R. Belohlavek, M. Krmelova: Beyond Boolean Matrix Decompositions: Toward Factor Analysis and Dimensionality Reduction of Ordinal Data

General Matrix Decomposition

- :: input: $n \times m$ object-attribute matrix I with entries I_{ij} expressing grades to which object i has attribute j
- :: output: an $n \times k$ object-factor matrix A and a $k \times m$ factor-attribute matrix B
- :: grades are taken from a bounded scale L
- :: goal: find A and B with k (# factors) as small as possible $I = A \circ B$

Essential Parts of Matrices over Scales

- :: different role of matrix entries for decompositions
- **::** essential part of *I*, a minimal set of entries whose coverage guarantees an exact decomposition of *I*
- :: the number of such entries is significantly smaller than the number of all entries

Definition 1 $J \leq I$ is called an essential part of I if J is minimal w.r.t. \leq having the property that for every $\mathcal{F} \subseteq \mathcal{B}(I)$ we have: if $J \leq A_{\mathcal{F}} \circ B_{\mathcal{F}}$ then $I = A_{\mathcal{F}} \circ B_{\mathcal{F}}$.

- :: intervals in $\mathcal{B}(I)$ play a crucial role for our considerations
- :: for $C \in L^{1 \times n}$, $D \in L^{1 \times m}$, put $\gamma(C) = \langle C^{\uparrow \downarrow}, C^{\uparrow} \rangle$ and $\mu(D) = \langle D^{\downarrow}, D^{\downarrow\uparrow} \rangle$
- :: $\mathcal{I}_{C,D}$ the interval

$$\mathcal{I}_{C,D} = [\gamma(C), \mu(D)]$$

in $\mathcal{B}(I)$, i.e. the set

$$[\gamma(C), \mu(D)] = \{ \langle E, F \rangle \in \mathcal{B}(I) \mid \gamma(C) \le \langle E, F \rangle \le \mu(D) \}.$$

Lemma 1 If $\langle E, F \rangle \in \mathcal{I}_{C,D}$ then $C^{\mathrm{T}} \circ D \leq E^{\mathrm{T}} \circ F$. **Lemma 2** Let $\langle E, F \rangle \in \mathcal{B}(X, Y, I)$, $a.b \in L$. Then $a \otimes b \leq E(i) \otimes F(j)$ if and only if for some c, d with $a \otimes b \leq c \otimes d$ we have $\langle E, F \rangle \in \mathcal{I}_{\{c/i\}, \{d/j\}}$. Now, for a given matrix $I \in L^{n \times m}$, let $\mathbf{I}_{ij} = \{\mathcal{I}_{\{a/i\},\{b/j\}} \mid a \otimes b = I_{ij}\} \text{ and put}$

$$\mathcal{I}_{ij} = \bigcup \mathbf{I}_{ij}.$$

Theorem 1 A rectangle corresponding to $\langle E, F \rangle \in \mathcal{B}(X, Y, I)$ covers $\langle i, j \rangle$ in I iff $\langle E, F \rangle \in \mathcal{I}_{ij}$. Denote by $\mathcal{E}(I) \in L^{n \times m}$ the matrix over L defined by

 $(\mathcal{E}(I))_{ij} = \begin{cases} I_{ij} \text{ if } \mathcal{I}_{ij} \text{ is non-empty and minimal w.r.t. } \subseteq, \\ 0 \text{ otherwise} \end{cases}$ 0 otherwise.

Theorem 2 $\mathcal{E}(I)$ is the unique essential part of I. **Theorem 3** Let $\mathcal{G} \subseteq \mathcal{B}(\mathcal{E}(I))$ be a set of factor concepts of $\mathcal{E}(I)$, i.e. $\mathcal{E}(I) = A_{\mathcal{G}} \circ B_{\mathcal{G}}$. Then every set $\mathcal{F} \subseteq \mathcal{B}(I)$ containing for each $\langle C, D \rangle \in \mathcal{G}$ at least one concept from $\mathcal{I}_{C,D}$ is a set of factor concepts of I, i.e. $I = A_{\mathcal{F}} \circ B_{\mathcal{F}}$.

International Center for Information and Uncertainty SSIU 2014: International Spring School and Workshop "Information and Uncertainty" http://mcin.upol.cz/SSWIU-2014/

Department of Computer Science, Palacky University, Olomouc (17. listopadu 12, CZ–77146 Olomouc, Czech Republic)

New Algorithms

The algorithms we present are inspired by GREESS [1] and Asso [4], currently perhaps the best algorithms for the AFP and DBP, respectively.

 $GreEss_L$

Input: matrix *I* with entries in scale *L* **Output**: set \mathcal{F} of factors for which $I = A_{\mathcal{F}} \circ B_{\mathcal{F}}$ $\mathbf{1} \mathcal{G} \leftarrow \text{COMPUTEINTERVALS}(I)$ $\mathbf{2} U \leftarrow \{ \langle i, j \rangle | I_{ij} > 0 \}; \ \mathcal{F} \leftarrow \emptyset$ 3 while U is non-empty do 4 foreach $\langle C, D \rangle \in \mathcal{G}$ do **5** $| J \leftarrow D^{\downarrow_I} \otimes C^{\uparrow_I}; F \leftarrow \emptyset; s_{\langle C, D \rangle} \leftarrow 0$ while exists $\{a/_j\} \in C^{\uparrow_I} \setminus F$ s.t. $cov(U, F \lor \{a/j\}, J) > s_{\langle C, D \rangle}$ do select $\{a/j\}$ maximizing $cov(U, F \lor \{a/j\}, J)$ $F \leftarrow (F \lor \{a/_j\})^{\downarrow_J \uparrow_J}; E \leftarrow (F \lor \{a/_j\})^{\downarrow_J}$ $s_{\langle C,D\rangle} \leftarrow cov(U,F,J)$ end if $s_{\langle C,D\rangle} > s$ then $\langle E', F' \rangle \leftarrow \langle E, F \rangle$ $\langle C', D' \rangle \leftarrow \langle C, D \rangle$ 14 $s \leftarrow s_{\langle C,D\rangle}$ end 16 end 17 add $\langle E', F' \rangle$ to \mathcal{F} **18** remove $\langle C', D' \rangle$ from \mathcal{G} **19** remove from U entries $\langle i, j \rangle$ covered by $E' \otimes F'$ in I 20 end 21 return \mathcal{F}

COMPUTEINTERVALS

Input: matrix *I* with entries in scale *L* **Output**: set $\mathcal{G} \subseteq \mathcal{B}(\mathcal{E}(I))$ $\mathbf{1}\,\mathcal{E} \leftarrow \mathcal{E}(I)$ $\mathbf{2} U \leftarrow \{ \langle i, j \rangle | \mathcal{E}_{ij} > 0 \}$ 3 while U is non-empty do **4** $D \leftarrow \emptyset$; $s \leftarrow 0$ 5 while exists $\{a/i\} \in D$ s.t. $cov_I(U, D \lor \{a/i\}, \mathcal{E}) > s$ do **6** select $\{a/j\}$ maximizing $cov_I(U, D \lor \{a/j\}, \mathcal{E})$ $D \leftarrow (D \lor \{a/j\})^{\downarrow \varepsilon \uparrow \varepsilon}; C \leftarrow (D \lor \{a/j\})^{\downarrow \varepsilon}$ **8** $| s \leftarrow cov_I(U, D, \mathcal{E}) |$ 9 end 10 add $\langle C, D \rangle$ to \mathcal{G} 11 remove from U entries $\langle i, j \rangle$ covered by $C^{\uparrow_I \downarrow_I} \otimes D^{\downarrow_I \uparrow_I}$ in I 12 end 13 return \mathcal{G}

ASSOL

Input: matrix I with entries in scale L, k > 1, w^+, w^-, τ **Output**: set \mathcal{F} of factors **1** compute association matrix A2 $\mathcal{F} \leftarrow \emptyset$ **3 for** l = 1 ... k **do**

4 select $\langle C, A_i \rangle$ maximizing *cover* $(\mathcal{F} \cup \{\langle C, A_i \rangle\}, I, w^+, w^-)$

- 5 add $\langle C, A_{i} \rangle$ to \mathcal{F}
- 6 end
- 7 return \mathcal{F}

Experimental Evaluation

:: experimental evaluation of the presented algorithms on real and synthetic data

:: the ability of the extracted factors to explain (i.e. reconstruct) the input data

Real Data

Characteristics of real data

```
data
Bree
Deca
IPA
Mus
Musi
```

Coverage of Data by Factors

dataset	size	L	k	distribution on L	avg $ I $	avg $ \mathcal{E}(I) $	avg $ \mathcal{E}(I) / I $
Set 1	50×50	3	10	$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$	2452	193	0.079
Set 2	50×50	5	10	$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$	2499	358	0.143
Set 3	100×50	5	25	$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$	4998	614	0.123
Set 4	100×100	5	20	$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$	10000	2130	0.213
Set 5	150×150	10	25	$\frac{1}{10}$ for all	22498	5759	0.256

The association matrix A is then defined by

 $A_{ij} = \operatorname{round}_{\tau}(c(i \Rightarrow j, I)),$

where round_{τ} is defined for $r \in [0, 1]$ by

 $\operatorname{round}_{\tau}(r) = \begin{cases} r_{+} = \min\{a \in L \mid a \geq r\} \text{ if } r_{+} \leftrightarrow r \geq \tau, \\ r_{-} = \max\{a \in L \mid a < r\} \text{ otherwise.} \end{cases}$

Here, $r_+ \leftrightarrow r = \min(r_+ \rightarrow r, r \rightarrow r_+)$ is the biresiduum (logical equivalence). Note that round_{τ} is used to obtain a matrix A with entries in L which is needed because the rows of A are the candidate basis vectors.

aset	I	$ \mathcal{E}(I) $	$ \mathcal{E}(I) / I $	size	L
eds	1963	362	0.184	151×11	6
athlon	266	59	0.221	28×10	5
Q	41624	1281	0.031	4510×16	3
sic	20377	5952	0.292	900×26	7
sic reduced	771	213	0.276	30×26	7

||A|| denotes the number of non-zero entries in matrix A :: numbers of factors needed to achieve a coverage $s = \{0.75, 0.85, 0.95, 1\}$

:: Breeds - $Asso_L$ 2, 3, NA, NA; $GREEss_L$ 3, 7, 11, 15 :: Decathlon - $Asso_L$ 2, 4, NA, NA; $GREEss_L$ 3, 5, 8, 10 :: IPAQ - $ASSO_L$ 1, 1, NA, NA; $GREESS_L$ 10, 12, 15, 17 :: Music - $Asso_L$ 2, NA, NA, NA; $GREEss_L$ 7, 14, 25, 29 :: Music red. - $Asso_L$ 1, 2, NA, NA; $GREEss_L$ 1, 3, 10, 30 :: "NA" = prescribed coverage is not achievable

Synthetic Data

Characteristics of synthetic data

Discussion

- to $ASSO_L$

Previous Work

Coverage s by the first k factors

:: the first couple of factors produced by $Asso_L$ has a better coverage compared to the same number of factors produced by $GREESS_L$

:: beyond certain coverage, $Asso_L$ stops producing factors and is not able to compute an (exact) decomposition of *I*, while $GREESS_L$ always computes an exact decomposition

:: GREESS_L produces easier interpretable factors compared

 \therefore |L| > 2 (non-Boolean case), rectangles with values "around the middle" in L, such as 0.5, which may be produced as factors by $Asso_L$

:: on average, $GREEss_L$ requires 30% less factors to achieve a prescribed coverage comparing with the fast greedy algorithm described in [2]

[1] R. Belohlavek, M. Trnecka, From-below approximations in Boolean matrix factorization: Geometry and new algorithm. (submitted, available at arXiv).

[2] Belohlavek R., Vychodil V.: Factor analysis of incidence data via novel decomposition of matrices, LNAI 5548(2009), 83-97.

[3] R. Belohlavek, M. Krmelova, Factor analysis of sports data via decomposition of matrices with grades, Proceedings of the 9th International Conference on CLA (2012), 305-316.

[4] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H. Mannila, The discrete basis problem, IEEE TKDE 20(2008), 1348–62.

INVESTMENTS IN EDUCATION DEVELOPMENT