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Structures of opposition as a unifying framework

Structures of opposition
Square
Hexagon
Cube

Formal Concept Analysis
Rough Set Theory
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The square of oppositions

ContrariesA: ∀x p(x) E: ∀x ¬p(x)
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Another instance:
A: �p E: �¬p I: ♦p O: ♦¬p
where ♦p =def ¬�¬p
(with p 6= ⊥,>)

Prade (DISCo & IRIT) Structures FCA / RST 9 aprile 2014 3 / 31



Introduction Structures of Oppositions Formal Concept Analysis Conclusion and perspectives

The hexagon of opposition

A >

U 6=

< E

≤ O

Y=

I ≥

Figura: Hexagon induced by a complete preorder (Robert Blanché, 1953)

U = A ∨ E Y = I ∧O
Three squares (A. Sesmat, 1951)

Renewal of interest with the work of Jean-Yves Béziau
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Another hexagon

obligatory

regulated

forbidden

non obligatory

non regulated

permitted
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Why hexagons ?

A

A ∪ B

B

B ∪ C

C = (A ∪ C) ∩ (B ∪ C)

A ∪ C

Figura: Hexagon induced by a tri-partition (A,B,C)

Prade (DISCo & IRIT) Structures FCA / RST 9 aprile 2014 6 / 31



Introduction Structures of Oppositions Formal Concept Analysis Conclusion and perspectives

From square to cube

I: at least an X is an Y O: at least an X is an Y

A: all X are Y E: all X are Y
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Cube of opposition

i: at least an X est Y

I: at least an X is Y O: at least an X is Y

o: at least an X is Y

a: all X is Y

A: all X is Y E: all X is Y

e: all X est Y
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Piaget’s group

Klein’s group of logical transformations with 4
elements

logical formula φ = f (p,q, r , ...)

identity I(φ) = φ

negation N(φ) = ¬φ
reciprocation R(φ) = f (¬p,¬q,¬r , ...)
correlation C(φ) = ¬f (¬p,¬q,¬r , ...)
N = RC, R = NC, C = NR, et I = NRC

at work in the two diagonal rectangles AaOo and EeIi
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A Relation R and a Subset S
binary relation R 6= ∅ on X ×Y (one may have Y = X )

xR ={y ∈ Y |(x , y) ∈ R}
normalization assumption ∀x xR 6= ∅
we write xRy for (x , y) ∈ R, and ¬(xRy) for (x , y) 6∈ R

subset S ⊆ Y
It gives birth to the two subsets

R(S) = {x ∈ X |∃s ∈ S, xRs} = {x ∈ X | S ∩ xR 6= ∅}
R(S) = {x ∈ X | ∃s ∈ S, xRs}

and their complements

R(S) = {x ∈ X | ∀s ∈ S,¬(xRs)}
R(S) = {x ∈ X |∀s ∈ S,¬(xRs)} = {x ∈ X | xR ⊆ S}
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A square of opposition, as the square of modalities

I: R(S) O: R(S)

A: R(S) E: R(S)

- R(S) and R(S) are complements, as R(S) and R(S)
assuming the X-normalization condition ∀x , xR 6= ∅:
- R(S) ⊆ R(S), and R(S) ⊆ R(S)

- R(S) ∩ R(S) = ∅; one may have R(S) ∪ R(S) 6= Y
- R(S) ∪ R(S) = X ; one may have R(S) ∩ R(S) 6= ∅
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The complementary relation R

xRy iff ¬(xRy) R 6= ∅ (i.e., R 6= X × Y )
assume the X-normalization of R, i.e. ∀x ,∃y ¬(xRy)

We get 4 other subsets of X from R

R(S)={x ∈ X |∃s ∈ S,¬(xRs)}={x ∈ X |S∪xR 6= X}
R(S) = {x ∈ X | ∃s ∈ S,¬(xRs)}

and their complements

R(S) = {x ∈ X | ∀s 6∈ S, xRs}
R(S) = {x ∈ X |∀s ∈ S, xRs} = {x ∈ X | S ⊆ xR}
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The 8 subsets can be organized into a cube of oppositions

i: R(S)

I: R(S) O: R(S)

o: R(S)

a: R(S)

A: R(S) E: R(S)

e: R(S)

Figura: Cube of oppositions induced by a relation R and a subset S
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i: R(S)

I: R(S) O: R(S)

o: R(S)

a: R(S)

A: R(S) E: R(S)

e: R(S)

Figura: Top and bottom facets of the cube of oppositions
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A: R(S)

U: R(S) ∪ R(S)

E: R(S)

O: R(S)

Y: R(S) ∩ R(S)

I: R(S)

Figura: Hexagon associated with the front facet of the cube
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A: R(S)

R(S) ∪ R(S)

a: R(S)

i: R(S)

R(S) ∩ R(S)

I: R(S)

Figura: Hexagon induced by the left-hand side square
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(Generalized) formal concept analysis

relation R ⊆ X × Y = Obj × Prop formal context
R(x) the set of properties possessed by an object x , et
R−1(y) the set of objects having property y .
RΠ(S) = {x ∈ Obj |xR ∩ S 6= ∅} = ∪y∈SRy
set of objects having at least a property in S
RN(S) = {x ∈ Obj |xR ⊆ S} = ∩y 6∈SRy
set of objects having none property outside S
R∆(S) = {x ∈ Obj |xR ⊇ S} = ∩y∈SRy
set of objects having all the properties in S
R∇(S) = {x ∈ Obj |xR ∪ S 6= Prop} = ∪y 6∈SRy
set of objects to which at least a property outside S is
missing
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Example : RΠ({5,6}) = {a,b, c,d , f}

Objects satisfying at least 5 or 6

properties
1 2 3 4 5 6 7 8

a ⊗ ⊗ × ×
b ⊗ ⊗
c ⊗ × ×
d ⊗ ⊗ × ×
e ×
f ⊗ ⊗ ×
g × × × ×
h × × ×
i ×
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Example : RN({5,6}) = {b}

Objects satisfying 5 and 6 and no other property

properties
1 2 3 4 5 6 7 8

a × × × ×
b ⊗ ⊗
c × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×
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Example : R∆({5,6}) = {a,b,d , f}

Objects satisfying at least both 5 and 6

properties
1 2 3 4 5 6 7 8

a ⊗ ⊗ × ×
b ⊗ ⊗
c × × ×
d ⊗ ⊗ × ×
e ×
f ⊗ ⊗ ×
g × × × ×
h × × ×
i ×
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Example : R∇({5,6}) = {a,b, c,d ,e, f ,g,h, i}

Objects missing at least one property other than 5 and 6

properties
1 2 3 4 5 6 7 8

a × × ⊗ ⊗
b × ×
c × ⊗ ⊗
d × × ⊗ ⊗
e ⊗
f × × ⊗
g ⊗ ⊗ ⊗ ⊗
h ⊗ ⊗ ⊗
i ⊗
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The hexagon of formal concept analysis

RN(S)

RN(S) ∪ R∆(S)

R∆(S)

R∇(S)

RΠ(S) ∩ R∇(S)

RΠ(S)

RN(S) ∪ R∆(S) ⊆ RΠ(S) ∩ R∇(S)
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A well-known Galois Connection: formal concepts

Def. : A formal concept is a pair (T ,S) of extent and
intent
such that R∆(T ) = S and R−1∆(S) = T
(Ganter and Wille and Barbut and Montjardet)

This is equivalent to finding a pair of largest sets
(T ,S) such that T × S ⊆ R.
All objects in T have all properties in S, all
properties in S are satisfied by all objects in T .
R∇(T ) = S and R−1∇(S) = T if and only if (T ,S)
is a formal concept.
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Example

Formal concepts: ( {g, h}, {2, 3, 4});( {a, b, d, f}, {5, 6});({a, c, d}, {6, 7,
8}).

properties
1 2 3 4 5 6 7 8

a ⊕ ⊕� � �
b ⊕ ⊕
c � � �
d ⊕ ⊕� � �
e ×
f ⊕ ⊕ ×
g × ⊗ ⊗ ⊗
h ⊗ ⊗ ⊗
i ×

Prade (DISCo & IRIT) Structures FCA / RST 9 aprile 2014 24 / 31



Introduction Structures of Oppositions Formal Concept Analysis Conclusion and perspectives

Another correspondence: conjugated pairs

RΠ(T ) = S and R−1Π(S) = T ;

Conjugated pairs are independent subcontexts

R ⊆ (T × S) ∪ (T × S).
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Example

Formal subcontexts : ({g, h, i}, {1,2, 3, 4});( {a, b, c, d,e, f}, {5, 6, 7, 8})

properties
1 2 3 4 5 6 7 8

a � � � �
b � �
c � � �
d � � � �
e �
f � � �
g × × × ×
h × × ×
i ×
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Possibility theory

i)(weak) possibility measure
Π(A) = maxu∈A π(u)
Π(A ∪ B) = max(Π(A),Π(B))

ii) dual (strong) necessity measure
N(A) = minu 6∈A 1− π(u) = 1− Π(A)
N(A ∩ B) = min(N(A),N(B))

iii) (strong) possibility measure
∆(A) = minu∈A π(u)
∆(A ∪ B) = min(∆(A),∆(B))

iv) dual (weak) necessity measure
∇(A) = maxu 6∈A 1− π(u) = 1−∆(A)
∇(A ∩ B) = max(∇(A),∇(B))
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Boolean Posssibility theory

Let E ⊂ X be a non-empty proper subset of possible situations in a
larger set of states X .
Another subset (event) A is

potentially possible if A ∩ E 6= ∅ : Π(A) = 1(0 otherwise).
if x ∈ E then it is possibly in A.
actually possible if A ⊆ E : ∆(A) = 1(0 otherwise).
it is enough that x ∈ A to be sure x is possible.
actually necessary if E ⊆ A : N(A) = 1(0 otherwise).
if x ∈ E then it is surely in A.
potentially necessary if A ∪ E 6= S : ∇(A) = 1(0 otherwise).
if x 6∈ E then it is possibly not in A

One has max(N(A),∆(A)) ≤ min(Π(A),∇(A)):
only 7 Boolean 4-tuples (N(A),∆(A),Π(A),∇(A)) out of 16.
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Encoding the relative position of sets

There are 7 possible relative positions of E 6= ∅,S and A :

Position Π ∆ N ∇
A = E 0 0 0 0
A ⊂ E 0 0 0 1
E ⊂ A 1 0 0 0

Pure overlap 1 0 0 1
E ⊂ A 1 0 1 1
A ⊂ E 1 1 0 1
A = E 1 1 1 1

Tabella: Relative position of sets
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Possibilistic hexagon

RN(Y ) ∪ R∆(Y ) ⊆ RΠ(Y ) ∩ R∇(Y )

N

N ∨∆

∆

∇

Π ∧∇

Π

all lines express implications
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Cube of possibility theory

E:¬Π

O:¬N o: ¬∆

e: ¬∇

A:N

I:Π i:∇

a:∆

E:¬Π

O:¬N o: ¬∆

e: ¬∇

A:N

I:Π i:∇

a:∆

Prade (DISCo & IRIT) Structures FCA / RST 9 aprile 2014 31 / 31



Introduction Structures of Oppositions Formal Concept Analysis Conclusion and perspectives

Conclusion - 1

It can be shown that both RST (rough set theory) and FCA have
the same type of underlying structure: the cube of oppositions

We have pointed out how having in mind this structure may lead to
substantially enlarge the theoretical settings of both RST and FCA

This helped us to provide an organized view of the related
literature and to suggest new directions worth investigating

Such a structured view, which also includes possibility theory (and
modal logic), may contribute to the foundations of a basic
framework for information processing
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Conclusion - 2
square of oppositions closely related to the study
of syllogisms
a cube of oppositions
3 theories developed for 30 years
- for analyzing relations between objects and
properties
- for handling indiscernible objects, and
- for modeling epistemic uncertainty
have their roots in the square of oppositions
fuzzy relations
in formal concept analysis and rough sets
structures of opposition useful in argumentation
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