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General Matrix Decomposition
:: input: n×m object-attribute matrix I with entries Iij

expressing grades to which object i has attribute j

:: output: an n× k object-factor matrix A and a k ×m
factor-attribute matrix B

:: grades are taken from a bounded scale L

:: goal: find A and B with k (# factors) as small as possible

I = A ◦B

Essential Parts of Matrices over Scales

:: different role of matrix entries for decompositions

:: essential part of I, a minimal set of entries whose
coverage guarantees an exact decomposition of I

:: the number of such entries is significantly smaller than the
number of all entries

Definition 1 J ≤ I is called an essential part of I if J is minimal

w.r.t. ≤ having the property that for every F ⊆ B(I) we have: if
J ≤ AF ◦BF then I = AF ◦BF .
:: intervals in B(I) play a crucial role for our considerations

:: for C ∈ L1×n, D ∈ L1×m, put γ(C) = 〈C↑↓, C↑〉 and
µ(D) = 〈D↓, D↓↑〉

:: IC,D the interval

IC,D = [γ(C), µ(D)]

in B(I), i.e. the set

[γ(C), µ(D)] = {〈E,F 〉 ∈ B(I) | γ(C) ≤ 〈E,F 〉 ≤ µ(D)}.

Lemma 1 If 〈E,F 〉 ∈ IC,D then CT ◦D ≤ ET ◦ F .
Lemma 2 Let 〈E,F 〉 ∈ B(X, Y, I), a.b ∈ L. Then
a⊗ b ≤ E(i)⊗ F (j) if and only if for some c, d with a⊗ b ≤ c⊗ d
we have 〈E,F 〉 ∈ I{c/i},{d/j}.
Now, for a given matrix I ∈ Ln×m, let
Iij = {I{a/i},{b/j} | a⊗ b = Iij} and put

Iij =
⋃

Iij.

Theorem 1 A rectangle corresponding to 〈E,F 〉 ∈ B(X, Y, I)
covers 〈i, j〉 in I iff 〈E,F 〉 ∈ Iij.
Denote by E(I) ∈ Ln×m the matrix over L defined by

(E(I))ij =
{
Iij if Iij is non-empty and minimal w.r.t. ⊆,
0 otherwise.

Theorem 2 E(I) is the unique essential part of I .
Theorem 3 Let G ⊆ B(E(I)) be a set of factor concepts of E(I),
i.e. E(I) = AG ◦BG. Then every set F ⊆ B(I) containing for each

〈C,D〉 ∈ G at least one concept from IC,D is a set of factor

concepts of I , i.e. I = AF ◦BF .

New Algorithms
The algorithms we present are inspired by GreEss [1] and
Asso [4], currently perhaps the best algorithms for the AFP
and DBP, respectively.

GreEssL

Input: matrix I with entries in scale L
Output: set F of factors for which I = AF ◦BF

1 G ← ComputeIntervals(I)
2 U ← {〈i, j〉|Iij > 0}; F ← ∅
3 while U is non-empty do

4 foreach 〈C,D〉 ∈ G do

5 J ← D↓I ⊗ C↑I; F ← ∅; s〈C,D〉← 0

6 while exists {a/j} ∈ C↑I \ F s.t.
cov(U, F ∨ {a/j}, J) > s〈C,D〉 do

7 select {a/j}maximizing cov(U, F ∨ {a/j}, J)
8 F ← (F ∨ {a/j})↓J↑J ; E ← (F ∨ {a/j})↓J
9 s〈C,D〉← cov(U, F, J)

10 end

11 if s〈C,D〉 > s then

12 〈E′, F ′〉 ← 〈E,F 〉
13 〈C ′, D′〉 ← 〈C,D〉
14 s← s〈C,D〉
15 end

16 end

17 add 〈E′, F ′〉 to F
18 remove 〈C ′, D′〉 from G
19 remove from U entries 〈i, j〉 covered by E′ ⊗ F ′ in I

20 end

21 return F

ComputeIntervals

Input: matrix I with entries in scale L
Output: set G ⊆ B(E(I))

1 E ← E(I)
2 U ← {〈i, j〉|Eij > 0}
3 while U is non-empty do

4 D ← ∅; s← 0
5 while exists {a/j} ∈ D s.t. covI(U,D ∨ {a/j}, E) > s do

6 select {a/j} maximizing covI(U,D ∨ {a/j}, E)
7 D ← (D ∨ {a/j})↓E↑E ; C ← (D ∨ {a/j})↓E
8 s← covI(U,D, E)
9 end

10 add 〈C,D〉 to G
11 remove from U entries 〈i, j〉 covered by C↑I↓I ⊗D↓I↑I in I

12 end

13 return G

AssoL

Input: matrix I with entries in scale L, k ≥ 1, w+, w−, τ
Output: set F of factors

1 compute association matrix A
2F ← ∅
3 for l = 1 . . . k do

4 select 〈C,Ai 〉 maximizing cover(F ∪ {〈C,Ai 〉}, I, w+, w−)
5 add 〈C,Ai 〉 to F
6 end

7 return F

The association matrix A is then defined by

Aij = roundτ(c(i⇒ j, I)),

where roundτ is defined for r ∈ [0, 1] by

roundτ(r) =

{
r+ = min{a ∈ L | a ≥ r} if r+↔ r ≥ τ ,
r− = max{a ∈ L | a < r}otherwise.

Here, r+↔ r = min(r+→ r, r → r+) is the biresiduum
(logical equivalence). Note that roundτ is used to obtain a
matrix A with entries in L which is needed because the rows
of A are the candidate basis vectors.

Experimental Evaluation
:: experimental evaluation of the presented algorithms on

real and synthetic data

:: the ability of the extracted factors to explain (i.e.
reconstruct) the input data

Real Data

Characteristics of real data

dataset ||I|| ||E(I)|| ||E(I)||/||I|| size |L|
Breeds 1963 362 0.184 151× 11 6
Decathlon 266 59 0.221 28× 10 5
IPAQ 41624 1281 0.031 4510× 16 3
Music 20377 5952 0.292 900× 26 7
Music reduced 771 213 0.276 30× 26 7

Coverage of Data by Factors

:: ||A|| denotes the number of non-zero entries in matrix A

:: numbers of factors needed to achieve a coverage
s = {0.75, 0.85, 0.95, 1}

:: Breeds - AssoL 2, 3, NA, NA; GreEssL 3, 7, 11, 15

:: Decathlon - AssoL 2, 4, NA, NA; GreEssL 3, 5, 8, 10

:: IPAQ - AssoL 1, 1, NA, NA; GreEssL 10, 12, 15, 17

:: Music - AssoL 2, NA, NA, NA; GreEssL 7, 14, 25, 29

:: Music red. - AssoL 1, 2, NA, NA; GreEssL 1, 3, 10, 30

:: “NA” = prescribed coverage is not achievable

Synthetic Data

Characteristics of synthetic data

dataset size |L| k distribution on L avg ||I|| avg ||E(I)|| avg ||E(I)||/||I||
Set 1 50×50 3 10 [13

1
3
1
3] 2452 193 0.079

Set 2 50×50 5 10 [18
1
8
1
4
1
4
1
4] 2499 358 0.143

Set 3 100×50 5 25 [18
1
8
1
4
1
4
1
4] 4998 614 0.123

Set 4 100×100 5 20 [18
1
8
1
4
1
4
1
4] 10000 2130 0.213

Set 5 150×150 10 25 1
10 for all 22498 5759 0.256

Coverage s by the first k factors
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Discussion
:: the first couple of factors produced by AssoL has a better

coverage compared to the same number of factors
produced by GreEssL

:: beyond certain coverage, AssoL stops producing factors
and is not able to compute an (exact) decomposition of I,
while GreEssL always computes an exact decomposition

:: GreEssL produces easier interpretable factors compared
to AssoL

:: |L| > 2 (non-Boolean case), rectangles with values
“around the middle” in L, such as 0.5, which may be
produced as factors by AssoL

:: on average, GreEssL requires 30% less factors to achieve
a prescribed coverage comparing with the fast greedy
algorithm described in [2]
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