A Single Axiom for Boolean Algebras

Léonard Kwuida

Bern University of Applied Sciences
Switzerland

April 11, 2014

Eloy Renedo, Enric Trillias, Claudi Alsina (2003)

The only De Morgan algebras and the only orthomodular lattices in which

$$
\begin{equation*}
\left(x \wedge y^{\triangle}\right)^{\triangle}=y \vee\left(x^{\triangle} \wedge y^{\triangle}\right) \text { for all } x, y \in L . \tag{1}
\end{equation*}
$$

holds, are Boolean algebras.

Eloy Renedo, Enric Trillias, Claudi Alsina (2003)

The only De Morgan algebras and the only orthomodular lattices in which

$$
\begin{equation*}
\left(x \wedge y^{\Delta}\right)^{\triangle}=y \vee\left(x^{\triangle} \wedge y^{\triangle}\right) \text { for all } x, y \in L . \tag{1}
\end{equation*}
$$

holds, are Boolean algebras.

Michiro Kondo, Wieslaw A. Dudek (2008)

An algebra $(L, \wedge, \vee, \triangle)$ of type $(2,2,1)$ is a Boolean algebra iff

$$
\begin{align*}
& (L, \wedge, \vee) \text { is a bounded lattice with } 1^{\Delta}=0 \text { and } \tag{2}\\
& \left(x \wedge y^{\Delta}\right)^{\Delta}=y \vee\left(x^{\Delta} \wedge y^{\triangle}\right) \text { for all } x, y \in L . \tag{3}
\end{align*}
$$

LK (2009)

An algebra $(L, \wedge, \vee, \Delta)$ of type $(2,2,1)$ is a Boolean algebra iff

$$
\begin{array}{r}
(L, \wedge, \vee) \text { is a non empty lattice and } \\
(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \text { for all } x, y \in L . \tag{5}
\end{array}
$$

LK (2009)

An algebra $(L, \wedge, \vee, \triangle)$ of type $(2,2,1)$ is a Boolean algebra iff

$$
\begin{array}{r}
(L, \wedge, \vee) \text { is a non empty lattice and } \\
(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \text { for all } x, y \in L . \tag{5}
\end{array}
$$

$$
\begin{equation*}
x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x \tag{6}
\end{equation*}
$$

LK (2009)

An algebra $(L, \wedge, \vee, \triangle)$ of type $(2,2,1)$ is a Boolean algebra iff

$$
\begin{array}{r}
(L, \wedge, \vee) \text { is a non empty lattice and } \\
(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \text { for all } x, y \in L . \tag{5}
\end{array}
$$

$$
\begin{align*}
x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) & =(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \geq x \tag{6}\\
\Longrightarrow & x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) \tag{7}
\end{align*}
$$

LK (2009)

An algebra $(L, \wedge, \vee, \triangle)$ of type $(2,2,1)$ is a Boolean algebra iff

$$
\begin{array}{r}
(L, \wedge, \vee) \text { is a non empty lattice and } \\
(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \text { for all } x, y \in L . \tag{5}
\end{array}
$$

$$
\begin{align*}
x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) & =(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \geq x \tag{6}\\
\Longrightarrow & x=(x \wedge y) \vee\left(x \wedge y^{\Delta}\right) \tag{7}\\
\Longrightarrow & x=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \tag{8}
\end{align*}
$$

Each concept x decomposes into a negative and a positive part with respect to any other concept y, as well for the disjunction as for the conjunction.

LK (2009)

An algebra $(L, \wedge, \vee, \Delta)$ of type $(2,2,1)$ is a Boolean algebra iff

$$
\begin{array}{r}
\quad(L, \wedge, \vee) \text { is a non empty lattice and } \\
(x \wedge y) \vee\left(x \wedge y^{\Delta}\right)=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \text { for all } x, y \in L . \tag{5}
\end{array}
$$

$$
\begin{align*}
x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) & =(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \geq x \tag{6}\\
\Longrightarrow & x=(x \wedge y) \vee\left(x \wedge y^{\Delta}\right) \tag{7}\\
\Longrightarrow & x=(x \vee y) \wedge\left(x \vee y^{\Delta}\right) \tag{8}
\end{align*}
$$

Each concept x decomposes into a negative and a positive part with respect to any other concept y, as well for the disjunction as for the conjunction.

Definition

A weakly dicomplemented lattice is a bounded lattice L equipped with two unary operations Δ and ∇ called weak complementation and dual weak complementation, and satisfying for all $x, y \in L$
(1) $x^{\Delta \Delta} \leq x$,
(1') $x \nabla \nabla \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

We call

- x^{\triangle} the weak complement of x
- $x \nabla$ the dual weak complement of x
- $\left(x^{\triangle}, x \nabla\right)$ the weak dicomplement of x
- (Δ, ∇) a weak dicomplementation on L
- ($L, \wedge, \vee,,_{,}, 0,1$) a weakly complemented lattice and
- ($L, \wedge, \vee, \nabla, 0,1$) a dual weakly complemented lattice.
$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x \nabla \nabla \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

- $x \mapsto x^{\Delta \triangle}$ is a kernel operator on L
- $x \mapsto x \nabla \nabla$ is a closure operator on L
$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
y \vee y^{\Delta}=1
$$

- $x \mapsto x^{\triangle \Delta}$ is a kernel operator on L
- $x \mapsto x \nabla \nabla$ is a closure operator on L
$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{aligned}
& y \vee y^{\triangle}=1, \\
& 0^{\Delta}=1
\end{aligned}
$$

$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x \nabla \nabla \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{aligned}
& y \vee y^{\Delta}=1, \\
& 0^{\Delta}=1 \\
& (x \wedge y)^{\triangle}=x^{\Delta} \vee y^{\Delta}
\end{aligned}
$$

$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{aligned}
& y \vee y^{\Delta}=1, \\
& 0^{\Delta}=1 \\
& (x \wedge y)^{\triangle}=x^{\Delta} \vee y^{\Delta} \\
& x^{\Delta \triangle \Delta}=x^{\Delta},
\end{aligned}
$$

$$
\begin{aligned}
& y \wedge y \nabla=0, \\
& 1 \nabla=0 \\
& (x \vee y) \nabla=x \\
& x \nabla \nabla \nabla=x \nabla
\end{aligned}
$$

$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{aligned}
& y \vee y^{\Delta}=1, \\
& 0^{\Delta}=1 \\
& (x \wedge y)^{\triangle}=x^{\Delta} \vee y^{\Delta} \\
& x^{\Delta \Delta \Delta}=x^{\Delta}, \\
& x \nabla \leq x^{\triangle}
\end{aligned}
$$

$$
\begin{aligned}
& y \wedge y^{\nabla}=0, \\
& 1 \nabla=0
\end{aligned}
$$

$$
\begin{aligned}
& (x \vee y) \nabla=x \\
& x \nabla \nabla \nabla=x \nabla
\end{aligned}
$$

$$
x^{\Delta \nabla} \leq x \leq x
$$

$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{aligned}
& y \vee y^{\Delta}=1, \\
& 0^{\Delta}=1 \\
& (x \wedge y)^{\triangle}=x^{\Delta} \vee y^{\Delta} \\
& x^{\Delta \Delta \Delta}=x^{\Delta}, \\
& x \nabla \leq x^{\triangle}
\end{aligned}
$$

$$
\begin{aligned}
& y \wedge y^{\nabla}=0, \\
& 1 \nabla=0
\end{aligned}
$$

$$
\begin{aligned}
& (x \vee y) \nabla=x \\
& x \nabla \nabla \nabla=x \nabla
\end{aligned}
$$

$$
x^{\Delta \nabla} \leq x \leq x
$$

$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x \nabla \nabla \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{array}{ll}
y \vee y^{\Delta}=1, & y \wedge y^{\nabla}=0, \\
0^{\Delta}=1 & 1 \nabla=0 \\
(x \wedge y)^{\triangle}=x^{\Delta} \vee y^{\Delta} & (x \vee y) \nabla=x \nabla \wedge y \nabla \\
x^{\Delta \Delta \Delta}=x^{\Delta}, & x^{\nabla \nabla \nabla}=x \nabla \\
x \nabla \leq x^{\triangle} & x^{\Delta \nabla} \leq x \leq x^{\nabla \Delta \Delta}
\end{array}
$$

$(L, \wedge, \vee, \Delta, \nabla, 0,1)$ wdl iff $(L, \wedge, \vee, 0,1)$ bounded lattice and
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.

It follows

$$
\begin{array}{ll}
y \vee y^{\Delta}=1, & y \wedge y^{\nabla}=0, \\
0^{\Delta}=1 & 1 \nabla=0 \\
(x \wedge y)^{\triangle}=x^{\Delta} \vee y^{\Delta} & (x \vee y) \nabla=x \nabla \wedge y \nabla \\
x^{\Delta \Delta \Delta}=x^{\Delta}, & x^{\nabla \nabla \nabla}=x \nabla \\
x \nabla \leq x^{\triangle} & x^{\Delta \nabla} \leq x \leq x^{\nabla \Delta}
\end{array}
$$

- $x \mapsto x^{\Delta \Delta}$ is a kernel operator on L
- $x \mapsto x \nabla \nabla$ is a closure operator on L

Examples of wal's

Boolean algebras
If $\left(B, \wedge, \vee,{ }^{-}, 0,1\right)$ is a Boolean algebra then $\left(B, \wedge, \vee,^{-},{ }^{-}, 0,1\right)$ is a weakly dicomplemented lattice.

Finite Lattices

Let I be a finite lattice. Set $J(L)$ the set of join irreducible and by $M(L)$ the set of meet irreducible elements of L respectively.

For $G \supseteq J(L)$ and $H \supseteq M(L)$, define \triangle_{G} and ∇_{H} by
$x^{\triangle_{G}}:=V_{\{a \in G \mid a \nless x\}}$ and $x^{\nabla_{H}}:=\bigwedge\{m \in H \mid m \neq x\}$.
Thus $\left(L, \wedge, \vee, \triangle_{G}, \nabla_{H}, 0,1\right)$ is a weakly dicomplemented lattice.

Examples of wdl's

Boolean algebras
If $\left(B, \wedge, \vee,^{-}, 0,1\right)$ is a Boolean algebra then $\left(B, \wedge, \vee,^{-},{ }^{-}, 0,1\right)$ is a weakly dicomplemented lattice.

$$
\begin{aligned}
& \text { Finite Lattices } \\
& \text { Let } L \text { be a finite lattice. Set } J(L) \text { the set of join irreducible and by } \\
& M(L) \text { the set of meet irreducible elements of } L \text { respectively. } \\
& \text { For } G \supseteq J(L) \text { and } H \supseteq M(L) \text {, define } \triangle_{G} \text { and } \nabla_{H} \text { by } \\
& x^{\triangle_{G}}:=\bigvee\{a \in G \mid a \not \subset x\} \text { and } x^{\nabla_{H}}:=\bigwedge\{m \in H \mid m \ngtr x\} . \\
& \text { Thus }\left(L, \wedge, V, \triangle_{G}, \nabla_{H}, 0,1\right) \text { is a weakly dicomplemented lattice. }
\end{aligned}
$$

Examples of wdl's

Boolean algebras

If $\left(B, \wedge, \vee^{-}, 0,1\right)$ is a Boolean algebra then $\left(B, \wedge, \vee,^{-},{ }^{-}, 0,1\right)$ is a weakly dicomplemented lattice.

Finite Lattices

Let L be a finite lattice. Set $J(L)$ the set of join irreducible and by $M(L)$ the set of meet irreducible elements of L respectively.

For $G \supseteq J(L)$ and $H \supseteq M(L)$, define Δ_{G} and ∇_{H} by

$$
x^{\Delta_{G}}:=\bigvee\{a \in G \mid a \not \equiv x\} \quad \text { and } \quad x^{\nabla_{H}}:=\bigwedge\{m \in H \mid m \nsupseteq x\} .
$$

Thus $\left(L, \wedge, \vee, \triangle_{G}, \nabla_{H}, 0,1\right)$ is a weakly dicomplemented lattice.

Negation on closure and kernel systems

Let h be a closure operator on a set X and k a kernel operator on a set Y. For $A \subseteq X$ and $B \subseteq Y$ define $A^{\Delta_{h}}:=h(X \backslash A)$ and $B \nabla_{k}:=k(Y \backslash B)$.
(i) $\left(h \mathcal{P}(X), \cap, \vee^{h}, \Delta_{h}, h \emptyset, X\right)$, with $A_{1} \vee^{h} A_{2}:=h\left(A_{1} \cup A_{2}\right)$, is a weakly complemented lattice.
(i') $\left(k \mathcal{P}(Y), \wedge_{k}, \cup, \nabla_{k}, \emptyset, k Y\right)$, with $B_{1} \wedge_{k} B_{2}:=k\left(B_{1} \cap B_{2}\right)$, is a dual weakly complemented lattice.
(ii) If $h \mathcal{P}(X)$ is isomorphic to $k \mathcal{P}(Y)$, then h and k induce weakly dicomplemented lattice structures on $h \mathcal{P}(X)$ and on $k \mathcal{P}(Y)$ that are extensions of those in (i) and (i^{\prime}) above respectively.

Let φ be an isomorphism from $h \mathcal{P}(X)$ to $k \mathcal{P}(Y)$. Set $L:=\{(x, y) \in h \mathcal{P}(X) \times k \mathcal{P}(Y) \mid y=\varphi(x)\}$. Then L has a weakly dicomplemented lattice structure induced by h and k.

Formal Concept Analysis

- is based on the the formalization of the notion of concept
- Traditional philosophers considered a concept to be determined by its extent and its intent. The extent consists of all objects belonging to the concept while the intent is the set of all attributes shared by all objects of the concept.
- The concept hierarchy states that a concept is more general if it contains more objects, or equivalently, if it is determined by less attributes.
- A context or universe of discourse can be seen as a relation involving objects and attributes of interest.
- What is the negation of a concept?
- How can it be formalized?

Formal Concept Analysis

- formal context: $\mathbb{K}:=(G, M, \mathrm{I})$ with $\mathrm{I} \subseteq G \times M$.
- $G: \equiv$ set of objects

$$
M: \equiv \text { set of attributes. }
$$

- $g \mathrm{I} m: \Longleftrightarrow(g, m) \in \mathrm{I}$.
g has attribute m.

$$
A^{\prime}:=\{m \in M \mid \forall g \in A g \mathrm{I} m\} \text { and } B^{\prime}:=\{g \in G \mid \forall m \in B g \mathrm{I} m\}
$$

- Formal concept: (A, B) with $A^{\prime}=B$ and $B^{\prime}=A$.
- A is the extent and B the intent of the concept (A, B).
- $\mathfrak{B}(\mathbb{K}):=$ set of all formal concepts of \mathbb{K}.
- A concept (A, B) is a subconcept of a concept (C, D) if $A \subseteq C$ (or equivalently, $D \subseteq B$). write $(A, B) \leq(C, D)$.
- $c: X \mapsto X^{\prime \prime}$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$.
- $(\mathfrak{B}(\mathbb{K}) ; \leq)$ is a complete lattice, called concept lattice of \mathbb{K}.

Weak Negation and weak opposition

To formalize a negation two operations are introduced:

Definition

Let \mathbb{K} be a context and (A, B) a formal concept of \mathbb{K}. We define its weak negation by $\quad(A, B)^{\Delta}:=\left((G \backslash A)^{\prime \prime},(G \backslash A)^{\prime}\right)$ and its weak opposition by $(A, B) \nabla:=\left((M \backslash B)^{\prime},(M \backslash B)^{\prime \prime}\right)$. $\mathfrak{A}(\mathbb{K}):=(\mathfrak{B}(\mathbb{K}) ; \wedge, \vee, \Delta, \nabla, 0,1)$ is called the concept algebra of the formal context \mathbb{K}, where \wedge and \vee denote the meet and the join operations of the concept lattice.

$$
\mathfrak{A}(\mathbb{K}):=(\mathfrak{B}(\mathbb{K}) ; \wedge, \vee, \Delta, \nabla, 0,1) \text { is a weakly dicomplemented lattice. }
$$

Boundness for free

Weakly complemented lattice are exactly non empty lattices satisfying the equations (1)-(3).
i.e. Each nonempty lattice satisfying (1)-(3) is bounded.

Boundness for free

Weakly complemented lattice are exactly non empty lattices satisfying the equations (1)-(3).
i.e. Each nonempty lattice satisfying (1)-(3) is bounded.

Let L be a non empty lattice satisfying (1)-(3').

- Let $x \in L$. Set $1:=x \vee x^{\triangle}$ and $0:=1^{\triangle}$. Let $y \in L$ (arbitrary).
- $1 \geq y \wedge 1=y \wedge\left(x \vee x^{\triangle}\right) \geq(y \wedge x) \vee\left(y \wedge x^{\triangle}\right)=y$
- Thus $x \vee x^{\triangle}$ is the greatest element of L.
- $\left(y \wedge y^{\triangle}\right)^{\triangle} \geq y^{\triangle} \vee y^{\triangle \triangle}=1 ; \Longrightarrow\left(y \wedge y^{\triangle}\right)^{\triangle}=1$.
- Let $z \in L$

$$
\begin{aligned}
0 \wedge z & =1^{\triangle} \wedge z=\left(y \wedge y^{\triangle}\right)^{\triangle \Delta} \wedge z \leq y \wedge y^{\triangle} \wedge z \leq y \wedge z \\
0 \wedge z^{\triangle} & =1^{\triangle} \wedge z^{\triangle}=\left(y \wedge y^{\triangle}\right)^{\triangle \Delta} \wedge z^{\triangle} \leq y \wedge y^{\triangle} \wedge z^{\triangle} \leq y \wedge z^{\triangle} \\
0 & =(0 \wedge z) \vee\left(0 \wedge z^{\triangle}\right) \leq(y \wedge z) \vee\left(y \wedge z^{\triangle}\right)=y
\end{aligned}
$$

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if $\Delta=\nabla$.

```
Theorem
A weakly dicomplemented lattice ( }L,\wedge,\vee,\triangle,\nabla,0,1)\mathrm{ is with negation
iff (L,^,\vee, \triangle, 0, 1) and (L,^, \vee,\nabla, 0,1) are Boolean algebras.
```

- Let $(L, \wedge, \vee, \triangle, \nabla, 0,1)$ with ${ }^{\triangle}=\nabla$
- $x \vee x^{\triangle}=1$ and $x \wedge x \nabla=0$. Then x^{\triangle} is a complement of x.
- What about the distributivity?
- The idea is to show that any weakly dicomplemented lattice with negation having at least three elements is not subdirectly irreducible
- i.e. for any $L \in W D N$ with $|L| \geq 3$ there is $\theta_{1}, \theta_{2} \in \operatorname{Con}(L)$ such that $\theta_{1} \cap \theta_{2}=\Delta$, the trivial congruence.

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if $\Delta=\nabla$.

Theorem
A weakly dicomplemented lattice $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ is with negation iff $\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ and $(L, \wedge, \vee, \nabla, 0,1)$ are Boolean algebras.

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if $\Delta=\nabla$.

Theorem

A weakly dicomplemented lattice $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ is with negation iff $\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ and $(L, \wedge, \vee, \nabla, 0,1)$ are Boolean algebras.

- Let $\left(L, \wedge, \vee,{ }^{\Delta}, \nabla, 0,1\right)$ with ${ }^{\Delta}=\nabla$.
- What about the distributivity?
- The idea is to show that any weakly dicomplemented lattice with negation having at least three elements is not subdirectly irreducible.

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if ${ }^{\Delta}=\nabla$.

Theorem
A weakly dicomplemented lattice $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ is with negation iff $\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ and $(L, \wedge, \vee, \nabla, 0,1)$ are Boolean algebras.

- Let $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ with ${ }^{\Delta}=\nabla$.
- $x \vee x^{\Delta}=1$ and $x \wedge x \nabla=0$. Then x^{Δ} is a complement of x.
- The idea is to show that any weakly dicomplemented lattice with negation having at least three elements is not subdirectly irreducible.

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if $\Delta=\nabla$.

Theorem

A weakly dicomplemented lattice $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ is with negation iff $\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ and $(L, \wedge, \vee, \nabla, 0,1)$ are Boolean algebras.

- Let $\left(L, \wedge, \vee,{ }^{\triangle}, \nabla, 0,1\right)$ with ${ }^{\Delta}=\nabla$.
- $x \vee x^{\Delta}=1$ and $x \wedge x \nabla=0$. Then x^{Δ} is a complement of x.
- What about the distributivity?
negation having at least three elements is not subdirectly irreducible.

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if $\Delta=\nabla$.

Theorem

A weakly dicomplemented lattice $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ is with negation iff $\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ and $(L, \wedge, \vee, \nabla, 0,1)$ are Boolean algebras.

- Let $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ with ${ }^{\Delta}=\nabla$.
- $x \vee x^{\Delta}=1$ and $x \wedge x \nabla=0$. Then x^{Δ} is a complement of x.
- What about the distributivity?
- The idea is to show that any weakly dicomplemented lattice with negation having at least three elements is not subdirectly irreducible.

Weakly Dicomplemented Lattices with Negation

A weakly dicomplemented lattice is said to be with negation if $\Delta=\nabla$.

Theorem

A weakly dicomplemented lattice $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ is with negation iff $\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ and $(L, \wedge, \vee, \nabla, 0,1)$ are Boolean algebras.

- Let $(L, \wedge, \vee, \Delta, \nabla, 0,1)$ with ${ }^{\Delta}=\nabla$.
- $x \vee x^{\Delta}=1$ and $x \wedge x \nabla=0$. Then x^{Δ} is a complement of x.
- What about the distributivity?
- The idea is to show that any weakly dicomplemented lattice with negation having at least three elements is not subdirectly irreducible.
- i.e. for any $L \in$ WDN with $|L| \geq 3$ there is $\theta_{1}, \theta_{2} \in \operatorname{Con}(L)$ such that $\theta_{1} \cap \theta_{2}=\Delta$, the trivial congruence.
(i) For $c \in L \backslash\{0,1\}$, we have $[c, 1] \cong\left[0, c^{\triangle}\right]$, since

$$
\begin{aligned}
u_{c} \Delta:[c, 1] & \rightarrow\left[0, c^{\Delta}\right] \\
x & \mapsto x \wedge c^{\Delta}
\end{aligned} \quad \text { and } \quad v_{c}:\left[0, c^{\Delta}\right] \rightarrow[c, 1] ~=x ~ H x \vee c
$$

are order preserving and inverse of each other.
and

are lattice homomorphisms.
(iii) We set $\theta_{1}:=\operatorname{kerf}_{1}$ and $\theta_{2}:=\operatorname{ker}_{2}$. Then $\theta_{1} \cap \theta_{2}=\triangle$.

(i) For $c \in L \backslash\{0,1\}$, we have $[c, 1] \cong\left[0, c^{\triangle}\right]$, since

$$
\begin{aligned}
u_{c} \Delta:[c, 1] & \rightarrow\left[0, c^{\Delta}\right] \\
x & \mapsto x \wedge c^{\Delta}
\end{aligned} \quad \text { and } \quad v_{c}:\left[0, c^{\Delta}\right] \rightarrow[c, 1] ~=x ~ H x \vee c .
$$

are order preserving and inverse of each other.
(ii) The maps

$$
\begin{aligned}
f_{1}: L & \rightarrow\left[c^{\Delta}, 1\right] \\
x & \rightarrow\left[0, c^{\Delta \Delta}\right]=[0, c] \\
& \mapsto \vee c^{\Delta}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}: L & \rightarrow[c, 1] \\
x & \mapsto\left[0, c^{\Delta}\right] \\
x \vee c & \mapsto(x \vee c) \wedge c^{\Delta}=x \wedge c^{\Delta}
\end{aligned}
$$

are lattice homomorphisms.
(i) For $c \in L \backslash\{0,1\}$, we have $[c, 1] \cong\left[0, c^{\triangle}\right]$, since

$$
\begin{aligned}
u_{c} \Delta:[c, 1] & \rightarrow\left[0, c^{\Delta}\right] \\
x & \mapsto x \wedge c^{\Delta}
\end{aligned} \quad \text { and } \quad v_{c}:\left[0, c^{\Delta}\right] \rightarrow[c, 1] ~=x ~ \mapsto x \vee c .
$$

are order preserving and inverse of each other.
(ii) The maps

$$
\begin{aligned}
f_{1}: L & \rightarrow\left[c^{\Delta}, 1\right] \\
x & \left.\rightarrow x \vee 0^{\Delta}, c^{\Delta \Delta}\right]=[0, c] \\
& \mapsto\left(x \vee c^{\Delta}\right) \wedge c=x \wedge c
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
f_{2}: L & \rightarrow[c, 1]
\end{array} \rightarrow\left[0, c^{\Delta}\right]\right)
$$

are lattice homomorphisms.
(iii) We set $\theta_{1}:=\operatorname{ker}_{1}$ and $\theta_{2}:=\operatorname{ker} f_{2}$. Then $\theta_{1} \cap \theta_{2}=\Delta$.

$$
\begin{aligned}
(x, y) \in \theta_{1} \cap \theta_{2} & \Longrightarrow x \wedge c=y \wedge c \text { and } x \wedge c^{\Delta}=y \wedge c^{\Delta} \\
& \Longrightarrow x=(x \wedge c) \vee\left(x \wedge c^{\Delta}\right)=(y \wedge c) \vee\left(y \wedge c^{\Delta}\right)=y \\
& \Longrightarrow(x, y) \in \Delta .
\end{aligned}
$$

Corollary

$\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ is a Boolean algebra iff (L, \wedge, \vee) is a non empty lattice in which
(1) $x^{\Delta \Delta}=x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$

- $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
hold.

Recall that

Corollary

$\left(L, \wedge, \vee,{ }^{\triangle}, 0,1\right)$ is a Boolean algebra iff (L, \wedge, \vee) is a non empty lattice in which
(1) $x^{\Delta \Delta}=x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$
© $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
hold.

Recall that
(1) $x^{\Delta \Delta} \leq x$,
(1') $x^{\nabla \nabla} \geq x$,
(2) $x \leq y \Longrightarrow x^{\Delta} \geq y^{\Delta}$,
(2') $x \leq y \Longrightarrow x \nabla \geq y \nabla$,
(3) $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x$,
(3') $(x \vee y) \wedge(x \vee y \nabla)=x$.
and $\Delta=\nabla$

Theorem (A new axiom for Boolean algebras)
An algebra $(L, \wedge, \vee, \Delta, 0,1)$ is a Boolean algebra iff (L, \wedge, \vee) is a non empty lattice in which
$(x \wedge y) \vee\left(x \wedge y^{\Delta}\right)=(x \vee y) \wedge\left(x \vee y^{\Delta}\right)$ holds for all $x, y \in L$
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) ; \Longrightarrow y \wedge y^{\triangle}=0$;

Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;

Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 \Rightarrow y \vee x^{\triangle}=1$. Thus

\square
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) ; \Longrightarrow y \wedge y^{\triangle}=0$;

Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;

Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 \Rightarrow y \vee x^{\triangle}=1$. Thus

\square
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) ; \Longrightarrow y \wedge y^{\triangle}=0$;

Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\wedge}\right) ; \Longrightarrow y \vee y^{\wedge}=1$;

Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 引 y \vee x^{\triangle}=1$. Thus

\square
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$;

$$
x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\triangle \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \triangle}\right)=x \wedge x^{\triangle \triangle}
$$

Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;

Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$

(iii) Let $x \leq y$.

$x \vee x^{\triangle}=1 \Rightarrow y \vee x^{\triangle}=1$. Thus
\square
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$;

$$
x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\triangle \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \triangle}\right)=x \wedge x^{\triangle \triangle}
$$

Hence $x \leq x^{\triangle \triangle}$.

Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$

(iii) Let $x \leq y$.

$x \vee x^{\triangle}=1 \Rightarrow y \vee x^{\triangle}=1$. Thus
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies

$$
(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)
$$

(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$;

$$
x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\triangle \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \triangle}\right)=x \wedge x^{\triangle \triangle}
$$

Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;

Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$.

(iii) Let $x \leq y$.

$x \vee x^{\triangle}=1 \Rightarrow y \vee x^{\triangle}=1$. Thus
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies

$$
(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)
$$

(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$;

$$
x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\triangle \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \triangle}\right)=x \wedge x^{\triangle \triangle}
$$

Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1 ;$
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\triangle \Delta}\right)=1 \wedge\left(x \vee x^{\triangle \triangle}\right)=x \vee x^{\triangle \Delta}$
Hence $x \geq x^{\triangle \triangle}$. Therefore $x=x^{\triangle \triangle}$
$x \vee x^{\triangle}=1 \Longrightarrow y \vee x^{\triangle}=1$. Thus
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$; $x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\Delta \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \Delta}\right)=x \wedge x^{\triangle \Delta}$ Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\Delta \triangle}\right)=1 \wedge\left(x \vee x^{\triangle \Delta}\right)=x \vee x^{\triangle \Delta}$ Hence $x \geq x^{\triangle \Delta}$. Therefore $x=x^{\triangle \triangle}$.
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$; $x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\Delta \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \Delta}\right)=x \wedge x^{\triangle \Delta}$ Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\Delta \triangle}\right)=1 \wedge\left(x \vee x^{\triangle \Delta}\right)=x \vee x^{\triangle \Delta}$ Hence $x \geq x^{\triangle \Delta}$. Therefore $x=x^{\triangle \triangle}$.
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$; $x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\Delta \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \Delta}\right)=x \wedge x^{\triangle \Delta}$ Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\triangle \triangle}\right)=1 \wedge\left(x \vee x^{\triangle \triangle}\right)=x \vee x^{\triangle \Delta}$ Hence $x \geq x^{\triangle \Delta}$. Therefore $x=x^{\triangle \triangle}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 \Longrightarrow y \vee x^{\triangle}=1$. Thus
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$; $x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\Delta \triangle}\right)=0 \vee\left(x \wedge x^{\triangle \Delta}\right)=x \wedge x^{\triangle \Delta}$ Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\triangle \Delta}\right)=1 \wedge\left(x \vee x^{\triangle \Delta}\right)=x \vee x^{\Delta \triangle}$
Hence $x \geq x^{\triangle \Delta}$. Therefore $x=x^{\triangle \triangle}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 \Longrightarrow y \vee x^{\triangle}=1$. Thus
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$; $x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\triangle \Delta}\right)=0 \vee\left(x \wedge x^{\triangle \Delta}\right)=x \wedge x^{\triangle \Delta}$ Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\triangle \triangle}\right)=1 \wedge\left(x \vee x^{\triangle \triangle}\right)=x \vee x^{\triangle \triangle}$
Hence $x \geq x^{\triangle \Delta}$. Therefore $x=x^{\triangle \Delta}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 \Longrightarrow y \vee x^{\triangle}=1$. Thus
$x^{\triangle}=\left(x^{\triangle} \vee y^{\triangle}\right) \wedge\left(x^{\triangle} \vee y^{\triangle \triangle}\right)=\left(x^{\triangle} \vee y^{\triangle}\right) \wedge\left(x^{\triangle} \vee y\right)=x^{\triangle} \vee y^{\triangle}$
(i) $x \geq(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=(x \vee y) \wedge\left(x \vee y^{\triangle}\right) \geq x$ implies $(x \wedge y) \vee\left(x \wedge y^{\triangle}\right)=x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$.
(ii) $x=(x \vee y) \wedge\left(x \vee y^{\triangle}\right)$; $\Longrightarrow y \wedge y^{\triangle}=0$; $x=\left(x \wedge x^{\triangle}\right) \vee\left(x \wedge x^{\triangle \Delta}\right)=0 \vee\left(x \wedge x^{\triangle \Delta}\right)=x \wedge x^{\triangle \Delta}$ Hence $x \leq x^{\triangle \triangle}$.
$x=(x \wedge y) \vee\left(x \wedge y^{\triangle}\right) ; \Longrightarrow y \vee y^{\triangle}=1$;
$x=\left(x \vee x^{\triangle}\right) \wedge\left(x \vee x^{\triangle \triangle}\right)=1 \wedge\left(x \vee x^{\triangle \triangle}\right)=x \vee x^{\triangle \Delta}$
Hence $x \geq x^{\triangle \Delta}$. Therefore $x=x^{\triangle \Delta}$.
(iii) Let $x \leq y$.
$x \vee x^{\triangle}=1 \Longrightarrow y \vee x^{\triangle}=1$. Thus $x^{\triangle}=\left(x^{\triangle} \vee y^{\triangle}\right) \wedge\left(x^{\triangle} \vee y^{\triangle \triangle}\right)=\left(x^{\triangle} \vee y^{\triangle}\right) \wedge\left(x^{\triangle} \vee y\right)=x^{\triangle} \vee y^{\triangle}$ and $x^{\triangle} \geq y^{\triangle}$.

