R. Belohlavek, M. Krmelova: Beyond Boolean Matrix Decompositions: Toward Factor Analysis and Dimensionality Reduction of Ordinal Data

General Matrix Decomposition

input: $n \times m$ object-attribute matrix I with entries $I_{i j}$ expressing grades to which object i has attribute j
: output: an $n \times k$ object-factor matrix A and a $k \times m$ factor-attribute matrix B
grades are taken from a bounded scale L
goal: find A and B with k (\# factors) as small as possible

$$
I=A \circ B
$$

Essential Parts of Matrices over Scales
:: different role of matrix entries for decompositions
:: essential part of I, a minimal set of entries whose coverage guarantees an exact decomposition of I
the number of such entries is significantly smaller than the number of all entries
Definition $1 J \leq I$ is called an essential part of I if J is minimal
w.r.t. $<$ having the property that for every $\mathcal{F} \subseteq \mathcal{B}(I)$ we have: if
$J \leq A_{\mathcal{F}} \circ B_{\mathcal{F}}$ then $I=A_{\mathcal{F}} \circ B_{\mathcal{F}}$.
: intervals in $\mathcal{B}(I)$ play a crucial role for our considerations
for $C \in L^{1 \times n}, D \in L^{1 \times m}$, put $\gamma(C)=\left\langle C^{\uparrow \downarrow}, C^{\uparrow}\right\rangle$ and $\mu(D)=\left\langle D^{\downarrow}, D^{\downarrow \uparrow}\right\rangle$
: $\mathcal{I}_{C, D}$ the interval

$$
\mathcal{I}_{C, D}=[\gamma(C), \mu(D)]
$$

in $\mathcal{B}(I)$, i.e. the set
$[\gamma(C), \mu(D)]=\{\langle E, F\rangle \in \mathcal{B}(I) \mid \gamma(C) \leq\langle E, F\rangle \leq \mu(D)\}$.
Lemma 1 If $\langle E, F\rangle \in \mathcal{I}_{C, D}$ then $C^{\mathrm{T}} \circ D \leq E^{\mathrm{T}} \circ F$
Lemma 2 Let $\langle E, F\rangle \in \mathcal{B}(X, Y, I)$, a.b $\in L$. Then
$a \otimes b \leq E(i) \otimes F(j)$ if and only if for some c, d with $a \otimes b \leq c \otimes d$ we have $\langle E, F\rangle \in \mathcal{I}_{\{\tau / i\},\left\{\alpha^{d}, j\right\}}$
Now, for a given matrix $I \in L^{n \times m}$, let
$\mathbf{I}_{i j}=\left\{\mathcal{I}_{\{a / i\},\left\{b^{\prime} j\right\}} \mid a \otimes b=I_{i j}\right\}$ and put

$$
\mathcal{I}_{i j}=\bigcup \mathbf{I}_{i j} .
$$

Theorem 1 A rectangle corresponding to $\langle E, F\rangle \in \mathcal{B}(X, Y, I$ covers $\langle i, j\rangle$ in I iff $\langle E, F\rangle \in \mathcal{I}_{i j}$
Denote by $\mathcal{E}(I) \in L^{n \times m}$.
Denote by $\mathcal{E}(I) \in L^{n \times m}$ the matrix over L defined by

$$
(\mathcal{E}(I))_{i j}=\left\{\begin{array}{l}
I_{i j} \text { if } \mathcal{I}_{i j} \text { is non-empty and minimal w.r.t. } \subseteq, \\
0 \text { otherwise. }
\end{array}\right.
$$

Theorem $2 \mathcal{E}(I)$ is the unique essential part of I
Theorem 3 Let $\mathcal{G} \subseteq \mathcal{B}(\mathcal{E}(I))$ be a set of factor concepts of $\mathcal{E}(I)$, i.e. $\mathcal{E}(I)=A_{\mathcal{G}} \circ B_{\mathcal{G}}$. Then every set $\mathcal{F} \subseteq \mathcal{B}(I)$ containing for each $\langle C, D\rangle \in \mathcal{G}$ at least one concept from $\mathcal{I}_{C, D}$ is a set of factor concepts of I, i.e. $I=A_{\mathcal{F}} \circ B_{\mathcal{F}}$.

New Algorithms

The algorithms we present are inspired by GreEss [1] and Asso [4], currently perhaps the best algorithms for the AFP and DBP, respectively.

GreEss $_{L}$
Input: matrix I with entries in scale L
Output: set \mathcal{F} of factors for which $I=A_{\mathcal{F}} \circ B_{\mathcal{F}}$
$1 \mathcal{G} \leftarrow \operatorname{Computelntervals}(I)$
$2 U \leftarrow\{\langle i, j) \mid I(1)$
3 while U is non-empty do
4 foreach $\langle C D) \in \mathcal{C}$ do
$5 \mid J \leftarrow D^{\downarrow 1} \otimes C^{\uparrow} ; F \leftarrow \nabla ; s_{\{(C, D)} \leftarrow 0$

$F \leftarrow\left(F \vee\left\{{ }^{a} / j\right\}\right) \downarrow \uparrow \uparrow \uparrow ; E \leftarrow\left(F \vee\left\{a^{a} / j\right\}\right){ }^{\prime}{ }^{\prime}$

12	$\left.\begin{array}{l}\text { E }\end{array}, F^{\prime}, F^{\prime}\right\rangle<\langle E, F\rangle$
13	$\left\langle C^{\prime}, D^{\prime}\right\rangle \leftarrow\langle C, D\rangle$

14	$s \leftarrow s_{\{ }(C, D)$
15	end

15
16
16 end
$\begin{array}{ll}16 & \text { end } \\ 17 & \text { add }\left\langle E^{\prime}, F^{\prime}\right\rangle \text { to } \mathcal{F}\end{array}$
18 remove $\left\langle C^{\prime}, D^{\prime}\right\rangle$ from \mathcal{G}
${ }^{19}$ remove from U entries $\langle i, j\rangle$ covered by $E^{\prime} \otimes F^{\prime}$ in I
20 end
21 return
ComputeIntervals
Input: matrix I with entries in scale L
Output: set $\mathcal{G} \subseteq \mathcal{B}(\mathcal{E}(I))$
$1 \mathcal{E} \leftarrow \mathcal{E}(I)$
$2 U \leftarrow\left\{\langle i, j) \mid \mathcal{E}_{i j}>0\right\}$
3 while U is non-empty $d x$
$4 D \leftarrow D=s \leftarrow 0$

6 select $\left.\left\{a^{\prime}\right\}\right\}$ maximizing $\operatorname{cov}_{I}\left(U, D \vee\left\{{ }^{a} / j\right\}, \mathcal{E}\right)$

9
10
10
${ }_{11}$ remove from U entries $\langle i, j\rangle$ covered by $C^{\dagger \hbar / \downarrow} \otimes D^{\text {bit }}$ in
12 end
Asso_{L}
Input: matrix I with entries in scale $L, k \geq 1, w^{+}, w^{-}, \tau$
Output: set \mathcal{F} of factors
1 compute association matrix A
$2 \mathcal{F} \leftarrow \emptyset$
3 for $l=1 \ldots k$
4 select $\left\langle C, A_{i}\right\rangle$ maximizing cover $\left\{\mathcal{F} \cup\left\{\left\langle C, A_{i}\right\rangle\right\}, I, w^{+}, w^{-}\right.$
5 add $\left\langle C, A_{i}\right\rangle$ to F
${ }^{5}$ add $\left\langle C, A_{i}\right\rangle$ to \mathcal{F}
7 return

The association matrix A is then defined by
$A_{i j}=\operatorname{round}_{\tau}(c(i \Rightarrow j, I))$,
where round ${ }_{\tau}$ is defined for $r \in[0,1]$ by

$$
\operatorname{round}_{\tau}(r)=\left\{\begin{array}{l}
r_{+}=\min \{a \in L \mid a \geq r\} \text { if } r_{+} \leftrightarrow r \geq \tau \\
r_{-}=\max \{a \in L \mid a<r\} \text { otherwise. }
\end{array}\right.
$$

Here, $r_{+} \leftrightarrow r=\min \left(r_{+} \rightarrow r, r \rightarrow r_{+}\right)$is the biresiduum
(logical equivalence). Note that round τ is used to obtain a matrix A with entries in L which is needed because the rows of A are the candidate basis vectors.
Experimental Evaluation
experimental evaluation of the presented algorithms on real and synthetic data
the ability of the extracted factors to explain (i.e. reconstruct) the input data

Real Data

Characteristics of real data

dataset	$\\|I I\\|$	$\\|\mathcal{E}(I)\\|$	$\\|\mathcal{E}(I)\\| / I / I I \\|$	size	$\|L\|$
Breeds	1963	362	0.184	151×11	6
Decathlon	266	59	0.221	28×10	5
IPAQ	4624	1281	0.031	4510×16	3
Music	20377	5952	0.292	900×26	7
Music reduced	771	213	0.276	30×26	7

Coverage of Data by Factors
$\|A\|$ denotes the number of non-zero entries in matrix A numbers of factors needed to achieve a coverage $s=\{0.75,0.85,0.95,1\}$
Breeds - Asso_{L} 2, 3, NA, NA; GreEss $_{L} 3,7,11,15$ Decathlon - Asso_{L} 2, 4, NA, NA; $\operatorname{GreEss}_{L} 3,5,8,10$ IPAQ - $\operatorname{Asso}_{L} 1,1, N A, N A ; \operatorname{GreEss}_{L} 10,12,15,17$ Music - Asso 2 2, NA, NA, NA; GreEss $_{I} 7,14,25,29$ Music red. - Asso $_{L} 1,2$, NA, NA; $\operatorname{GreEss}_{L} 1,3,10,30$ "NA" = prescribed coverage is not achievable
Synthetic Data
Characteristics of synthetic data

| data | size | \|LI | | distribution on | avg \||I\| | avg \|| | avg \||E(I)|||l|l| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Set 1 | 50 50 | | 10 | ${ }^{[1+1)}$ | 2452 | 193 | |
| Set 2 | 50×50 | | 10 | | 2499 | 358 | 0.143 |
| Set 3 | 100×50 | | 25 | ${ }^{\left[1 \frac{1}{8} \frac{1}{7}+\frac{1}{7} \boldsymbol{1}\right]}$ | 4998 | 614 | 0.123 |
| Set 4 | 100×100 | | 20 | ${ }^{[18+1+1+1]}$ | 1000 | 2130 | 0.213 |
| Set 5 | 150×150 | 10 | 25 | ${ }_{\text {IV }}^{10}$ for all | 2248 | 5759 | 0.256 |

Coverage s by the first k factors

Discussion

:: the first couple of factors produced by ASSO_{L} has a better coverage compared to the same number of factors produced by GreEss $_{L}$
beyond certain coverage, Asso_{L} stops producing factors and is not able to compute an (exact) decomposition of I while $\operatorname{GrEESS}_{L}$ always computes an exact decomposition
$:$ GreEss $_{L}$ produces easier interpretable factors compared to Asso_{L}
$|L|>2$ (non-Boolean case), rectangles with values "around the middle" in L, such as 0.5 , which may be produced as factors by Asso_{L}
:: on average, GREESS $_{L}$ requires 30% less factors to achieve a prescribed coverage comparing with the fast greedy algorithm described in [2]

Previous Work

[1] R. Belohlavek, M. Trnecka, From-below approximations in Boolean matrix factorization: Geometry and new algorithm. (submitted, available at arXiv).
[2] Belohlavek R., Vychodil V.: Factor analysis of incidence data via novel decomposition of matrices, LNAI 5548(2009), 83-97
[3] R. Belohlavek, M. Krmelova, Factor analysis of sports data via decomposition of matrices with grades, Proceedings of the 9th International Conference on CLA (2012), 305-316.
[4] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H. Mannila, The discrete basis problem, IEEE TKDE 20(2008), 1348-62.

