- In practice: we only have partial information about the distributions of some of the parameters; usually:
- the mean, and
- some characteristic of the deviation from the mean
- e.g., the interval that is guaranteed to contain possible values of this parameter.
- Possible approach: Monte-Carlo with several possible distributions.
- Problem: no guarantee that the result is a valid bound for all possible distributions.
- Objective: provide robust bounds, i.e., bounds that work for all possible distributions.

Title Page
30. Towards a Mathematical Formulation of the Problem
- General case: each gate delay \(d\) depends on the difference \(x_{1}, \ldots, x_{n}\) between the actual and the nominal values of the parameters.
- Main assumption: these differences are usually small.
- Each path delay \(D_{i}\) is the sum of gate delays.
- Conclusion: \(D_{i}\) is a linear function: \(D_{i}=a_{i}+\sum_{j=1}^{n} a_{i j} \cdot x_{j}\) for some \(a_{i}\) and \(a_{i j}\).

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page
44

Page 31 of 53
- The desired maximum delay \(D=\max _{i} D_{i}\) has the form
Go Back

Full Screen
Close

Quit
31. Towards a Mathematical Formulation of the Problem (cont-d)
- Known: maxima of linear function are exactly convex functions:
\[
F(\alpha \cdot x+(1-\alpha) \cdot y) \leq \alpha \cdot F(x)+(1-\alpha) \cdot F(y)
\]
for all \(x, y\) and for all \(\alpha \in[0,1]\);
- We know: factors \(x_{i}\) are independent;
- we know distribution of some of the factors;
- for others, we know ranges \(\left[\underline{x}_{j}, \bar{x}_{j}\right]\) and means \(E_{j}\).
- Given: a convex function \(F \geq 0\) and a number \(\varepsilon>0\).
- Objective: find the smallest \(y_{0}\) s.t. for all possible distributions, we have \(y \leq y_{0}\) with the probability \(\geq 1-\varepsilon\).

Title Page

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

44

4

Page 32 of 53

Go Back

Full Screen
```

Close

```

\section*{Quit}

\section*{32. Additional Property: Dependency is Non-Degenerate}
- Fact: sometimes, we learn additional information about one of the factors \(x_{j}\).
- Example: we learn that \(x_{j}\) actually belongs to a proper subinterval of the original interval \(\left[\underline{x}_{j}, \bar{x}_{j}\right]\).
- Consequence: the class \(\mathcal{P}\) of possible distributions is replaced with \(\mathcal{P}^{\prime} \subset \mathcal{P}\).
- Result: the new value \(y_{0}^{\prime}\) can only decrease: \(y_{0}^{\prime} \leq y_{0}\).
- Fact: if \(x_{j}\) is irrelevant for \(y\), then \(y_{0}^{\prime}=y_{0}\).
- Assumption: irrelevant variables been weeded out.
- Formalization: if we narrow down one of the intervals \(\left[\underline{x}_{j}, \bar{x}_{j}\right]\), the resulting value \(y_{0}\) decreases: \(y_{0}^{\prime}<y_{0}\).

Title Page

\section*{33. Formulation of the Problem}

GIVEN: • \(n, k \leq n, \varepsilon>0\);
- a convex function \(y=F\left(x_{1}, \ldots, x_{n}\right) \geq 0\);
- \(n-k\) cdfs \(F_{j}(x), k+1 \leq j \leq n\);
- intervals \(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\), values \(E_{1}, \ldots, E_{k}\),

TAKE: all joint probability distributions on \(R^{n}\) for which:
- all \(x_{i}\) are independent,
- \(x_{j} \in \mathbf{x}_{j}, E\left[x_{j}\right]=E_{j}\) for \(j \leq k\), and
- \(x_{j}\) have distribution \(F_{j}(x)\) for \(j>k\).

FIND: the smallest \(y_{0}\) s.t. for all such distributions, \(F\left(x_{1}, \ldots, x_{n}\right) \leq y_{0}\) with probability \(\geq 1-\varepsilon\).

Page 34 of 53

Go Back

Full Screen

\section*{34. Main Result and How We Can Use It}
- Result: \(y_{0}\) is attained when for each \(j\) from 1 to \(k\),
- \(x_{j}=\underline{x}_{j}\) with probability \(\underline{p}_{j} \stackrel{\text { def }}{=} \frac{\bar{x}_{j}-E_{j}}{\bar{x}_{j}-\underline{x}_{j}}\), and

Case Study: Chip Design
Combining Interval

\section*{Case Study}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

Title Page
- simulate these distributions for \(x_{j}, j<k\);
- simulate known distributions for \(j>k\);
- use the simulated values \(x_{j}^{(s)}\) to find
\[
y^{(s)}=F\left(x_{1}^{(s)}, \ldots, x_{n}^{(s)}\right)
\]
- \(\operatorname{sort} N\) values \(y^{(s)}: y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{\left(N_{i}\right)}\);
- take \(y_{\left(N_{i} \cdot(1-\varepsilon)\right)}\) as \(y_{0}\).

\section*{35. Comment about Monte-Carlo Techniques}
- Traditional belief: Monte-Carlo methods are inferior to analytical:
- they are approximate;
- they require large computation time;
- simulations for several distributions, may mis-calculate the (desired) maximum over all distributions.
- We proved: the value corresponding to the selected distributions indeed provide the desired maximum value \(y_{0}\).
- General comment:

Title Page
- justified Monte-Carlo methods often lead to faster computations than analytical techniques;
- example: multi-D integration - where Monte-Carlo methods were originally invented.

\section*{36. Comment about Non-Linear Terms}
- Reminder: in the above formula \(D_{i}=a_{i}+\sum_{j=1}^{n} a_{i j} \cdot x_{j}\), we ignored quadratic and higher order terms in the dependence of each path time \(D_{i}\) on parameters \(x_{j}\).
- In reality: we may need to take into account some quadratic terms.
- Idea behind possible solution: it is known that the max

Title Page \(D=\max _{i} D_{i}\) of convex functions \(D_{i}\) is convex.
- Condition when this idea works: when each dependence \(D_{i}\left(x_{1}, \ldots, x_{k}, \ldots\right)\) is still convex.
- Solution: in this case,
- the function function \(D\) is still convex,
- hence, our algorithm will work.

\section*{37. Conclusions}
- Problem of chip design: decrease the clock cycle.
- How this problem is solved now: by using worst-case (interval) techniques.
- Limitations of this solution: the probability of the worstcase values is usually very small.
- Consequence: estimates are over-conservative, hence

Title Page over-design and under-performance of circuits.
- Objective: find the clock time as \(y_{0}\) s.t. for the actual delay \(y\), we have \(\operatorname{Prob}\left(y>y_{0}\right) \leq \varepsilon\) for given \(\varepsilon>0\).
- Difficulty: we only have partial information about the corresponding distributions.
- What we have described: a general technique that allows us, in particular, to compute \(y_{0}\).

\section*{38. Combining Interval and Probabilistic Uncertainty:} General Case
- Problem: there are many ways to represent a probability distribution.
- Idea: look for an objective.
- Objective: make decisions \(E_{x}[u(x, a)] \rightarrow\) max.
- Case 1: smooth \(u(x)\).
- Analysis: we have \(u(x)=u\left(x_{0}\right)+\left(x-x_{0}\right) \cdot u^{\prime}\left(x_{0}\right)+\ldots\)
- Conclusion: we must know moments to estimate \(E[u]\).
- Case of uncertainty: interval bounds on moments.
- Case 2: threshold-type \(u(x)\).
- Conclusion: we need \(\operatorname{cdf} F(x)=\operatorname{Prob}(\xi \leq x)\).
- Case of uncertainty: p-box \([\underline{F}(x), \bar{F}(x)]\).

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page
44


Page 39 of 53

Go Back

Full Screen
```

Close

```

\section*{Quit}
39. Extension of Interval Arithmetic to Probabilistic Case: Successes \(-, \cdot, 1 / x\), max, min. +1 st moments \(E_{i} \stackrel{\text { def }}{=} E\left[x_{i}\right]\) :
- General solution: parse to elementary operations +,
- Explicit formulas for arithmetic operations known for intervals, for p-boxes \(\mathbf{F}(x)=[\underline{F}(x), \bar{F}(x)]\), for intervals

Combining Interval

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page


Page 40 of 53

Go Back

Full Screen

Close

Quit

\section*{40. Successes (cont-d)}
- Easy cases: +, -, product of independent \(x_{i}\).
- Example of a non-trivial case: multiplication \(y=x_{1}\). \(x_{2}\), when we have no information about the correlation:
- \(\underline{E}=\max \left(p_{1}+p_{2}-1,0\right) \cdot \bar{x}_{1} \cdot \bar{x}_{2}+\min \left(p_{1}, 1-p_{2}\right) \cdot \bar{x}_{1} \cdot \underline{x}_{2}+\) \(\min \left(1-p_{1}, p_{2}\right) \cdot \underline{x}_{1} \cdot \bar{x}_{2}+\max \left(1-p_{1}-p_{2}, 0\right) \cdot \underline{x}_{1} \cdot \underline{x}_{2} ;\)
- \(\bar{E}=\min \left(p_{1}, p_{2}\right) \cdot \bar{x}_{1} \cdot \bar{x}_{2}+\max \left(p_{1}-p_{2}, 0\right) \cdot \bar{x}_{1} \cdot \underline{x}_{2}+\) \(\max \left(p_{2}-p_{1}, 0\right) \cdot \underline{x}_{1} \cdot \bar{x}_{2}+\min \left(1-p_{1}, 1-p_{2}\right) \cdot \underline{x}_{1} \cdot \underline{x}_{2}\),
where \(p_{i} \stackrel{\text { def }}{=}\left(E_{i}-\underline{x}_{i}\right) /\left(\bar{x}_{i}-\underline{x}_{i}\right)\).

\section*{Case Study:}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

Title Page

〈

4

Page 41 of 53

Go Back

Full Screen

Close

Quit
- intervals + 2nd moments:


Case Study: Chip Design

\section*{Combining Interval}

\section*{Case Study}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

Title Page
- moments + p-boxes; e.g.:


44

Page 42 of 53

Go Back

Full Screen

\section*{42. Case Study: Bioinformatics}
- Practical problem: find genetic difference between cancer cells and healthy cells.
- Ideal case: we directly measure concentration \(c\) of the gene in cancer cells and \(h\) in healthy cells.
- In reality: difficult to separate.
- Solution: we measure \(y_{i} \approx x_{i} \cdot c+\left(1-x_{i}\right) \cdot h\), where \(x_{i}\) is the percentage of cancer cells in \(i\)-th sample.
- Equivalent form: \(a \cdot x_{i}+h \approx y_{i}\), where \(a \stackrel{\text { def }}{=} c-h\).

Title Page

\section*{Case Study:}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

44

Page 43 of 53

Go Back

Full Screen

Close

Quit

\section*{43. Case Study: Bioinformatics (cont-d)}

\section*{Case Study}

\section*{Case Study: Detecting}

\section*{Acknowledgments}

Fuzzy Computations:

Title Page

4
\[
C(x, y)=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-E(x)\right) \cdot\left(y_{i}-E(y)\right)
\]
- Interval uncertainty: experts manually count \(x_{i}\), and only provide interval bounds \(\mathbf{x}_{i}\), e.g., \(x_{i} \in[0.7,0.8]\).
- Problem: find the range of \(a\) and \(h\) corresponding to all possible values \(x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right]\).

\section*{44. General Problem}
- General problem:
- we know intervals \(\mathbf{x}_{1}=\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, \mathbf{x}_{n}=\left[\underline{x}_{n}, \bar{x}_{n}\right]\),
- compute the range of \(E(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i}\), population variance \(V=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-E(x)\right)^{2}\), etc.

\section*{Case Study:}

Case Study: Detecting
Acknowledgments
Fuzzy Computations:

Title Page
- Difficulty: NP-hard even for variance.
- Known:
- efficient algorithms for \(\underline{V}\),
- efficient algorithms for \(\bar{V}\) and \(C(x, y)\) for reasonable situations.
- Bioinformatics case: find intervals for \(C(x, y)\) and for \(V(x)\) and divide.

44

Page 45 of 53

Go Back

Full Screen

Close

Quit

\section*{45. Case Study: Detecting Outliers}
- In many application areas, it is important to detect outliers, i.e., unusual, abnormal values.
- In medicine, unusual values may indicate disease.
- In geophysics, abnormal values may indicate a mineral deposit (or an erroneous measurement result).
- In structural integrity testing, abnormal values may indicate faults in a structure.
- Traditional engineering approach: a new measurement result \(x\) is classified as an outlier if \(x \notin[L, U]\), where

Title Page
\[
L \stackrel{\text { def }}{=} E-k_{0} \cdot \sigma, \quad U \stackrel{\text { def }}{=} E+k_{0} \cdot \sigma,
\]
and \(k_{0}>1\) is pre-selected.
- Comment: most frequently, \(k_{0}=2,3\), or 6 .
46. Outlier Detection Under Interval Uncertainty: A Problem
- In some practical situations, we only have intervals \(\mathbf{x}_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]\).
- Different \(x_{i} \in \mathbf{x}_{i}\) lead to different intervals \([L, U]\).
- A possible outlier: outside some \(k_{0}\)-sigma interval.
- Example: structural integrity - not to miss a fault.
- A guaranteed outlier: outside all \(k_{0}\)-sigma intervals.
- Example: before a surgery, we want to make sure that there is a micro-calcification.

Title Page

\section*{47. Outlier Detection Under Interval Uncertainty: A} Solution
- We need: to detect outliers, we must compute the ranges of \(L=E-k_{0} \cdot \sigma\) and \(U=E+k_{0} \cdot \sigma\).
- We know: how to compute the ranges \(\mathbf{E}\) and \([\underline{\sigma}, \bar{\sigma}]\) for \(E\) and \(\sigma\).
- Possibility: use interval computations to conclude that \(L \in \mathbf{E}-k_{0} \cdot[\underline{\sigma}, \bar{\sigma}]\) and \(L \in \mathbf{E}+k_{0} \cdot[\underline{\sigma}, \bar{\sigma}]\).
- Problem: the resulting intervals for \(L\) and \(U\) are wider than the actual ranges.
- Reason: \(E\) and \(\sigma\) use the same inputs \(x_{1}, \ldots, x_{n}\) and are hence not independent from each other.
- Practical consequence: we miss some outliers.

Go Back

Full Screen

This work was supported in part by:
- by National Science Foundation grants HRD-0734825, EAR-0225670, and EIA-0080940, and
- by Texas Department of Transportation grant No. 05453.

Case Study: Chip Design
Combining Interval.

\section*{Case Study:}

\section*{Case Study: Detecting}

Acknowledgments
Fuzzy Computations:

Title Page

44


Go Back

Full Screen

Close

Quit


\section*{Case Study:}
- Given: an algorithm \(y=f\left(x_{1}, \ldots, x_{n}\right)\) and \(n\) fuzzy

Title Page numbers \(\mu_{i}\left(x_{i}\right)\).
- Compute: \(\mu(y)=\max _{x_{1}, \ldots, x_{n}: f\left(x_{1}, \ldots, x_{n}\right)=y} \min \left(\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right)\).
- Motivation: \(y\) is a possible value of \(Y \leftrightarrow \exists x_{1}, \ldots, x_{n}\) s.t.
"


Page 50 of 53

Go Back

Full Screen
```

Close

```

Quit
50. Fuzzy Computations: Reduction to Interval Computations
- Problem (reminder):
- Given: an algorithm \(y=f\left(x_{1}, \ldots, x_{n}\right)\) and \(n\) fuzzy numbers \(X_{i}\) described by membership functions \(\mu_{i}\left(x_{i}\right)\).
- Compute: \(Y=f\left(X_{1}, \ldots, X_{n}\right)\), where \(Y\) is defined by Zadeh's extension principle:
\[
\mu(y)=\max _{x_{1}, \ldots, x_{n}: f\left(x_{1}, \ldots, x_{n}\right)=y} \min \left(\mu_{1}\left(x_{1}\right), \ldots, \mu_{n}\left(x_{n}\right)\right) .
\]
- Idea: represent each \(X_{i}\) by its \(\alpha\)-cuts
\[
X_{i}(\alpha)=\left\{x_{i}: \mu_{i}\left(x_{i}\right) \geq \alpha\right\} .
\]
- Advantage: for continuous \(f\), for every \(\alpha\), we have
\[
Y(\alpha)=f\left(X_{1}(\alpha), \ldots, X_{n}(\alpha)\right) .
\]
- Resulting algorithm: for \(\alpha=0,0.1,0.2, \ldots, 1\) apply interval computations techniques to compute \(Y(\alpha)\).

Title Page

Go Back

Full Screen

\section*{51. Proof of the Result about Chips}
- Let us fix the optimal distributions for \(x_{2}, \ldots, x_{n}\); then,
\[
\operatorname{Prob}\left(D \leq y_{0}\right)=\sum_{\left(x_{1}, \ldots, x_{n}\right): D\left(x_{1}, \ldots, x_{n}\right) \leq y_{0}} p_{1}\left(x_{1}\right) \cdot p_{2}\left(x_{2}\right) \cdot \ldots
\]
- So, \(\operatorname{Prob}\left(D \leq y_{0}\right)=\sum_{i=0}^{N} c_{i} \cdot q_{i}\), where \(q_{i} \stackrel{\text { def }}{=} p_{1}\left(v_{i}\right)\).
- Restrictions: \(q_{i} \geq 0, \sum_{i=0}^{N} q_{i}=1\), and \(\sum_{i=0}^{N} q_{i} \cdot v_{i}=E_{1}\).
- Thus, the worst-case distribution for \(x_{1}\) is a solution to the following linear programming (LP) problem:

Minimize \(\sum_{i=0}^{N} c_{i} \cdot q_{i}\) under the constraints \(\sum_{i=0}^{N} q_{i}=1\) and
\[
\sum_{i=0}^{N} q_{i} \cdot v_{i}=E_{1}, q_{i} \geq 0, \quad i=0,1,2, \ldots, N
\]

Go Back

Full Screen
- Minimize: \(\sum_{i=0}^{N} c_{i} \cdot q_{i}\) under the constraints \(\sum_{i=0}^{N} q_{i}=1\) and \(\sum_{i=0}^{N} q_{i} \cdot v_{i}=E_{1}, q_{i} \geq 0, \quad i=0,1,2, \ldots, N\).
- Known: in LP with \(N+1\) unknowns \(q_{0}, q_{1}, \ldots, q_{N}\), \(\geq N+1\) constraints are equalities.

Title Page
- In our case: we have 2 equalities, so at least \(N-1\) constraints \(q_{i} \geq 0\) are equalities.
- Hence, no more than 2 values \(q_{i}=p_{1}\left(v_{i}\right)\) are non- 0 .
- If corresponding \(v\) or \(v^{\prime}\) are in \(\left(\underline{x}_{1}, \bar{x}_{1}\right)\), then for \(\left[v, v^{\prime}\right] \subset\) \(\mathbf{x}_{1}\) we get the same \(y_{0}\) - in contradiction to non-degeneracy.
```

Go Back

```

Full Screen

Close```

