Valuations on Finite Lattices

Léonard Kwuida
Bern University of Applied Sciences
Switzerland

April 9, 2014

joint work with Stefan Schmidt TU Dresden

Motivation

Data Analysis

- Qualitative Data Analysis

Formal Concept Analysis

- Rough Set Theory
- ... are based on closure operators.
- Quantitative Data Analysis

Statistics

- Data Mining
- ... are based on measure theory.
- Aim: Bridging qualitative and quantitative Data Analysis
- Tools: Closure operators \longleftrightarrow measures

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra, i.e a collection \mathcal{S} of subsets closed under complementation and countable unions, i.e a special Boolean algebra.

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra, i.e a special lattice.

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra, i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
A \cap B=\emptyset \Longrightarrow \mu(A \cup B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S}
$$

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra, i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
\begin{gather*}
A \cap B=\emptyset \Longrightarrow \mu(A \cup B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \\
\mu(\emptyset)=0 \text { and } \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \tag{1}
\end{gather*}
$$

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,
i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
\begin{gather*}
A \cap B=\emptyset \Longrightarrow \mu(A \cup B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \\
\mu(\emptyset)=0 \text { and } \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \tag{1}\\
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right), \text { for pairwise disjoint } A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{S}
\end{gather*}
$$

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,
i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
\begin{gather*}
A \cap B=\emptyset \Longrightarrow \mu(A \cup B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \\
\mu(\emptyset)=0 \text { and } \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \tag{1}\\
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right), \text { for pairwise disjoint } A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{S} \\
\mu(\emptyset)=0 \text { and } \mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|| |+1} \mu\left(\bigcap_{i \in I} A_{i}\right) .
\end{gather*}
$$

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra,
i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
\begin{gather*}
A \cap B=\emptyset \Longrightarrow \mu(A \cup B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \\
\mu(\emptyset)=0 \text { and } \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \tag{1}\\
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right), \text { for pairwise disjoint } A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{S} \\
\mu(\emptyset)=0 \text { and } \mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|| |+1} \mu\left(\bigcap_{i \in I} A_{i}\right) .
\end{gather*}
$$

We need distributivity here.!

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra, i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
\begin{equation*}
\mu(\emptyset)=0 \text { and } \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \tag{1}
\end{equation*}
$$

- An isotone measure with $\mu(\emptyset)=0$ and $\mu(\bigcup \mathcal{S})=1$ (fuzzy measure) is
- modular if $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S}$,
- submodular if $\mu(A \cup B)+\mu(A \cap B) \leq \mu(A)+\mu(B), \forall A, B \in \mathcal{S}$ and
- supermodular if $\mu(A \cup B)+\mu(A \cap B) \geq \mu(A)+\mu(B), \forall A, B \in \mathcal{S}$.

Motivation: From measures to valuations

- The carrier set \mathcal{S} is a σ-algebra, i.e a special lattice.
- A measure on \mathcal{S} is a map $\mu: \mathcal{S} \rightarrow \mathbb{R}$.
- μ is additive if

$$
\begin{equation*}
\mu(\emptyset)=0 \text { and } \mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S} \tag{1}
\end{equation*}
$$

- An isotone measure with $\mu(\emptyset)=0$ and $\mu(\bigcup \mathcal{S})=1$ (fuzzy measure) is
- modular if $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B), \forall A, B \in \mathcal{S}$,
- submodular if $\mu(A \cup B)+\mu(A \cap B) \leq \mu(A)+\mu(B), \forall A, B \in \mathcal{S}$ and
- supermodular if $\mu(A \cup B)+\mu(A \cap B) \geq \mu(A)+\mu(B), \forall A, B \in \mathcal{S}$.

Let $L \neq \emptyset$ be a finite lattice. An evaluation on L is a map $r: L \rightarrow \mathbb{R}$. It is

- modular if $r(x \vee y)+r(x \wedge y)=r(x)+r(y)$,
- submodular if $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$,
- supermodular if $r(x \vee y)+r(x \wedge y) \geq r(x)+r(y)$,
- a valuation if r is isotone and modular.

Notations and Examples

- L is a finite on-empty lattice.
- $x \lessdot y: \Longleftrightarrow x<y$ and $x<a \leq y \Longrightarrow a=y \quad$ i.e. y covers x
- $a \neq 0$ is join irreducible $: \Longleftrightarrow \bigvee\{x \in L \mid x<a\} \lessdot a$. In this case $a_{*}:=\bigvee\{x \in L \mid x<a\}$ is the unique lower neighbour of a.
- $J(L):=$ the set of join irreducible elements of L.
- $a \neq 1$ is meet irreducible $: \Longleftrightarrow a \lessdot \bigwedge\{x \in L \mid x<a\}$. In this case $a^{*}:=\bigwedge\{x \in L \mid x>a\}$ is the unique upper neighbour of a.
- $M(L):=$ the set of meet irreducible elements of L.

Notations and Examples

- L is a finite on-empty lattice.
$\bullet x \lessdot y: \Longleftrightarrow x<y$ and $x<a \leq y \Longrightarrow a=y \quad$ i.e. y covers x
- $a \neq 0$ is join irreducible $: \Longleftrightarrow \bigvee\{x \in L \mid x<a\} \lessdot a$. In this case $a_{*}:=\bigvee\{x \in L \mid x<a\}$ is the unique lower neighbour of a.
- $J(L):=$ the set of join irreducible elements of L.
- $a \neq 1$ is meet irreducible $: \Longleftrightarrow a \lessdot \bigwedge\{x \in L \mid x<a\}$. In this case $a^{*}:=\bigwedge\{x \in L \mid x>a\}$ is the unique upper neighbour of a.
- $M(L):=$ the set of meet irreducible elements of L.

- $J(L)=\{a, b, c, d, e, f\}$.

$$
M(L)=\{c, d, e, f, g . h\}
$$

Notations and Examples

- L is a finite on-empty lattice.
$\bullet x \lessdot y: \Longleftrightarrow x<y$ and $x<a \leq y \Longrightarrow a=y \quad$ i.e. y covers x
- $a \neq 0$ is join irreducible $: \Longleftrightarrow \bigvee\{x \in L \mid x<a\} \lessdot a$. In this case $a_{*}:=\bigvee\{x \in L \mid x<a\}$ is the unique lower neighbour of a.
- $J(L):=$ the set of join irreducible elements of L.
- $a \neq 1$ is meet irreducible $: \Longleftrightarrow a \lessdot \bigwedge\{x \in L \mid x<a\}$. In this case $a^{*}:=\bigwedge\{x \in L \mid x>a\}$ is the unique upper neighbour of a.
- $M(L):=$ the set of meet irreducible elements of L.

- $J(L)=\{a, b, c, d, e, f\}$.

$$
\begin{aligned}
M(L)= & \{c, d, e, f, g . h\} \\
& f^{*}=h, h^{*}=\top
\end{aligned}
$$

Notations and Examples

- L is a finite on-empty lattice.
$\bullet x \lessdot y: \Longleftrightarrow x<y$ and $x<a \leq y \Longrightarrow a=y \quad$ i.e. y covers x
- $a \neq 0$ is join irreducible $: \Longleftrightarrow \bigvee\{x \in L \mid x<a\} \lessdot a$. In this case $a_{*}:=\bigvee\{x \in L \mid x<a\}$ is the unique lower neighbour of a.
- $J(L):=$ the set of join irreducible elements of L.
- $a \neq 1$ is meet irreducible $: \Longleftrightarrow a \lessdot \bigwedge\{x \in L \mid x<a\}$. In this case $a^{*}:=\bigwedge\{x \in L \mid x>a\}$ is the unique upper neighbour of a.
- $M(L):=$ the set of meet irreducible elements of L.

- $J(L)=\{a, b, c, d, e, f\}$.

$$
\begin{array}{r}
M(L)=\{c, d, e, f, g . h\} \\
\\
f^{*}=h, h^{*}=\top
\end{array}
$$

- $\mathrm{h}(P):=$ length of P and $\mathrm{h}_{L}(x):=\mathrm{h}([\perp, x])$

Notations and Examples

- L is a finite on-empty lattice.
$\bullet x \lessdot y: \Longleftrightarrow x<y$ and $x<a \leq y \Longrightarrow a=y \quad$ i.e. y covers x
- $a \neq 0$ is join irreducible $: \Longleftrightarrow \bigvee\{x \in L \mid x<a\} \lessdot a$. In this case $a_{*}:=\bigvee\{x \in L \mid x<a\}$ is the unique lower neighbour of a.
- $J(L):=$ the set of join irreducible elements of L.
- $a \neq 1$ is meet irreducible $: \Longleftrightarrow a \lessdot \bigwedge\{x \in L \mid x<a\}$. In this case $a^{*}:=\bigwedge\{x \in L \mid x>a\}$ is the unique upper neighbour of a.
- $M(L):=$ the set of meet irreducible elements of L.

- $J(L)=\{a, b, c, d, e, f\}$.

$$
\begin{array}{r}
M(L)=\{c, d, e, f, g . h\} \\
\\
f^{*}=h, h^{*}=\top
\end{array}
$$

- $\mathrm{h}(P):=$ length of P and $\mathrm{h}_{L}(x):=\mathrm{h}([\perp, x])$
- $\mathrm{d}_{L}(x):=\mathrm{h}([x, \top])$ and $\mathrm{h}^{L}(x):=\mathrm{h}(L)-\mathrm{d}_{L}(x)$

Notations and Examples

- L is a finite on-empty lattice.
$\bullet x \lessdot y: \Longleftrightarrow x<y$ and $x<a \leq y \Longrightarrow a=y \quad$ i.e. y covers x
- $a \neq 0$ is join irreducible $: \Longleftrightarrow \bigvee\{x \in L \mid x<a\} \lessdot a$. In this case $a_{*}:=\bigvee\{x \in L \mid x<a\}$ is the unique lower neighbour of a.
- $J(L):=$ the set of join irreducible elements of L.
- $a \neq 1$ is meet irreducible $: \Longleftrightarrow a \lessdot \bigwedge\{x \in L \mid x<a\}$. In this case $a^{*}:=\bigwedge\{x \in L \mid x>a\}$ is the unique upper neighbour of a.
- $M(L):=$ the set of meet irreducible elements of L.

- $J(L)=\{a, b, c, d, e, f\}$.

$$
\begin{array}{r}
M(L)=\{c, d, e, f, g . h\} \\
\\
f^{*}=h, h^{*}=\top
\end{array}
$$

- $\mathrm{h}(P):=$ length of P and $\mathrm{h}_{L}(x):=\mathrm{h}([\perp, x])$
- $\mathrm{d}_{L}(x):=\mathrm{h}([x, \top])$ and $\mathrm{h}^{L}(x):=\mathrm{h}(L)-\mathrm{d}_{L}(x)$
- There is only "one" modular evaluation on $L_{\underline{\underline{\underline{E}}}}$

Some issues to be addressed

(1) How many modular evaluations can we define on a finite lattice?
(2) When is h_{L} modular, supermodular or submodular?
(3) When is h^{L} modular, supermodular or submodular?
(9) When are h_{L} and h^{L} both equal?
(9) $\mathrm{h}_{L}(x)+\mathrm{d}_{L}(x) \leq \mathrm{h}(L)$. When do we have equality?

- $\mathbb{R}^{L}:=\{r: L \rightarrow \mathbb{R}\}$ is a real vector space (of evaluations on L).
- $\operatorname{Mod}(L, \mathbb{R}):=$ set of modular evaluations on L
- $\operatorname{Mod}_{0}(L, \mathbb{R}):=\{r \in \operatorname{Mod}(L, \mathbb{R}) \mid r(\perp)=0\}$ (normalized mod. eval.)
- $\operatorname{Mod}_{0}(L, \mathbb{R}) \leq \operatorname{Mod}(L, \mathbb{R}) \leq \mathbb{R}^{L}$ (as subspaces)
- $\operatorname{md}(L):=\operatorname{dim} \operatorname{Mod}(L, \mathbb{R})=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})+1$ is called the modular dimension of L.

Some issues to be addressed

(1) How many modular evaluations can we define on a finite lattice?
(2) When is h_{L} modular, supermodular or submodular?
(3) When is h^{L} modular, supermodular or submodular?
(9) When are h_{L} and h^{L} both equal?
(5) $h_{L}(x)+\mathrm{d}_{L}(x) \leq \mathrm{h}(L)$. When do we have equality?

Notations

- $\mathbb{R}^{L}:=\{r: L \rightarrow \mathbb{R}\}$ is a real vector space (of evaluations on L).
- $\operatorname{Mod}(L, \mathbb{R}):=$ set of modular evaluations on L
- $\operatorname{Mod}_{0}(L, \mathbb{R}):=\{r \in \operatorname{Mod}(L, \mathbb{R}) \mid r(\perp)=0\}$ (normalized mod. eval.)
- $\operatorname{Mod}_{0}(L, \mathbb{R}) \leq \operatorname{Mod}(L, \mathbb{R}) \leq \mathbb{R}^{L}$ (as subspaces)
- $\operatorname{md}(L):=\operatorname{dim} \operatorname{Mod}(L, \mathbb{R})=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})+1$ is called the modular dimension of L.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
\Longleftrightarrow M_{3} \not \leq L \text { and } N_{5} \not \leq L .
$$

- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r \|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Theorem

The normalized modular dimension of a finite lattice L is equal to the number of its join irreducible elements if and only if L is distributive.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
\square
- Denote by $r J_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Theorem
The normalized modular dimension of a finite lattice L is equal to the number of its join irreducible elements if and only if L is distributive.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r \|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $r_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Theorem
The normalized modular dimension of a finite lattice L is equal to the number of its join irreducible elements if and only if L is distributive.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
$\bullet r \in \operatorname{Mod}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r \|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Theorem
The normalized modular dimension of a finite lattice L is equal to the number of its join irreducible elements if and only if L is distributive.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
\begin{aligned}
& : \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \\
& : \Longleftrightarrow M_{3} \not \leq L \text { and } N_{5} \not \leq L .
\end{aligned}
$$

- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.
\square
The normalized modular dimension of a finite lattice L is equal to the number of its join irreducible elements if and only if L is distributive.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r \|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.

- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r \|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $r \|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
\square

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $\left.r\right|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Modular dimension of finite distributive lattices

- L is distributive $: \Longleftrightarrow x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$: \Longleftrightarrow x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$: \Longleftrightarrow M_{3} \not \leq L$ and $N_{5} \not \leq L$.
- $\operatorname{md}_{0}(L):=\operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})$ (normalized modular dimension) of L.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(x \vee y)=r(x)+r(y)-r(x \wedge y)$ and $r(0)=0$.
- Denote by $\left.r\right|_{J(L)}$ the resctriction of r on $J(L)$. Is there any characterization of such $\left.r\right|_{J(L)}$? Can any $s: J(L) \rightarrow \mathbb{R}$ be extended to a modular evaluation on L.
- $U \subseteq J(L)$ is modfree if any $r: U \rightarrow \mathbb{R}$ extends $\tilde{r} \in \operatorname{Mod}(L)$.
- A maximal modfree subset of $J(L)$ is called a modbasis.
- Finding a maximal modfree subset of L is equivalent to finding the normalized modular dimension of L.

Theorem

The normalized modular dimension of a finite lattice L is equal to the number of its join irreducible elements if and only if L is distributive.

Upper bound of $\operatorname{md}(L)$

Let L be a finite lattice. Then $\operatorname{md}_{0}(L) \leq|J(L)|$.

Upper bound of $\operatorname{md}(L)$

Let L be a finite lattice. Then $\operatorname{md}_{0}(L) \leq|J(L)|$.

- The application $\begin{aligned} \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) & \rightarrow \mathbb{R}^{J(L)} \\ r & \left.\mapsto r\right|_{J(L)}\end{aligned}$ is an injective and linear map. Then,
yet proved, there are $s, t<x$ such that $s \vee t=x$.

$$
\begin{aligned}
r_{1}(x) & =r_{1}(s \vee t)=r_{1}(s)+r_{1}(t)-r_{1}(s \wedge t) \\
& =r_{2}(s)+r_{2}(t)-r_{2}(s \wedge t) \\
& =r_{2}(x)
\end{aligned}
$$

- Thus, $r_{1}=r_{2}$, and $|J(L)|=\operatorname{dim} \mathbb{R}^{J(L)} \geq \operatorname{dim} \operatorname{Mod}(L, \mathbb{R})=\operatorname{md}_{0}(L)$.

Upper bound of $\operatorname{md}(L)$

Let L be a finite lattice. Then $\operatorname{md}_{0}(L) \leq|J(L)|$.

- The application $\begin{aligned} \psi: \operatorname{Mod}(L, \mathbb{R}) & \rightarrow \mathbb{R}^{J(L)} \\ r & \mapsto\end{aligned}$ is an injective and linear map. Then,
- If $\left.r_{1}\right|_{J(L)}=\left.r_{2}\right|_{J(L)}$ and $x \in L \backslash J(L)$ is minimal wrt $r_{1}(x)=r_{2}(x)$ is not yet proved, there are $s, t<x$ such that $s \vee t=x$.

$$
\begin{aligned}
r_{1}(x) & =r_{1}(s \vee t)=r_{1}(s)+r_{1}(t)-r_{1}(s \wedge t) \\
& =r_{2}(s)+r_{2}(t)-r_{2}(s \wedge t) \\
& =r_{2}(x)
\end{aligned}
$$

Upper bound of $\operatorname{md}(L)$

Let L be a finite lattice. Then $\operatorname{md}_{0}(L) \leq|J(L)|$.

- The application $\begin{aligned} \psi: \operatorname{Mod}(L, \mathbb{R}) & \rightarrow \mathbb{R}^{J(L)} \\ r & \mapsto\end{aligned}$ is an injective and linear map. Then,
- If $\left.r_{1}\right|_{J(L)}=\left.r_{2}\right|_{J(L)}$ and $x \in L \backslash J(L)$ is minimal wrt $r_{1}(x)=r_{2}(x)$ is not yet proved, there are $s, t<x$ such that $s \vee t=x$.

$$
\begin{aligned}
r_{1}(x) & =r_{1}(s \vee t)=r_{1}(s)+r_{1}(t)-r_{1}(s \wedge t) \\
& =r_{2}(s)+r_{2}(t)-r_{2}(s \wedge t) \\
& =r_{2}(x)
\end{aligned}
$$

- Thus, $r_{1}=r_{2}$, and $|J(L)|=\operatorname{dim} \mathbb{R}^{J(L)} \geq \operatorname{dim} \operatorname{Mod}_{0}(L, \mathbb{R})=\operatorname{md}_{0}(L)$.

Corollary

Let L be a finite lattice an r an evaluation on L. Then
(1) $r \in \operatorname{Mod}_{0}(L, \mathbb{R})$ and $\left.r\right|_{J([0, x])}=\overline{0}$ implies $\left.r\right|_{[0, x]}=\overline{0}$.
(2) For $p \in J(L)$, we define $\delta_{p}^{J(L)} \in\{0,1\}^{J(L)}$ by

$$
\delta_{p}^{J(L)}(x)=1 \Longleftrightarrow x=p
$$

If $r_{p} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ and $\left.r_{p}\right|_{J(L)}=\delta_{p}^{J(L)}$ then $p \not \not \leq x \Longrightarrow r_{p}(x)=0$.

Modular dimension of a product

Let L_{1} and L_{2} be finite lattices. Then

$$
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
$$

Modular dimension of a product
Let L_{1} and L_{2} be finite lattices. Then

$$
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
$$

- For $r \in \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right)$ set $r_{1}(x):=r(x, 0)$ and $r_{2}(y):=r(0, y)$. - $\begin{aligned} & \psi: \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) \rightarrow \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \text { is linear. } \\ & r \mapsto r_{1} \oplus r_{2} \\ & \text { - For } r_{1} \oplus r_{2} \in \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \operatorname{set} r(x, y):=r_{1}(x)+r_{2}(y) .\end{aligned}$
- The maps ψ and φ are inverse to each other. Thus

$\operatorname{mdo}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{mdo}_{0}\left(L_{2}\right)$.

Modular dimension of a product
Let L_{1} and L_{2} be finite lattices. Then

$$
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
$$

- For $r \in \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right)$ set $r_{1}(x):=r(x, 0)$ and $r_{2}(y):=r(0, y)$.
$\begin{aligned} \psi: \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) & \rightarrow \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \quad \text { is linear. } \\ r & \mapsto r_{1} \oplus r_{2}\end{aligned}$
- For $r_{1} \oplus r_{2} \in \operatorname{Mod}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right)$ set $r(x, y):=r_{1}(x)+r_{2}(y)$. is linear.
- The maps ψ and φ are inverse to each other. Thus $\operatorname{Mod}\left(\underline{I}_{1} \times \underline{I}_{2}, \mathbb{R}\right) \cong \operatorname{Mod}_{0}\left(\underline{I}_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}\left(\underline{I}_{2}, \mathbb{R}\right)$ $\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)$

Modular dimension of a product

Let L_{1} and L_{2} be finite lattices. Then

$$
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
$$

- For $r \in \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right)$ set $r_{1}(x):=r(x, 0)$ and $r_{2}(y):=r(0, y)$.
- $\begin{aligned} \psi: \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) & \rightarrow \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \quad \text { is linear. } \\ r & \mapsto r_{1} \oplus r_{2}\end{aligned}$
- For $r_{1} \oplus r_{2} \in \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right)$ set $r(x, y):=r_{1}(x)+r_{2}(y)$.
- The maps ψ and φ are inverse to each other. Thus

$\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{mdo}_{0}\left(L_{2}\right)$.

Modular dimension of a product

Let L_{1} and L_{2} be finite lattices. Then

$$
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
$$

- For $r \in \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right)$ set $r_{1}(x):=r(x, 0)$ and $r_{2}(y):=r(0, y)$.
- $\begin{aligned} \psi: \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) & \rightarrow \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \quad \text { is linear. } \\ r & \mapsto r_{1} \oplus r_{2}\end{aligned}$
- For $r_{1} \oplus r_{2} \in \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right)$ set $r(x, y):=r_{1}(x)+r_{2}(y)$.
- $\begin{aligned} \varphi: \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) & \rightarrow \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) \\ r_{1} \oplus r_{2} & \mapsto r\end{aligned}$ is linear.
- The maps ψ and φ are inverse to each other. Thus

Modular dimension of a product

Let L_{1} and L_{2} be finite lattices. Then

$$
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right)=\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
$$

- For $r \in \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right)$ set $r_{1}(x):=r(x, 0)$ and $r_{2}(y):=r(0, y)$.
- $\begin{aligned} \psi: \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) & \rightarrow \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \quad \text { is linear. } \\ r & \mapsto r_{1} \oplus r_{2}\end{aligned}$
- For $r_{1} \oplus r_{2} \in \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right)$ set $r(x, y):=r_{1}(x)+r_{2}(y)$.
- $\begin{aligned} \varphi: \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) & \rightarrow \operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) \\ r_{1} \oplus r_{2} & \mapsto r\end{aligned} \quad$ is linear.
- The maps ψ and φ are inverse to each other. Thus

$$
\begin{aligned}
\operatorname{Mod}_{0}\left(L_{1} \times L_{2}, \mathbb{R}\right) & \cong \operatorname{Mod}_{0}\left(L_{1}, \mathbb{R}\right) \oplus \operatorname{Mod}_{0}\left(L_{2}, \mathbb{R}\right) \\
& \text { and } \\
\operatorname{md}_{0}\left(L_{1} \times L_{2}\right) & =\operatorname{md}_{0}\left(L_{1}\right)+\operatorname{md}_{0}\left(L_{2}\right)
\end{aligned}
$$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)|$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)|$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod} d_{0}(I, \mathbb{R})$ such that $\|,\left(r_{d}\right)=r_{d} l_{\prime(L)}=\delta_{d}^{J(L)}$
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.
- $d=c \Longrightarrow r_{d}(c)=1$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}(I, \mathbb{R})$ such that $a /\left(r_{d}\right)=r_{d} l_{\prime(L)}=\delta_{d}^{J(L)}$
- $d=c \Longrightarrow r_{d}(c)=1$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.
- $d=c \Longrightarrow r_{d}(c)=1$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.
- $d=c \Longrightarrow r_{d}(c)=1$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.
- $d=c \Longrightarrow r_{d}(c)=1$ k
- $d \neq c \Longrightarrow d \vee b=c$ and $d \wedge b=d_{*} \Longrightarrow r_{d}\left(d_{*}\right)=0=r_{d}(b)$.

$$
\begin{aligned}
r_{d}(c) & =r_{d}(c)+r_{d}\left(d_{*}\right)=r_{d}(d \vee b)+r_{d}(d \wedge b)=r_{d}(d)+r_{d}(b) \\
& =r_{d}(d)=1 \neq r_{d}(b)
\end{aligned}
$$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.
- $d=c \Longrightarrow r_{d}(c)=1$ k
- $d \neq c \Longrightarrow d \vee b=c$ and $d \wedge b=d_{*} \Longrightarrow r_{d}\left(d_{*}\right)=0=r_{d}(b)$.

$$
\begin{aligned}
r_{d}(c) & =r_{d}(c)+r_{d}\left(d_{*}\right)=r_{d}(d \vee b)+r_{d}(d \wedge b)=r_{d}(d)+r_{d}(b) \\
& =r_{d}(d)=1 \neq r_{d}(b)
\end{aligned}
$$

Upper bound reached \Longrightarrow Distributivity

Let L be a finite lattice. If $\operatorname{md}_{0}(L)=|J(L)|$ then L is distributive.
$\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow \psi: \operatorname{Mod}_{0}(L, \mathbb{R}) \rightarrow \mathbb{R}^{J(L)}$ is an isomorphism.
We first prove that L does not contain a copy of N_{5}

- If $N_{5} \leq L$ then choose $N_{5}=\{a, b, c, a \vee c, a \wedge b\}$ with $b \lessdot c, c\|a\| b$
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)$.
- Let $d \in L$ minimal wrt $d \leq c$ and $d \not \leq b$. Then $d \in J(L)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\psi\left(r_{d}\right)=\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)} \Longrightarrow r_{d}(d)=1$ and $d \not \leq b ; \Longrightarrow r_{d}(b)=0$.
- $d=c \Longrightarrow r_{d}(c)=1$ k
- $d \neq c \Longrightarrow d \vee b=c$ and $d \wedge b=d_{*} \Longrightarrow r_{d}\left(d_{*}\right)=0=r_{d}(b)$.

$$
\begin{aligned}
r_{d}(c) & =r_{d}(c)+r_{d}\left(d_{*}\right)=r_{d}(d \vee b)+r_{d}(d \wedge b)=r_{d}(d)+r_{d}(b) \\
& =r_{d}(d)=1 \neq r_{d}(b)
\end{aligned}
$$

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \nless t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1,
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}\left(d^{\prime}\right)+r_{d}(t)=r_{d}\left(d^{\prime}\right)=1,
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{((1)}=\delta_{d}^{J(L)}$
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}^{\prime}\right)=r_{d}\left(d^{\prime}\right)+r_{d}(t)=r_{d}\left(d^{\prime}\right)=1,
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1,
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1,
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}^{\prime}\right)=r_{d}\left(d^{\prime}\right)+r_{d}(t)=r_{d}\left(d^{\prime}\right)=1 .
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1,
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \leq t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Next we prove that L does not contains a copy of M_{3} either

- If $M_{3} \leq L$ then choose $M_{3}=\{a, b, c, a \vee c, a \wedge c\}$ with $a\|b\| c \| a$.
- Set $u:=a \wedge b$. Let $t \geq u$ maximal with respect to $t<a$.
- Let d minimal with respect to $d \leq a$ and $d \not \approx t$. Then $d \in J(L)$.
- $r \in \operatorname{Mod}_{0}(L, \mathbb{R}) \Longrightarrow r(c)=r(b)=r(a)$.
- Let $r_{d} \in \operatorname{Mod}_{0}(L, \mathbb{R})$ such that $\left.r_{d}\right|_{J(L)}=\delta_{d}^{J(L)}$.
- $r_{d}\left(d_{*}\right)=0=r_{d}(t)=r_{d}(b)=r_{d}(c)=r_{d}(u) ; \Longrightarrow r_{d}(a)=r_{d}(b)=0$.
- By modularity with $d_{*}=d \wedge t$ and $a=d \vee t$, we also have

$$
r_{d}(a)=r_{d}(a)+r_{d}\left(d_{*}\right)=r_{d}(d)+r_{d}(t)=r_{d}(d)=1, \dot{z}
$$

Therefore $N_{5} \not \leq L$ and $M_{3} \not \leq L$; i.e. L is distributive.

Constructing modular evaluations on distributive lattices
Let L be a distributive lattice.

$$
\tilde{r}: L \quad \rightarrow \quad \mathbb{R}
$$

- For $r \in \mathbb{R}^{J(L)}$ the $\quad x \mapsto \sum_{\substack{a \leq x \\ a \in J(L)}} r(a)$ is a modular evaluation.

- Any $r \in \mathbb{R}^{J(L)}$ extends to a modular evaluation $\hat{r} \in \operatorname{Mod}_{0}(L, \mathbb{R})$.

Constructing modular evaluations on distributive lattices

Let L be a distributive lattice.
$\tilde{r}: L \rightarrow \mathbb{R}$

- For $r \in \mathbb{R}^{J(L)}$ the $\quad x \mapsto \sum_{\substack{a \leq x \\ a \in J(L)}} r(a)$ is a modular evaluation.

$$
\begin{aligned}
\tilde{r}(x \vee y)+\tilde{r}(x \wedge y) & =\sum_{\substack{a \leq x \vee y \\
a \in J(L)}} r(a)+\sum_{\substack{a \leq x \wedge y \\
a \in J(L)}} r(a)=\sum_{\substack{a \leq x \\
a \in J(L)}} r(a)+\sum_{\substack{a \leq x \vee y \\
a \neq x \\
a \in J(L)}} r(a)+\sum_{\substack{a \leq x \wedge y \\
a \in J(L)}} r(a) \\
& =\tilde{r}(x)+\sum_{\substack{a \leq y \\
a \notin x \\
a \in J(L)}} r(a)+\sum_{\substack{a \leq x \wedge y \\
a \in J(L)}} r(a) \\
& =\tilde{r}(x)+\tilde{r}(y)
\end{aligned}
$$

- For $r \in \operatorname{Mod}(L, \mathbb{R}), a \in J(L)$ and $\lambda \in \mathbb{R}$ the function $r^{\uparrow a+\lambda}$ defined by

Constructing modular evaluations on distributive lattices
Let L be a distributive lattice.

$$
\tilde{r}: L \quad \rightarrow \quad \mathbb{R}
$$

- For $r \in \mathbb{R}^{J(L)}$ the $\quad x \mapsto \sum_{\substack{a \leq x \\ a \in J(L)}} r(a)$ is a modular evaluation.
- For $r \in \operatorname{Mod}(L, \mathbb{R})$, $a \in J(L)$ and $\lambda \in \mathbb{R}$ the function $r^{\uparrow a+\lambda}$ defined by

$$
\begin{aligned}
r^{\uparrow a+\lambda}: L & \rightarrow \mathbb{R} \\
x & \mapsto \begin{cases}r(x) & \text { if } a \not \pm x \\
r(x)+\lambda & \text { if } a \leq x\end{cases}
\end{aligned}
$$

- Any $r \in \mathbb{R}^{J(L)}$ extends to a modular evaluation $\hat{r} \in \operatorname{Mod}(L, \mathbb{R})$.

Constructing modular evaluations on distributive lattices

Let L be a distributive lattice.

$$
\tilde{r}: L \quad \rightarrow \quad \mathbb{R}
$$

- For $r \in \mathbb{R}^{J(L)}$ the $\quad x \mapsto \sum_{\substack{a \leq x \\ a \in J(L)}} r(a)$ is a modular evaluation.
- For $r \in \operatorname{Mod}(L, \mathbb{R})$, $a \in J(L)$ and $\lambda \in \mathbb{R}$ the function $r^{\uparrow a+\lambda}$ defined by

$$
\begin{aligned}
r^{\uparrow a+\lambda}: L & \rightarrow \mathbb{R} \\
x & \mapsto \begin{cases}r(x) & \text { if } a \not \pm x \\
r(x)+\lambda & \text { if } a \leq x\end{cases}
\end{aligned}
$$

- Any $r \in \mathbb{R}^{J(L)}$ extends to a modular evaluation $\hat{r} \in \operatorname{Mod}_{0}(L, \mathbb{R})$.

Constructing modular evaluations on distributive lattices

Let L be a distributive lattice.

$$
\tilde{r}: L \quad \rightarrow \quad \mathbb{R}
$$

- For $r \in \mathbb{R}^{J(L)}$ the $\quad x \mapsto \sum_{\substack{a \leq x \\ a \in J(L)}} r(a)$ is a modular evaluation.
- For $r \in \operatorname{Mod}(L, \mathbb{R})$, $a \in J(L)$ and $\lambda \in \mathbb{R}$ the function $r^{\uparrow a+\lambda}$ defined by

$$
\begin{aligned}
r^{\uparrow a+\lambda}: L & \rightarrow \mathbb{R} \\
x & \mapsto \begin{cases}r(x) & \text { if } a \not \not x x \\
r(x)+\lambda & \text { if } a \leq x\end{cases}
\end{aligned}
$$

- Any $r \in \mathbb{R}^{J(L)}$ extends to a modular evaluation $\hat{r} \in \operatorname{Mod}_{0}(L, \mathbb{R})$.

$$
\operatorname{md}_{0}(L)=|J(L)| \Longleftrightarrow L \text { is distributive. }
$$

Open Problem

Similar results for modular lattices?

Bridging quantitative and qualitative data analysis
Closure and kernel operators on a poset (P, \leq)
$c: P \rightarrow P$ is a closure operator : iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$

- $k: P \rightarrow P$ is a kernel operator :iff $k(x) \leq y \Longleftrightarrow k(x) \leq k(y)$

Submodular evaluations
$r: L \rightarrow \mathbb{R}$ is submodular iff $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$.
From submodular evaluations to closure operators
Let r be a submodular and isotone evaluation on L. Then

Bridging quantitative and qualitative data analysis
Closure and kernel operators on a poset (P, \leq)

- $c: P \rightarrow P$ is a closure operator :iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$

From submodular evaluations to closure operators Let r be a submodular and isotone evaluation on 1 . Then

Bridging quantitative and qualitative data analysis
Closure and kernel operators on a poset (P, \leq)

- $c: P \rightarrow P$ is a closure operator :iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$
- $k: P \rightarrow P$ is a kernel operator :iff $k(x) \leq y \Longleftrightarrow k(x) \leq k(y)$
\square
Submodular evaluations $r: L \rightarrow \mathbb{R}$ is submodular iff $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$. From submodular evaluations to closure operators Let r be a submodular and isotone evaluation on L. Then

Bridging quantitative and qualitative data analysis
Closure and kernel operators on a poset (P, \leq)

- c: $P \rightarrow P$ is a closure operator :iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$
- $k: P \rightarrow P$ is a kernel operator :iff $k(x) \leq y \Longleftrightarrow k(x) \leq k(y)$

Submodular evaluations

$r: L \rightarrow \mathbb{R}$ is submodular iff $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$.

Let r be a submodular and isotone evaluation on L. Then

Bridging quantitative and qualitative data analysis

Closure and kernel operators on a poset (P, \leq)

- $c: P \rightarrow P$ is a closure operator :iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$
- $k: P \rightarrow P$ is a kernel operator :iff $k(x) \leq y \Longleftrightarrow k(x) \leq k(y)$

Submodular evaluations
$r: L \rightarrow \mathbb{R}$ is submodular iff $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$.

From submodular evaluations to closure operators
Let r be a submodular and isotone evaluation on L. Then

Bridging quantitative and qualitative data analysis
Closure and kernel operators on a poset (P, \leq)

- c: $P \rightarrow P$ is a closure operator :iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$
- $k: P \rightarrow P$ is a kernel operator :iff $k(x) \leq y \Longleftrightarrow k(x) \leq k(y)$

Submodular evaluations

$r: L \rightarrow \mathbb{R}$ is submodular iff $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$.
From submodular evaluations to closure operators
Let r be a submodular and isotone evaluation on L. Then
(i) For each $x \in L$, the set $\{y \in L \mid y \geq x$ and $r(y)=r(x)\}$ has a greatest element (denoted $c_{r}(x)$).

Bridging quantitative and qualitative data analysis
Closure and kernel operators on a poset (P, \leq)

- c: $P \rightarrow P$ is a closure operator :iff $x \leq c(y) \Longleftrightarrow c(x) \leq c(y)$
- $k: P \rightarrow P$ is a kernel operator :iff $k(x) \leq y \Longleftrightarrow k(x) \leq k(y)$

Submodular evaluations

$r: L \rightarrow \mathbb{R}$ is submodular iff $r(x \vee y)+r(x \wedge y) \leq r(x)+r(y)$.
From submodular evaluations to closure operators
Let r be a submodular and isotone evaluation on L. Then
(i) For each $x \in L$, the set $\{y \in L \mid y \geq x$ and $r(y)=r(x)\}$ has a greatest element (denoted $c_{r}(x)$).
(ii) The assignment $x \mapsto c_{r}(x)$ defines a closure operator c_{r} on L.

Bridging quantitative and qualitative data analysis

$$
\begin{aligned}
& u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r} \\
& \circ \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \ni x \text {. Let } u, v \in \tilde{x}_{r} . \\
& \quad u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v) . \\
& r(u)=r(x)=r(v) \text { and } u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x) \text {. } \\
& r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x) . \\
& \\
& u \vee v \geq x \Longrightarrow r(u \vee v)=r(x) .
\end{aligned}
$$

Bridging quantitative and qualitative data analysis

$$
u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}
$$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.
- $r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x)$.

Bridging quantitative and qualitative data analysis

$$
u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}
$$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.
- $r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x)$.

Bridging quantitative and qualitative data analysis
$u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.

Bridging quantitative and qualitative data analysis

$$
u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}
$$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.
- $r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x)$.

Bridging quantitative and qualitative data analysis
$u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.
- $r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x)$.
- $u \vee v \geq x \Longrightarrow r(u \vee v)=r(x)$.

Bridging quantitative and qualitative data analysis

$$
\begin{aligned}
& u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r} \\
& \text { - } \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \ni x . \text { Let } u, v \in \tilde{x}_{r} . \\
& \text { - } u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v) . \\
& \text { - } r(u)=r(x)=r(v) \text { and } u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x) . \\
& \text { - } r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x) . \\
& \text { - } u \vee v \geq x \Longrightarrow r(u \vee v)=r(x)
\end{aligned}
$$

$x \mapsto c_{r}(x)$ is a closure operator on L.

Bridging quantitative and qualitative data analysis

$$
u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x \text { and } r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}
$$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.
- $r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x)$.
- $u \vee v \geq x \Longrightarrow r(u \vee v)=r(x)$.
$x \mapsto c_{r}(x)$ is a closure operator on L.
- $c_{r}(x) \leq c_{r}(y) \Longrightarrow x \leq c_{r}(x) \leq c_{r}(y)$.
\qquad
\square

Bridging quantitative and qualitative data analysis
$u, v \in \tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \Longrightarrow u \vee v \in \tilde{x}_{r}$

- $\tilde{x}_{r}:=\{y \in L \mid y \geq x$ and $r(y)=r(x)\} \ni x$. Let $u, v \in \tilde{x}_{r}$.
- $u, v \in \tilde{x}_{r} \Longrightarrow r(u)=r(v)$.
- $r(u)=r(x)=r(v)$ and $u, v \geq u \wedge v \geq x \Longrightarrow r(u \wedge v)=r(x)$.
- $r(u \vee v)+r(u \wedge v) \leq r(u)+r(v) \Longrightarrow r(u \vee v) \leq r(x)$.
- $u \vee v \geq x \Longrightarrow r(u \vee v)=r(x)$.
$x \mapsto c_{r}(x)$ is a closure operator on L.
- $c_{r}(x) \leq c_{r}(y) \Longrightarrow x \leq c_{r}(x) \leq c_{r}(y)$.

$$
\begin{aligned}
x \leq c_{r}(y) & \Longrightarrow x \leq c_{r}(x) \wedge c_{r}(y) \leq c_{r}(x) \\
& \Longrightarrow r(x)=r\left(c_{r}(x) \wedge c_{r}(y)\right)=r\left(c_{r}(x)\right) \\
& \Longrightarrow r(x)+r\left(c_{r}(x) \vee c_{r}(y)\right) \leq r(x)+r\left(c_{r}(y)\right) \\
& \Longrightarrow r\left(c_{r}(x) \vee c_{r}(y)\right)=r\left(c_{r}(y)\right)=r(y) \\
& \Longrightarrow c_{r}(x) \vee c_{r}(y) \leq c_{r}(y) \text { and } c_{r}(x) \leq c_{r}(y) .
\end{aligned}
$$

Bridging quantitative and qualitative data analysis
From closure operators back to submodular evaluations
(1) Let c be a closure operator on L. If $r: c(L) \rightarrow \mathbb{R}$ is strict isotone and submodular then $r \circ c$ is an isotone submodular evaluation on L.
(2) The closure operator $c_{r o c}$ generated by $r \circ c$ is equal to c.
(1) $r \circ c$ is isotone. Let $x, y \in L$.

$$
\begin{aligned}
r \circ c(x \vee y)+r \circ c(x \wedge y) & =r\left(c(x) \vee_{c L} c(y)\right)+r(c(x \wedge y)) \\
& \leq r\left(c(x) \vee_{c L} c(y)\right)+r(c(x) \wedge c(y)) \\
& \leq r(c(x))+r(c(y)) \\
& \leq r \circ c(x)+r \circ c(y)
\end{aligned}
$$

(2) $c_{r o c}(x):=\max \{y \in L \mid y \geq x$ and $r \circ c(y)=r \circ c(x)\}$

$$
=\max \{y \in L \mid y \geq x \text { and } c(y)=c(x)\}
$$

$$
=c(x)
$$

Bridging quantitative and qualitative data analysis
We still need a strict isotone and submodular evaluation $r: c(L) \rightarrow \mathbb{R}$

Bridging quantitative and qualitative data analysis
We still need a strict isotone and submodular evaluation $r: c(L) \rightarrow \mathbb{R}$
The function $\begin{aligned} s: L & \rightarrow \mathbb{R} \\ x & \mapsto 2^{h(L)}-2^{d_{L}(x)}\end{aligned}$ is strict isotone and submodular. Closure, kernel operators \leftrightarrow (isotone) sub--, supermodular evaluations
(i) For each submodular evaluation $r: L \rightarrow \mathbb{R}$ there is a closure operator
c_{r} on L such that $r=r \circ c_{r}$.
(ii) For each supermodular evaluation $r: L \rightarrow \mathbb{R}$ there is a kernel operator
k_{r} on L such that $r=r \circ \mathrm{k}_{r}$.
(i') For^{\prime} each closure operator c on L, there is a submodular evaluation
$r_{c}: L \rightarrow \mathbb{R}$ such that $c=c_{r_{c}}$.
(ii') For each kernel operator k on L, there is a supermodular evaluation
$r_{k}: L \rightarrow \mathbb{R}$ such that $k=\mathrm{k}_{r_{k}}$

Bridging quantitative and qualitative data analysis
We still need a strict isotone and submodular evaluation $r: c(L) \rightarrow \mathbb{R}$
The function $\begin{aligned} s: L & \rightarrow \mathbb{R} \\ x & \mapsto 2^{h(L)}-2^{d_{L}(x)}\end{aligned}$ is strict isotone and submodular.

Closure, kernel operators \leftrightarrow (isotone) sub-, supermodular evaluations
(i) For each submodular evaluation $r: L \rightarrow \mathbb{R}$ there is a closure operator c_{r} on L such that $r=r \circ \mathrm{c}_{r}$.
(ii) For each supermodular evaluation $r: L \rightarrow \mathbb{R}$ there is a kernel operator k_{r} on L such that $r=r \circ \mathrm{k}_{r}$.
(i') For each closure operator c on L, there is a submodular evaluation $r_{c}: L \rightarrow \mathbb{R}$ such that $c=c_{r_{c}}$.
(ii') For each kernel operator k on L, there is a supermodular evaluation $r_{k}: L \rightarrow \mathbb{R}$ such that $k=\mathrm{k}_{r_{k}}$

Formal Concept Analysis

- started in the eighties by Rudolf Wille,
- has established himself as own research field
- has been successfully used for conceptual clustering and rule generation, for Web mining, etc ...
- is based on the the formalization of the notion of concept
- Traditional philosophers considered a concept to be determined by its extent and its intent. The extent consists of all objects belonging to the concept while the intent is the set of all attributes shared by all objects of the concept.
- The concept hierarchy states that a concept is more general if it contains more objects, or equivalently, if it is determined by less attributes.
- A context or universe of discourse can be seen as a relation involving objects and attributes of interest.

Formal Concept Analysis

- A formal context is a triple $\mathbb{K}:=(G, M, \mathrm{I})$ such that $\mathrm{I} \subseteq G \times M$.
- $G: \equiv$ set of objects
- $g \mathrm{I} m: \Longleftrightarrow(g, m) \in \mathrm{I}$. $M: \equiv$ set of attributes. g has attribute m.
$A^{\prime}:=\{m \in M \mid \forall g \in A g \mathrm{I} m\} \quad$ and $\quad B^{\prime}:=\{g \in G \mid \forall m \in B g \mathrm{I} m\}$.
- A formal concept of \mathbb{K} is a pair (A, B) with $A^{\prime}=B$ and $B^{\prime}=A$.
- A is the extent and B the intent of the concept (A, B).
- $\mathfrak{B}(\mathbb{K}):=$ set of all formal concepts of \mathbb{K}.
- A concept (A, B) is a subconcept of a concept (C, D) if $A \subseteq C$ (or equivalently, $D \subseteq B$). write $(A, B) \leq(C, D)$.
- $c: X \mapsto X^{\prime \prime}$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$.
- $\operatorname{Ext}(\mathbb{K}):=c(\mathcal{P}(G)) \cong{ }^{d} c(\mathcal{P}(M))=: \operatorname{Int}(\mathbb{K})$.
- $(\mathfrak{B}(\mathbb{K}) ; \leq)$ is a complete lattice, called concept lattice of \mathbb{K}.

FCA: Reconstructing closures from measures on G or M

- Let $\mathbb{K}:=(G, M, I)$ be a formal context and $c_{\mathbb{K}}: 2^{G} \rightarrow 2^{G}, X \mapsto X^{\prime \prime}$ the corresponding a closure operator on 2^{G}.
- If P_{G} is a probability measure on $\operatorname{Ext}(\mathbb{K})=c_{\mathbb{K}}\left(2^{G}\right)$ then $P_{G} \circ c_{\mathbb{K}}$ is an isotone submodular function on 2^{G}
- If P_{G} is strict isotone on $\operatorname{Ext}(\mathbb{K})$, for example $P_{G}(X)=\frac{|X|}{|G|}$ (uniform) then $\mathrm{c}_{\mathbb{K}}$ can be "reconstructed" from $P_{G} \circ \mathrm{c}_{\mathbb{K}}$.
- For $X \subseteq G, c_{\mathbb{K}}(X)=\max \left\{A \mid X \subseteq A \subseteq G\right.$ and $\left.P_{G}(A)=P_{G}(X)\right\}$
$f: \mathfrak{B}(\mathbb{K}) \rightarrow \mathbb{R}$
$(A, B) \mapsto P_{G}(A)$ is isotone submodular on $\mathfrak{B}(\mathbb{K})$.
- For $N \subseteq M$, the map $\begin{aligned} c_{N}: \mathfrak{B}(\mathbb{K}) & \rightarrow \mathfrak{B}(\mathbb{K}) \\ (A, B) & \mapsto\left((B \cap N)^{\prime},(B \cap N)^{\prime \prime}\right)\end{aligned}$ is a closure operator on $\mathfrak{B}(\mathbb{K})$.
- Let P_{M} be probability measure on 2^{M}. Then $1-P_{M}$ is submodular on $\operatorname{Int}(\mathbb{K})^{d}$ and $\begin{aligned} g: \mathfrak{B}(\mathbb{K}) & \rightarrow \mathbb{R} \\ (A, B) & \mapsto 1-P_{M}\left((B \cap N)^{\prime \prime}\right)\end{aligned} \quad$ isotone and submodular on $\mathfrak{B}(\mathbb{K})$.
- If P_{M} is uniform, then c_{N} can be reconstructed from g.

