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Introduction
The world of supercomputers has been changing drastically in
the last few years. It has been shifting from clusters of
general purpose CPUs to combination of the CPUs with an
aid of less versatile but much powerful graphical cards
(GPGPU). The graphical cards can process data in highly
parallel Single Instruction Multiple Data (SIMD) fashion, for
example to apply one operation simultaneously to hundreds of
memory/array cells. One of fields that can benefit from
GPGPU are operations of linear algebra. For example matrix
multiplication, addition, subtraction etc. It is possible to
compute simultaneously hundreds of fields of product matrix
with gain of 2 to 24 times faster compared to normal Octave
implementation of the operations [7]. This poster aims on
usage of GPGPU for computation of Formal Concept Analysis
(FCA).
It is known that computing number of formal concepts from
formal context is P-complete [6]. That means that it can’t be
computed in logarithmic space (we need whole context to
compute all concepts) and it also means that it is hard to
construct efficient parallel or distributed algorithm for this
purpose. This fact is a logical result of concept lattice being
an ordered set usually without ordering being complete a.i.
for two different concepts c1 and c2 the infima or suprema
usually isn’t c1 nor c2. This means that even if we split
recursive execution of the algorithm [2] we will most probably
compute some of the concepts multiple times from multiple
(parallel) execution sequences.
Previously there has been work on implementation of crisp
FCA using Nvidia’s CUDA GPGPU framework [4] but there
has not been significant improvements over FCbO [5]. In my
opinion and also as mentioned in the paper [4] there are two
main reasons for lack of improvement:
:: usage of bit operations - PCbO with this approach

computes 32 or even 64 operations ∧,∨ in one processor
tick and also representation of necessary data shrinks by
the factor of 32/64. Thus in most cases all necessary data
fit to processor cache negating necessity to access much
slower RAM.

:: overhead associated with GPGPU computations - to
compute something on GPU it is necessary to allocate
memory on it than transfer data to it, compile the GPU
program (kernel) to be executable, execute the kernel and
than write computed data back to the main RAM of
computer.

These two reasons make GPGPU computations on crisp
contexts faster only for big contexts (even mushroom isn’t
large enough). On the other hand it starts to be faster for
much smaller fuzzy contexts and even for the size 64x64 there
is noticeable speedup.

Formalizaton
:: data table: 〈X, Y, I〉, where I ⊆ X × Y

:: X is set of objects; Y set of attributes; I : X × Y → L

:: I(x, y) is degree to which attribute y applies to object x

:: concept-forming operators:

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) ,

B↓(x) =
∧

y∈Y

(B(y) → I(x, y)) .

:: formal (fuzzy concept 〈A,B〉 ∈ LX × LY such that
A↑ = B and B↓ = A

:: set of all concept-clusters: B(X, Y, I)

:: concept hierarchy:

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1)

:: B(X, Y, I) with ≤ yields concept lattice

::  Lukasiewicz pair of adjoint operations

a⊗ b = max(a+ b− 1, 0)

a → b = min(1− a+ b, 1)

:: Gödel pair of adjoint operations

a⊗ b = min(a, b)

a → b =

{

1 if a ≤ b,
b otherwise.

y1 y2 y3 y4 y5

x1 1 0.5 0.5 1 1

x2 1 1 1 1 0.5

x3 0 0 0.5 0.5 1

Algorithm
For sake of comparison I used GenerateFuzzyConcepts
algorithm [3] that is partial (attributes are crisp) fuzzy
modification of CbO algorithm as described in [2] to compute
fuzzy formal concept lattices.

GenerateFuzzyConcepts(〈A,B〉, y, Y )
process 〈A,B〉 (e.g., print on screen);
if 〈A,B〉 is minimal concept or y > |Y | then

return;
end

for j form y to |Y | do

if B(j)! = 1 then

C = A ∩ Y (y)↓);
D = C↑;
skip = false;
for k form 1 to j − 1 do

if B(k) ∩ Yj! = D(k) ∩ Yj then

skip = true;
break;

end

end

end

if skip == false then

GenerateFuzzyConcepts(〈C,D〉, j + 1);
end

end

It is possible to compute at least two operations/kernels on
GPU. First computes C = A ∩ Y (y)↓ the intent of new
concept. Second that computes Galois connection C↑ the
extent of new concept. Both of these operations/kernels can
be computed on multiple objects or attributes at the same
time and thus benefit from OpenCL.

Dataset Size Normal (a) OCL (b) a / b

IPAQ 4510x16 35123 117980 0.2977

IPAQ’ 16x4510 2505085 1291444 1.940

Amusic 900x26 43372 109442 0.3963

Amusic’ 26x900 395 572224 0.6901

random 64x64 19502 93796 0.208

random 128x128 59609 108642 0.549

random 256x256 171786 174666 0.9835

random 512x512 1224660 340006 3.6019

Results show that it is necessary to have big matrix to benefit
from OpenCL. It is partially due to Java (another API) and
partially due to that intersection program/kernel isn’t
intensive enough to justify its usage (API overhead). On the
other hand ↑ shows its power as OpenCL shows the speedup
on the contexts with big number of attributes.

Future Research
:: Implement OpenCL fuzzy CbO algorithm in pure C. The

results from Java are influenced by another layer of
translation from Java OpenCL API to C OpenCL API and
back. During tests of feasibility of OpenCL the first results
showed that pure C implementation of finding all attribute
concepts OpenCL started to benefit from context of size
64x64 and the speedup grew with the growing context.

:: Determining if a usage of GPU is possible and beneficial
for other fuzzy FCA algorithms such as FCbO.

:: Implementation and measurements of PCbO with usage of
multiple queues or GPU’s.

:: Determining a minimal size of two-valued formal context
that starts to benefit from GPGPU usage.

:: Implicitly-parallel implementation of linear algebra
functions to Octave that would use GPGPU implicitly in
case it would be beneficial for the sake of running
program. As the Octave is vector and matrix oriented
language it would make a perfect candidate for such kind
of research. Moreover, higher languages such as Octave
are beneficial for the sake of quicker development time
and even pure encapsulation of OpenCL interface in
Octave would make OpenCL usage much easier and
quicker than in pure C.
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