A Review - The Exercices

Esko Turunen

April 10, 2014
1° Calculate Łukasiewicz product, sum, implication and negation for $a=0.9, b=0.8$.

Solution.
$0.9 \odot 0.8=\max \{0.9+0.8-1,0\}=0.7$
$0.9 \oplus 0.8=\min \{0.9+0.8,1\}=1$
$0.9^{*}=1-0.9=0.1,0.8^{*}=1-0.8=0.2$
$0.9 \rightarrow 0.8=\min \{1-0.9+0.8,1\}=0.9$
2° Prove that De Morgan law $a \odot b=\left(a^{*} \oplus b^{*}\right)^{*}$ holds for all $a, b \in[0,1]$.

Solution.
$\left(a^{*} \oplus b^{*}\right)^{*}=1-\min \{1-a+1-b, 1\}=$
$\max \{1-1+a-1+b, 0\}=a \odot b$
3° Study the following generalized syllogism.
Many mushrooms are not tasty.
Almost-all mushrooms are edible natural issues.
Some edible natural issue are not tasty.
a) To which Figure does it belong and b) is it valid?

Solution.

$$
\begin{aligned}
& \text { MP - Many not }=G \\
& \text { MS - Almost all }=P \\
& \hline S P-\text { Some not }=O
\end{aligned}
$$

(a) The Figure is III, the syllogism is GPO-III (b) which is a valid syllogism.
4° Let the truth value set an MV-algebra. Show that

$$
(\operatorname{Ax.12)} \quad[\alpha \text { or }(\operatorname{not} \alpha \text { and } \beta)] \operatorname{imp}[(\alpha \operatorname{imp} \beta) \operatorname{imp} \beta],
$$

where α, β are wffs obtain value $\mathbf{1}$ in all valuations.
Solution.
The claim is true iff $a \oplus\left(a^{*} \odot b\right) \leq(a \rightarrow b) \rightarrow b$ in any
MV-algebra; this is the case as

$$
\begin{aligned}
(a \rightarrow b) \rightarrow b & =a \vee b \\
& =b \vee a \\
& =(b \rightarrow a) \rightarrow a \\
& =\left(b^{*} \oplus a\right)^{*} \oplus a \\
& =a \oplus\left(b^{*} \oplus a\right)^{*} \\
& =a \oplus\left(b^{* *} \odot a^{*}\right) \\
& =a \oplus\left(b \odot a^{*}\right) \\
& =a \oplus\left(a^{*} \odot b\right)
\end{aligned}
$$

5° Let the truth value set an MV-algebra. Prove that Generalized Modus Tollendo Tollens

$$
\frac{\operatorname{not} \beta, \alpha \operatorname{imp} \beta}{\operatorname{not} \alpha}, \frac{a, b}{a \odot b}
$$

is a fuzzy rule of inference in Pavelka's sense.
Solution. $r^{\text {sem }}$ is obviously isotone: is $b \leq c$ then $a \odot b \leq a \odot c$. To see that soundness holds we remark that
(i) $(a \rightarrow b) \odot(b \rightarrow c) \leq a \rightarrow c$ holds in MV-algebras. Now

$$
\begin{aligned}
r^{\text {sem }}(v(\operatorname{not} \beta), v(\alpha \operatorname{imp} \beta)) & =v(\operatorname{not} \beta) \odot v(\alpha \operatorname{imp} \beta) \\
& =(v(\alpha) \rightarrow v(\beta)) \odot(v(\beta) \rightarrow 0) \\
& \leq v(\alpha) \rightarrow 0 \\
& =v(\operatorname{not} \alpha) \\
& =v\left(r^{\text {syn }}(\operatorname{not} \beta, \alpha \operatorname{imp} \beta)\right) .
\end{aligned}
$$

6° Assume α and β are associated with evidence couples $\langle 0.9,0.2\rangle$ and $\langle 0.6,0.1\rangle$. What are the corresponding evidence matrices of α, β, not $\alpha, \operatorname{not} \beta, \alpha$ and β, α or β and $\alpha \operatorname{imp} \beta$?

Solution.

$$
\begin{aligned}
& v(\alpha)=\left[\begin{array}{ll}
0.9^{*} \wedge 0.2 & 0.9 \odot 0.2 \\
0.9^{*} \odot 0.2^{*} & 0.9 \wedge 0.2^{*}
\end{array}\right]=\left[\begin{array}{ll}
0.1 & 0.1 \\
0 & 0.8
\end{array}\right] \\
& v(\operatorname{not} \alpha)=\left[\begin{array}{ll}
0.8 & 0 \\
0.1 & 0.1
\end{array}\right] \\
& v(\beta)=\left[\begin{array}{ll}
0.6^{*} \wedge 0.1 & 0.6 \odot 0.1 \\
0.6^{*} \odot 0.1^{*} & 0.6 \wedge 0.1^{*}
\end{array}\right]=\left[\begin{array}{ll}
0.1 & 0 \\
0.3 & 0.6
\end{array}\right] \\
& v(\operatorname{not} \beta)=\left[\begin{array}{ll}
0.6 & 0.3 \\
0 & 0.1
\end{array}\right]
\end{aligned}
$$

For $v(\alpha$ or $\beta)$ it is easier to calculate first the evidence couple $\langle 0.9,0.2\rangle \oplus\langle 0.6,0.1\rangle=\langle 0.9 \oplus 0.6,0.2 \odot 0.1\rangle=\langle 1,0\rangle$.
Therefore $v(\alpha$ or $\beta)=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
For $v(\alpha$ and $\beta)$ we calculate the evidence couple $\langle 0.9,0.2\rangle \odot\langle 0.6,0.1\rangle=\langle 0.9 \odot 0.6,0.2 \oplus 0.1\rangle=\langle 0.5,0.3\rangle$.
Therefore

$$
v(\alpha \text { and } \beta)=\left[\begin{array}{ll}
0.5^{*} \wedge 0.3 & 0.5 \odot 0.3^{*} \\
0.5^{*} \odot 0.3^{*} & 0.5 \wedge 0.3^{*}
\end{array}\right]=\left[\begin{array}{ll}
0.3 & 0 \\
0.2 & 0.5
\end{array}\right]
$$

For $v(\alpha \operatorname{imp} \beta)$ we calculate the evidence couple $\langle 0.9,0.2\rangle \rightarrow\langle 0.6,0.1\rangle=\left\langle 0.9 \rightarrow 0.6,(0.1 \rightarrow 0.2)^{*}\right\rangle=\langle 0.7,0\rangle$.
Therefore

$$
v(\alpha \operatorname{imp} \beta)=\left[\begin{array}{ll}
0.7^{*} \wedge 0 & 0.7 \odot 0 \\
0.7^{*} \odot 0^{*} & 0.7 \wedge 0^{*}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0.3 & 0.7
\end{array}\right]
$$

To calculate the evidence matrix for (α equiv β) we first have to calculate the evidence couple for $(\beta \operatorname{imp} \alpha)$, which is $\langle 0.6,0.1\rangle \rightarrow\langle 0.9,0.2\rangle=\left\langle 0.6 \rightarrow 0.9,(0.2 \rightarrow 0.1)^{*}\right\rangle=\langle 1,0.1\rangle$.
Since $(\alpha$ equiv $\beta)=(\alpha \operatorname{imp} \beta) \operatorname{and}(\beta$ imp $\alpha)$, the corresponding evidence matrix is defined by the evidence couple $\langle 0.7,0\rangle \wedge\langle 1,0.1\rangle$
$=\langle 0.7 \wedge 1,0 \vee 0.1\rangle=\langle 0.7,0.1\rangle$.
Therefore

$$
v(\alpha \operatorname{imp} \beta)=\left[\begin{array}{ll}
0.7^{*} \wedge 0.1 & 0.7 \odot 0.1 \\
0.7^{*} \odot 0.1^{*} & 0.7 \wedge 0.1^{*}
\end{array}\right]=\left[\begin{array}{ll}
0.1 & 0 \\
0.2 & 0.7
\end{array}\right]
$$

