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Introduction

e reasoning about pieces of (uncertain) information

held by subgroups of agents

(p, A) “all agents in A are certain that p is true”

e not so much to try to take the best of the information

provided by sets of agents viewed as sources as 1n fusion

ratherto understand what claims a groupof agents supports

with what other groups they are in conflict, about what

e to distinguish the individual inconsistency of agents from

the global inconsistency of a group of agents
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Multiple-agent logic - Syntax

e pairs (p;, A;) p; proposition A; # () subset
of agents A; C ALL

e multiple-agent logic base = conjunction of such pairs
e (pVqgA),pVvr,B)F(qVvr,ANB))

e inconsistency of K: inc(K) =U{A|K (L, A)}

e inc(K) subset of the agents individually inconsistent

e one may have inc(K) = () even if K* is inconsistent
K* = {pi|l(pi, Ai) € K}

e Example K = {(p, B), (—p, B)}



Multiple-agent logic - Semantics

o (pi;Ai) N(pz) 2 Az

set necessity  N(p A ¢) = N(p) N N(q)
¢ N(p) — H(_'p) and H(p) — Uw: wkEp 7-‘-l('((*‘j)
o set-valued possibility distribution g (w) =

T{(pi,As)li=1,m} (w) = ﬂizl,m([p’i](w) U Kz))
pil(w) =ALLifwE p; ; [pi](w) = 0 otherwise

o K F(p A)iff Vw, mg (w) C 7T{<p,A)}(w)

o inc(K)=nN, mg(w)  inc(K) = () weaker than

Jw, T (w) = ALL: the agents are collectively consistent
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Standard possibilistic logic - Syntax

e pairs (p;, ;)  p; proposition  «; certainty level

e standard possibilistic base = conjunction of such pairs

e (pVg,a)(pVvr Bk (¢Vr min(a,s))

e inconsistency level of a base K:

inc(K) = max{a|K F (

Q)

o inc(K) = 0iff K" is consistent K* = {p;|(p;, ;) € K}

o K F (p,a)iff K! Fpand a > inc(K)



Standard possibilistic logic - Semantics

o (pi,cvi)  N(pi) > «
necessity N(p A ¢) = min(N(p), N(q))

e N(p) =1—1II(—p) and II(p) = max,,. yrp Tx(w)
e possibility distribution

WK(W) — T{(ps,;)|i=1,m} (w)

= IMIN;—1 max(jpi](w), 1 — O‘@')

pil(w) =1ifwE p; ; [pi](w) = 0 otherwise
o K F (p, Oz) 1t Vw, WK(w) < W{(pya)}(u))

o inc(K)=1-—max, mg(w)



Multiple-agent possibilistic logic. Syntax

e pairs (p;, ;/A;) p; prop., «; certainty level, A; subs.

agents

e Multiple-agent possibilistic logic base: conjunction of

such pairs

e (-pVqalA),(pVr,G/B)F (¢Vr,min(a,3)/AN B)

e inconsistency level of a base K:

inc(K) = U{a/A| K+ (

Ja/A)}

e inc(K) fuzzy subset of agents individually inconsistent



Multiple-agent possibilistic logic - Semantics

® (pi,i/A;) N(pi) 2 ai/A;
a;/A;i(a) = a;ifa; € Ajeta;/A;(a) =0sia; € A,
more generally (p;, U, @i j/Aij)
fuzzy set-valued necessity N(p A q¢) = N(p) N N(q)

¢ N(p> — H(_'p) and H(p) = U, w|=p7TK(w)

e inc(K') describes to what extent
different subsets of agents are 1nconsistent

to different degrees



Conclusion

e Multiple agent possibilistic logic
(A. Belhadi, D. Dubois, F. Khellat-Haned, H. Prade)
J. of Applied Non-Classical Logics, Dec. 2013

e cxtensions
at most the agents in A believe p
at least one agent in A believes p

generalized possibilistic logic
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Generalized possibilistic logic
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Possibilistic logic : epistemic semantics

Alternatively, we can consider satisfiability of a possibilistic formula by a possibility
distribution on €2

e For an epistemic state 7 : 7 = (p, ) if and only if N(p) > «
(this is known as “forcing”).

e The set of (meta-)models of (p, a) is denoted by Pi((p,«)) = {7 : 7 = (p, a)}.
o m ‘: Liftm ): (p7 Oé),V(p, Oé) € B: Pi(B) — ﬂ(p,oz)EB Pl((p7 Oé))
e The bridge between the two semantics:

Proposition : Pi(B) = {7 : 7(w) < mp(w),Vw € Q}

7 g 1s the least specific possibility distribution satisfying B.

Note that, while a possible world satisfies (p, «) to a degree, an epistemic state 7 satisfies
it or not.
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Beyond the conjunction connective : disjunction

e The conjunction of poslog formulas is captured by both semantics:

Pi((p,) A (4. 8)) = Pi((p, @) N Pi((q 8) = {mlm < min(m(y ), 7(q.)}-

e A disjunction of poslog formula is no longer a poslog formula, because

Pi((p, ) V (0, ) = {1] Mp.ay =7 0F g, > 7} = Pi((p, @) UPI((q, B))

no longer possesses a least specific element

e (p,a)V (q,a) semantically differs from (p V ¢, ) since
Pi((pV q,a)) = {7|m <max(m( o), T(q,a))} 2 Pi((p, @) UPi((q,a))

Only the epistemic semantics can account for disjunction of poslog formulas.
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Beyond the conjunction connective : negation

The negation —(p, ) of a poslog formula is no longer a poslog formula, because

Pi(~(p, ) = {7 £ 7y} = Pi(p.) D Pi((~p, ).

Again, —(p, «) has no ontic semantics since Pi(—(p, o)) has no greatest element.

At the epistemic semantic level, it 1s clear that

=((p, @) AN (g, 8)) = ~(p, @) V —(q, B)

To generalize poslog with disjunction and conjunction of poslog formulas one must

drop the minimal specificity semantics and adopt the epistemic semantics.
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Generalized possibilistic logic

e Syntax : Generalized possibilistic logic formulas are
— Atoms are pairs (p, ) where p is a propositional formula and « € L.
— A conjunction of formulas 1s a formula.
— A disjunction of formulas 1s a formula.
— The negation of a formula 1s a formula.
e Semantic inference :
if ® and ¥ are generalized poslog formulae, then ® = W if and only if
Pi(®) C Pi(V).
Byen = Viff Ngep,,, Pi(®) C Pi(¥)

e Inference rule : Modus ponens : &, —-® V ¥ - U,
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Possibilistic logic vs. generalised poslog : example

The difference between the formulas (—p V ¢, «) and —(p, @) V (g, @), a > 0, in the
presence of (p, a) affects inferences one may draw from them

o (pVgq,a);(p,a) (¢g,a)and (—pV q,a); (=g, a) = (=p,a) hold ( N(—p) > ).

e ~(p,a)V (g, a);(p,a)F (g,a) still holds
but =(p, @) V (¢, @); (mg, @) F =(p, ) only (N (p) < o).

Besides,

= (-pVg,a) = ((p,a) = (g,a) (=-(-pVqg,a)V=(p,a)V(q,a)) holds:
it just says: if N(—pV ¢q) > aand N(p) > « then N(q) > «...

This is a weighted extension of axiom K.
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Syntax for weighted epistemic formulas

A classical propositional language £

Let A = {0, +, %, ...,1}, where k € N\ {0}, the set of considered certainty levels

Idea encapsulate each formula « of £ in a valued modality denoted N, («),a > 0.
possibility: II,(—a) := = Ny(a),a+b=1— 1.
e N,(«a) encodes constraint N ([a]) > a for a > 0 : previously denoted (o, a)
e I, () encodes constraint II(|«]) > b for b > 0

e —N,(a) thus encodes II([-a]) > 1 — a, then II([-a]) > 1 —a + 1, iLe.
Hl—a-l—% (_'CV)
e we need at least 3 certainty levels (£ > 2) in order to be able to distinguish between

- N1 () and IT; (—c).
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LIIG : Axioms

o (LP)
o (K): No(a— ) = (Nala) = Na(B));

e (N): Ni(a),Vatelquetrp a;
e (D): Ny(a) — II1(a),Va > 0;
o (AF): Ny (a) = Ny, (), sia; > as.

Inference rule: (MP) {¢,®» — ¥} F 9.

One recover the possibilistic logic modus ponens and the hybrid rule

® {Ny (), Ng,(ax — B)} I Nmin(al,az)(ﬁ)
o {Il,, (), Nyg,(a— B)} F1I,, (B)sias > 1 —ay
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The set of models of a formula ¢ in L1IG is a set of possibility distributions

Semantics

The satisfaction of formulas in LIIG by possibility distributions is defined recursively:
o ™= Ny(a),iff N([a|) = inf,pq 1 — 7(w) > a,Va € L.
o T = ¢, iff m £ ¢.
e TEANY,iff T =¢andw = 9.

Let B be a base, the semantical inference B = ¢ means :

vV, if T =,V € Bthen 7 = ¢.
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Compleness

Compleness Theorem Bting ¢ < B FErnc ¢.
e As in propositional logic, LIIG is sound and complete for its classical interpretations

e A propositional interpretation of the language LIIG
v:{Ny(a),a € L;a e A\ {0}} — {0, 1} that satisfies (AF) is a set function:

gv(la]) = max{a : v(N,(a)) = 1}.

e If v satisfies K, N, D then ¢, (V) =1, ¢,(0) = 0 and
gu ([ A B]) = min(gy ([, g, ([8])).

® (g, 1s a necessity measure based on a unique possibility distribution 7.

Thus classical interpretations of LIIG are in a one-to-one correspondence with the
possibility distributions.
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