CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION: ACHIEVEMENTS AND CHALLENGES

Vladyslav C. Usenko

Department of Optics, Palacký University, Olomouc, Czech Republic

INVESTMENTS IN EDUCATION DEVELOPMENT

Outline

- Classical cryptography, motivation
- Discrete vs Continuous variables
- Continuous-variable quantum key distribution
- Security analysis
- Optimized protocol
- Resources and information leakage
- Challenges
- Summary

<u>Practical motivation</u>: necessity in secure communication between two trusted parties (Alice and Bob)

<u>Practical motivation</u>: necessity in secure communication between two trusted parties (Alice and Bob) Eve tries to eavesdrop

CLASSICAL CRYPTOGRAPHY

Asymmetrical schemes (RSA, DSA); symmetrical (DES, AES, RC4, MD5), mixed.

<u>Problem:</u> all methods are based on the mathematical complexity, thus are potentially vulnerable (due to progress in mathematical methods or quantum computation)

CLASSICAL CRYPTOGRAPHY

Asymmetrical schemes (RSA, DSA); symmetrical (DES, AES, RC4, MD5), mixed.

<u>Problem:</u> all methods are based on the mathematical complexity, thus are potentially vulnerable (due to progress in mathematical methods or quantum computation)

<u>Alternative:</u> **one-time pad** (*Vernam, 1919*) - the only crypto-system mathematically proven secure (*Shannon, 1949*)

Problem: both parties have to share a secure key

CLASSICAL CRYPTOGRAPHY

Asymmetrical schemes (RSA, DSA); symmetrical (DES, AES, RC4, MD5), mixed.

<u>Problem:</u> all methods are based on the mathematical complexity, thus are potentially vulnerable (due to progress in mathematical methods or quantum computation)

<u>Alternative:</u> **one-time pad** (*Vernam, 1919*) - the only crypto-system mathematically proven secure (*Shannon, 1949*)

Problem: both parties have to share a secure key

Solution: Quantum key distribution (QKD)

Quantum key distribution

"Fundamental" motivation:

- Secrecy as a merit to test quantum properties (*H. J. Kimble, Nature 453, 1023-1030, 2008*)
- Inspiring to investigate the role of nonclassicality, coherence/decoherence, noise etc.

Quantum bit (qubit): two-level quantum system.

Superposition of the basis states:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
$$|\alpha|^2 + |\beta|^2 = 1$$

Bloch (Poincare) sphere

Quantum bit (qubit): two-level quantum system.

Superposition of the basis states:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$
$$|\alpha|^2 + |\beta|^2 = 1$$

No-cloning theorem.

Unknown quantum state cannot be perfectly cloned!

[W. Wootters and W. Zurek, Nature 299, 802 (1982)]

$$U |\mathbf{s}_{1}\rangle \otimes |\mathbf{b}\rangle \otimes |\mathbf{0}\rangle = |\mathbf{s}_{1}\rangle \otimes |\mathbf{s}_{1}\rangle \otimes |\mathbf{f}_{1}\rangle$$

$$U |\mathbf{s}_{2}\rangle \otimes |\mathbf{b}\rangle \otimes |\mathbf{0}\rangle = |\mathbf{s}_{2}\rangle \otimes |\mathbf{s}_{2}\rangle \otimes |\mathbf{f}_{2}\rangle$$

$$U(\alpha |\mathbf{s}_{1}\rangle + \beta |\mathbf{s}_{2}\rangle) \otimes |\mathbf{b}\rangle \otimes |\mathbf{0}\rangle) = (\alpha |\mathbf{s}_{1}\rangle + \beta |\mathbf{s}_{2}\rangle) \otimes (\alpha |\mathbf{s}_{1}\rangle + \beta |\mathbf{s}_{2}\rangle) \otimes |\mathbf{f}_{a}\rangle$$

$$U(\alpha |\mathbf{s}_{1}\rangle + \beta |\mathbf{s}_{2}\rangle) = \alpha U |\mathbf{s}_{1}\rangle + \beta U |\mathbf{s}_{2}\rangle \rightarrow |\mathbf{f}_{a}\rangle = 0$$

Bloch (Poincare) sphere

Quantum bit (qubit): two-level quantum system.

Superposition of the basis states:

 $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

$$|\alpha|^2 + |\beta|^2 = 1$$

Bloch (Poincare) sphere

No-cloning theorem.

However, imperfect cloning and quantum teleportation are possible.

Entangled qubits. Bell states:

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |0\rangle_{B} + |1\rangle_{A} \otimes |1\rangle_{B}) \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |0\rangle_{B} - |1\rangle_{A} \otimes |1\rangle_{B}) \\ |\Psi^{+}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |1\rangle_{B} + |1\rangle_{A} \otimes |0\rangle_{B}) \\ |\Psi^{-}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |1\rangle_{B} - |1\rangle_{A} \otimes |0\rangle_{B}) \end{split}$$

Schrödinger's cat

Entangled qubits. Bell states:

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |0\rangle_{B} + |1\rangle_{A} \otimes |1\rangle_{B}) \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |0\rangle_{B} - |1\rangle_{A} \otimes |1\rangle_{B}) \\ |\Psi^{+}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |1\rangle_{B} + |1\rangle_{A} \otimes |0\rangle_{B}) \\ |\Psi^{-}\rangle &= \frac{1}{\sqrt{2}} (|0\rangle_{A} \otimes |1\rangle_{B} - |1\rangle_{A} \otimes |0\rangle_{B}) \end{split}$$

Schrödinger's cat

Bell inequalities. If local realism holds, then:

$$S(\mathbf{a}, \mathbf{b}, \mathbf{a}', \mathbf{b}') := |E(\mathbf{a}, \mathbf{b}) - E(\mathbf{a}, \mathbf{b}')| + |E(\mathbf{a}', \mathbf{b}') + E(\mathbf{a}', \mathbf{b})| \le 2$$

However, for a singlet state $S = 2\sqrt{2}$

[J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge UP, Cambridge, 1987)]

MUNI'2013

Quantum information: applications

- Fundamental tests
- Quantum computing
- Super-dense coding
- Quantum teleportation
- Quantum key distribution

Quantum key distribution: BB84

- Alice generates a key (random bit string)
- Alice randomly chooses the basis and prepares a state
- Bob randomly chooses the basis and measures the state
- Key sifting (bases reconciliation)
- Error correction
- Privacy amplification

[C. H. Bennett and G. Brassard, in Proceedings of the International Conference on Computer Systems and Signal Processing (Bangalore, India, 1984), pp. 175–179]

Quantum key distribution: BB84

Security: No-cloning, measurement disturbance, Eve introduces errors.

Information-theoretical analysis

Classical (Shannon) mutual information: I(X;Y) = H(X) - H(X|Y)

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$
$$H(X|Y) = -\sum_{x,y} p(x,y) \log p(x|y) = H(X,Y) - H(Y)$$

Csiszar-Korner theorem, lower bound on the secure key rate:

$$S(\alpha, \beta || \epsilon) \geq \max\{I(\alpha, \beta) - I(\alpha, \epsilon), I(\alpha, \beta) - I(\beta, \epsilon)\}$$

i.e. Alice (or Bob) needs to have more information than Eve!

[Csiszar, I. and Korner, J., 1978, "Broadcast channels with confidential messages", IEEE Transactions on Information Theory, Vol. IT-24, 339-348.]

Quantum key distribution: state-of-art

Commercial realizations: ~100 km, ~1 kbps

Quantum key distribution: state-of-art

Commercial realizations: ~100 km, ~1 kbps

<u>Conceptual problems:</u> simulation of fermionic statistics with bosons.

Practical problems: absence of effective single-photon sources VS high detectors "dark count" rates

<u>Implementation issues:</u> photons are [almost] never single, detectors are not exactly single-photon detectors. Leads to "Quantum hacking" (Makarov et al.), realistic security analysis (e.g. "squashing model" by Lutkenhaus) etc.

Quantum key distribution: state-of-art

Commercial realizations: ~100 km, ~1 kbps

<u>Conceptual problems:</u> simulation of fermionic statistics with bosons.

Practical problems: absence of effective single-photon sources VS high detectors "dark count" rates

<u>Implementation issues:</u> photons are [almost] never single, detectors are not exactly single-photon detectors. Leads to "Quantum hacking" (Makarov et al.), realistic security analysis (e.g. "squashing model" by Lutkenhaus) etc.

<u>Perspectives:</u> transition from single particles to multi-particle states (continuous variables coding).

Discrete variables (DV)	Continuous variables (CV)
-------------------------	---------------------------

Discrete variables (DV)	Continuous variables (CV)	
Quantum states:		
single qubits, entangled qubit pairs	infinite-dimensional eigenvalues spectrum	

Discrete variables (DV)	Continuous variables (CV)	
Quantum states:		
single qubits, entangled qubit pairs	infinite-dimensional eigenvalues spectrum	
Optical implementation:		
single photons (faint pulses), photon pairs (SPDC)	intense pulses, entangled beams (OPA, OPO)	

Discrete variables (DV)	Continuous variables (CV)	
Quantum states:		
single qubits, entangled qubit pairs	infinite-dimensional eigenvalues spectrum	
Optical implementation:		
single photons (faint pulses), photon pairs (SPDC)	intense pulses, entangled beams (OPA, OPO)	
Performance:		
work "sometimes" but "perfectly"	work "always" but never perfectly	

Braunstein and van Loock, Rev. Mod. Phys. **77**. 513 (2004); Weedbrook et al., Rev. Mod. Phys. **84**, 621 (2012)

Discrete variables (DV)	Continuous variables (CV)	
Quantum states:		
single qubits, entangled qubit pairs	infinite-dimensional eigenvalues spectrum	
Optical implementation:		
single photons (faint pulses), photon pairs (SPDC)	intense pulses, entangled beams (OPA, OPO)	
Performance:		
work "sometimes" but "perfectly"	work "always" but never perfectly	

Our task: analysis and optimization of CV QIP in realistic conditions

Canonical infinite-dimensional quantum system, defined on a Hilbert space: $\mathscr{H} = |\bigotimes \mathscr{H}_i$

Bosonic commutation relations:

$$[a_k, a_{k'}] = [a_k^{\dagger}, a_{k'}^{\dagger}] = 0, \quad [a_k, a_{k'}^{\dagger}] = \delta_{kk'}$$

Canonical infinite-dimensional quantum system, defined on a Hilbert space: $\mathscr{H} = |\bigotimes^{N} \mathscr{H}_{i}$

Bosonic commutation relations:

$$[a_k, a_{k'}] = [a_k^{\dagger}, a_{k'}^{\dagger}] = 0, \quad [a_k, a_{k'}^{\dagger}] = \delta_{kk'}$$

Field Hamiltonian: $H = \sum_{k} \hbar \omega_{k} (a_{k}^{\dagger} a_{k} + \frac{1}{2})$ <u>Fock states</u>: $|n_{k}\rangle$ eigenstates of photon-number operator

$$a_k^{\dagger}a_k | n_k \rangle = n_k | n_k \rangle$$

Canonical infinite-dimensional quantum system, defined on a Hilbert space: $\mathscr{H} = |\bigotimes \mathscr{H}_i$

Bosonic commutation relations:

$$[a_k, a_{k'}] = [a_k^{\dagger}, a_{k'}^{\dagger}] = 0, \quad [a_k, a_{k'}^{\dagger}] = \delta_{kk'}$$

Field Hamiltonian: $H = \sum_{k} \hbar \omega_{k} (a_{k}^{\dagger} a_{k} + \frac{1}{2})$ <u>Fock states</u>: $|n_{k}\rangle$ eigenstates of photon-number operator

$$a_k^* a_k | n_k \rangle = n_k | n_k \rangle$$

<u>Coherent states</u> - eigenstates of annihilation operator: $a |\alpha\rangle = \alpha |\alpha\rangle$

$$|\alpha\rangle = \mathrm{e}^{-|\alpha|^{2}/2} \sum \frac{\alpha^{n}}{(n!)^{1/2}} |n\rangle$$

In the Fock states basis:

<u>Field quadratures</u>: analogue of the position and momentum operators of a particle:

$$x = a^+ + a, \ p = i(a^+ - a)$$

$$\hat{r} = (\hat{r}_1, \dots, \hat{r}_{2N})^T = (\hat{x}_1, \hat{p}_1, \hat{x}_2, \hat{p}_2, \dots, \hat{x}_N, \hat{x}_N)^T$$

Commutation relations: [x, p] = 2i

Field quadratures: analogue of the position and momentum operators of a particle:

$$x = a^+ + a, \ p = i(a^+ - a)$$

$$\hat{r} = (\hat{r}_1, \dots, \hat{r}_{2N})^T = (\hat{x}_1, \hat{p}_1, \hat{x}_2, \hat{p}_2, \dots, \hat{x}_N, \hat{x}_N)^T$$

Commutation relations: [x, p] = 2i

Uncertainty: $\Delta A = \langle A^2 \rangle - \langle A \rangle^2$

Heisenberg relation: $\Delta x \Delta p \ge 1$

For coherent states: $\Delta x = \Delta p = 1$

Phase-space representation.

Characteristic function: $\chi_{\rho}(\xi) = \text{Tr}[\rho D_{\xi}]$, $D_{\xi} = D(\xi^{\star}) = e^{-i\xi^T \hat{r}}$

State density matrix $\rho =$

$$\rho = \frac{1}{(2\pi)^N} \int d^{2N} \xi \chi_\rho(-\xi) D_\xi$$

Wigner function: Fourier transform $W(\xi) = \frac{1}{(2\pi)^N} \int d^{2N} \zeta e^{i\xi^T \Omega \zeta} \chi_{\rho}(\zeta)$ of the characteristic function.

Gaussian states:

characteristic function / Wigner function is Gaussian

Gaussian states:

characteristic function / Wigner function is Gaussian

Covariance matrix: Explicitly describes Gaussian states

$$\gamma_{ij} = \langle r_i r_j \rangle - \langle r_i \rangle \langle r_j \rangle$$

Generalized Heisenberg uncertainty principle: $\gamma + i\Omega \ge 0$

$$\Omega = \bigoplus_{i=1}^{N} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} - \text{symplectic form}$$

Bosonic commutation relations:

 $[\hat{r}_k, \hat{r}_l] = i\Omega_{kl}$

Coherent state

Vacuum state

<u>Squeezed states</u>: quadrature uncertainty is less than shotnoise limit

X-squeezed states: vacuum (left) and coherent (right)

<u>Squeezed states</u>: quadrature uncertainty is less than shotnoise limit

P-squeezed states: vacuum (left) and coherent (right)

<u>Squeezed states</u>: quadrature uncertainty is less than shotnoise limit

Achievements: **-10 dB** (i.e. 10% SNU) [Eberle et al., Optics Express 21, 11546-11553 (2013)]
Gaussian CV Quantum Information

<u>Entanglement</u> measure: logarithmic negativity $E_{LN}(\gamma) = max[0, -ln(\tilde{\lambda}_{-})]$

Quantifies to which extent PT covariance matrix fails to be positive; Is the upper bound on the distillable Gaussian entanglement.

 $\tilde{\lambda}_{-}$ - smallest symplectic eigenvalue of the PT covariance matrix (smallest of eigenvalues of $|i\Omega\tilde{\gamma}|$

[G. Vidal, R. F. Werner, PRA 65, 032314 (2002), also Adesso, Paris]

Other measures: entanglement of formation, distillable entanglement (require optimization), entropy of reduced states (for pure states)

<u>Purity</u> (Gaussian mixedness): $p(\gamma_{AB}) = 1/\sqrt{Det\gamma_{AB}}$

Gaussian CV Quantum Information

Protocols:

- Quantum teleportation [Braunstein, Kimble 1998; Ralph, Lam 1998; Vaidman 1994; Furusawa et al., 1998)
- Cloning [Cerf et al. 2000]
- Quantum computation [Zhang, Braunstein 2006, work in progress for Gaussian cluster states]
- Bell inequality violation [Polkinghorne, Ralph 1999]
- Quantum key distribution

Coherent states-based protocol: Laser source, modulation

F. Grosshans and *P.* Grangier. *PRL* 88, 057902 (2002); *F.* Grosshans et al., Nature 421, 238 (2003)

Coherent states-based protocol:

•Alice generates two Gaussian random variables {**a**,**b**}

•Alice prepares a coherent state,

displaced by {**a**,**b**}

•Bob measures a quadrature, obtaining **a** or **b**

Bases reconciliation

•Error correction, privacy amplification

Coherent states-based protocol:

•Alice generates two Gaussian random variables {**a**,**b**}

•Alice prepares a coherent state,

displaced by {**a**,**b**}

•Bob measures a quadrature, obtaining **a** or **b**

Bases reconciliation

•Error correction, privacy amplification

Coherent states-based protocol:

•Alice generates two Gaussian random variables {**a**,**b**}

•Alice prepares a coherent state,

- displaced by {**a**,**b**}
- •Bob measures a quadrature, obtaining **a** or **b**
- Bases reconciliation
- •Error correction, privacy amplification

Coherent states-based protocol:

•Alice generates two Gaussian random variables {**a**,**b**}

•Alice prepares a coherent state,

- displaced by {**a**,**b**}
- •Bob measures a quadrature, obtaining **a** or **b**
- Bases reconciliation
- •Error correction, privacy amplification

Mixture

Coherent states-based protocol:

•Alice generates two Gaussian random variables {**a**,**b**}

•Alice prepares a coherent state,

displaced by {**a**,**b**}

•Bob measures a quadrature, obtaining **a** or **b**

Bases reconciliation

•Error correction, privacy amplification

Coherent states-based protocol:

Achievements: 25 km, 2 kbps *J. Lodewyck et al., PRA 76, 042305 (2007)*

Recent: 80 km P.Jouguet et al., arXiv:1210.6216 (Nature Photonics 2013)

Mixture

Squeezed states-based protocol:

- Alice generates a Gaussian random variable a
- Alice prepares a squeezed state, displaced by a
- Bob measures a quadrature
- Bases reconciliation
- Error correction, privacy amplification

Squeezed states-based protocol:

- Alice generates a Gaussian random variable a
- Alice prepares a squeezed state, displaced by a
- Bob measures a quadrature
- Bases reconciliation
- Error correction, privacy amplification

Squeezed states-based protocol:

- Alice generates a Gaussian random variable a
- Alice prepares a squeezed state, displaced by a
- Bob measures a quadrature
- Bases reconciliation
- Error correction, privacy amplification

Squeezed states-based protocol:

- Alice generates a Gaussian random variable a
- Alice prepares a squeezed state, displaced by a
- Bob measures a quadrature
- Bases reconciliation
- Error correction, privacy amplification

Mixture

Squeezed states-based protocol:

- Alice generates a Gaussian random variable a
- Alice prepares a squeezed state, displaced by a
- Bob measures a quadrature
- Bases reconciliation
- Error correction, privacy amplification

Two-mode squeezed vacuum state:

$$|x\rangle\rangle = \sqrt{(1-x^2)}\sum_n x^n |n,n\rangle\rangle$$

 $x\ \in\ \mathbb{C}$ and $0\ \leq\ |x|\ \leq\ 1$

Before homodyne measurement

After homodyne measurement

After heterodyne measurement

Advantages:

- Complete theoretical description of coherent/squeezed protocol
- Potential scalability

CV QKD: security

Individual attacks. Key rate: $I_i = I_{AB} - I_{BE}$

Eve Ancillae

 $S(\rho) = -Tr \rho \log \rho$

CV QKD: security

Individual attacks. Key rate: $I_i = I_{AB} - I_{BE}$

available to Eve, calculated through von Neumann (quantum) entropy of the respective states:

$$\chi_{BE} = S_E - \int P(B) S_{E|B} dB$$

Extremality of Gaussian states

Wolf-Giedke-Cirac theorem. If *f* satisfies:

- 1. Continuity in trace norm (if $\|\rho_{AB}^{(n)} \rho_{AB}\|_1 \to 0$ when $n \to \infty$, then $f(\rho_{AB}^{(n)}) \to f(\rho_{AB})$
- 1. Invariance over local "Gaussification" unitaries $f(U_G^{\dagger} \otimes U_G^{\dagger} \rho_{AB}^{\otimes N} U_G \otimes U_G) = f(\rho_{AB}^{\otimes N})$
- 2. Strong sub-additivity $f(\rho_{A_{1...N}B_{1...N}}) \leq f(\rho_{A_{1}B_{1}}) + ... + f(\rho_{A_{N}B_{N}})$

Then, for every bipartite state ρ_{AB} with covariance matrix γ_{AB} we have

 $f(\rho_{AB}) \leq f(\rho_{AB}^G)$

[M. M. Wolf, G. Giedke, and J. I. Cirac. Phys. Rev. Lett. 96, 080502 (2006)]

Extremality of Gaussian states

Wolf-Giedke-Cirac theorem. If f satisfies:

- 1. Continuity in trace norm (if $\|\rho_{AB}^{(n)} \rho_{AB}\|_1 \to 0$ when $n \to \infty$, then $f(\rho_{AB}^{(n)}) \to f(\rho_{AB})$
- 1. Invariance over local "Gaussification" unitaries $f(U_G^{\dagger} \otimes U_G^{\dagger} \rho_{AB}^{\otimes N} U_G \otimes U_G) = f(\rho_{AB}^{\otimes N})$
- 2. Strong sub-additivity $f(\rho_{A_1...N}B_{1...N}) \leq f(\rho_{A_1B_1}) + ... + f(\rho_{A_NB_N})$

Then, for every bipartite state ρ_{AB} with covariance matrix γ_{AB} we have

 $f(
ho_{AB}) \leq f(
ho_{AB}^G)$

[M. M. Wolf, G. Giedke, and J. I. Cirac. Phys. Rev. Lett. 96, 080502 (2006)]

Consequence:

Gaussian states maximize the information leakage. Covariance matrix description is enough to prove security.

[R. Garcıa-Patron and N.J. Cerf. Phys. Rev. Lett. 97, 190503, (2006); M. Navascus, F. Grosshans and A. Acin, Phys. Rev. Lett. 97, 190502 (2006)]

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for $\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for $\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$

In case of channel noise – purification by Eve:

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for $\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$

In case of channel noise – purification by Eve:

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for $\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$

In case of channel noise – purification by Eve:

$$S(\rho_E) = S(\rho_{AB}) \qquad \qquad S(\rho_{E|B}) = S(\rho_{A|B})$$

$$\gamma_A^{x_B} = \gamma_A - \sigma_{AB} (X \gamma_B X)^{MP} \sigma_{AB}^T \qquad X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for
$$\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$$

In case of channel noise – purification by Eve:

It is important to distinguish between trusted and untrusted noise.

All trusted noise must be purified.

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for
$$\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$$

Example of purification:

Collective attacks:

$$I = I_{AB} - \chi_{BE}$$

<u>Holevo quantity:</u> $\chi_{BE} = S_E - \int P(B)S_{E|B}dB$, $\chi_{BE} = S(\rho_E) - S(\rho_{E|B})$

(Renner, Gisin, Kraus, Phys. Rev. A 72, 012332, 2005)

computation: $S_E = \sum_{i} G\left(\frac{\lambda_i - 1}{2}\right), \quad G(x) = (x+1)\log_2(x+1) - x\log_2 x$

 λ_i - symplectic eigenvalues of the covariance matrix γ_E ,

similarly for
$$\gamma_E^{x_B} = \gamma_E - \sigma_{BE} (X \gamma_B X)^{MP} \sigma_{BE}^T$$

Example of purification:

CV QKD: security

Source covariance matrix:

$$\gamma_{AB} = \begin{pmatrix} V\mathbb{I} & \sqrt{V^2 - 1}\sigma_z \\ \sqrt{V^2 - 1}\sigma_z & V\mathbb{I} \end{pmatrix}$$
$$\gamma_A = \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix}$$

After noisy and lossy channel:

$$\gamma_{AB} = \begin{pmatrix} V \mathbb{I} & \sqrt{\eta} \sqrt{V^2 - 1} \sigma_z \\ \sqrt{\eta} \sqrt{V^2 - 1} \sigma_z & (V \eta + 1 - \eta + \chi) \mathbb{I} \end{pmatrix}$$

Influence of noise

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Influence of noise

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Influence of noise

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Trusted detection noise improves (!) security.

Typical dependence of maximum tolerable channel excess noise versus loss

R. Garcia-Patron, N. Cerf, PRL 102 120501 (2009)
Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Trusted preparation noise. Coherent states: phase-insensitive excess noise

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Trusted preparation noise. Coherent states: phase-insensitive excess noise

Is security breaking:

$$\Delta V_{I,\max} = \frac{1}{1 - \eta}$$

 η - channel transmittance

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Trusted preparation noise. Coherent states: phase-insensitive excess noise

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Trusted preparation noise. Coherent states: phase-insensitive excess noise

Purification restores security:

$$\Delta V_{I,max} = \frac{1}{T(1-\eta)}$$

[V. Usenko, R. Filip, Phys. Rev. A 81, 022318 (2010) / arXiv:0904.1694]

Distinguishing the noise types: trusted (preparation ΔV and detection \mathcal{X} noise) and untrusted (channel noise \mathcal{E})

Trusted preparation noise. Coherent states: phase-insensitive excess noise

What if noise is correlated?

Turning noise to correlations: additional modulator

Key rate vs channel distance (standard attenuation). Dashed line: no additional modulation; Solid line: additional strong modulation (50 SNU). Moderate squeezing of -3 dB. Channel noise: left to right 8%, 7%, 6% SNU.

Channel noise security threshold for collective attacks. Solid line: high additional modulation variance $\Delta V = 100$ Dashed line – no additional modulation. Dotted line: strongly modulated coherent state Channel transmittance: $\eta = 0.01$

[V. Usenko and R. Filip, New J. Phys., 13, 113007, (2011) / arXiv:1111.2311]

Super-optimized protocol

Alice applies gain factor to her data:

$$x'_A = gx_A + x_M$$

Covariance and correlation matrices:

$$\begin{split} \gamma_A &= \Big[g^2 \frac{1}{2} \Big(\frac{1+V_0^2}{V_0} + \Delta V_0 \Big) + \Delta V \Big] \mathbb{I} \\ \sigma_{AB} &= \Big[g \frac{1}{2} \Big(\frac{1-V_0^2}{V_0} + \Delta V_0 \Big) + \Delta V \Big] \sigma_z \end{split}$$

Super-optimized protocol

Alice applies gain factor to her data:

$$x'_A = gx_A + x_M$$

Super-optimized protocol

The protocol overcomes the coherent-state protocol upon any degree of squeezing

Proof-of-principle

Performed in DTU, Lyngby

Sketch of the set-up

Proof-of-principle

Raw quadrature data (left); covariance matrices (right)

MUNI'2013

Proof-of-principle

Arbitrary (experimentally obtained) state purification using Bloch-Messiah reduction (*Braunstein, PRA 71, 055801, 2005*)

Experimental covariance matrix:

$$\gamma_{AB} = \begin{pmatrix} V_A^x & & & \\ 0 & V_A^p & & \\ C_{AB}^x & 0 & V_B^x & \\ 0 & C_{AB}^p & 0 & V_B^p \end{pmatrix}$$

F (22)

Equivalent scheme:

Proof-of-principle

Untrusted channel simulation results: the squeezedstate protocol with the obtained states outperforms any coherent-state protocol (in tolerable noise and distance)

L. Madsen, V. Usenko, M. Lassen, R. Filip, U. Andersen, Nature Communications 3, 1083 (2012)

Resources

Modulation improves entangled protocol, what is the role of squeezing then?

Generally, how much nonclassical is CV QKD?

Resources

Modulation improves entangled protocol, what is the role of squeezing then?

Generally, how much nonclassical is CV QKD?

Let's distinguish the resources!

MUNI'2013

Post-processing efficiency

Lower bound on secure key rate (collective attacks) upon realistic reconciliation:

$$I = \beta I_{AB} - \chi_{BE}$$

 $\beta \in [0,1]$ - post-processing efficiency.

Generally depends on SNR and algorithms.

Together with channel noise – main limitation for Gaussian CV QKD (up to 25 km with coherent states at efficiency around 0.8-0.9: *J. Lodewyck et al., PRA 76, 042305, 2007*).

Together with information – a classical resource.

Resources:

- Classical: information, post-processing
- Quantum: states (classical/nonclassical)

Generalized preparation

Generalized preparation

Generalized preparation

Limited post-processing

Security region (in terms of maximum tolerable excess noise) versus nonclassical resource (squeezing) and classical resource (modulation)

Limited post-processing

Noise threshold profile upon optimized modulation

Ineffective post-processing (long-distance channels) $\beta \ll 1$

 $\eta \ll 1$ $I_{AB} = \sigma \eta / \log 4 + O[\eta]^2$ - independent of squeezing

Ineffective post-processing (long-distance channels) $\beta \ll 1$

 $\eta \ll 1$ $I_{AB} = \sigma \eta / \log 4 + O[\eta]^2$ - independent of squeezing

$$I = \beta I_{AB} - \chi_{BE}$$

Ineffective post-processing

 $\beta \ll 1$

 $\eta \ll 1$ $I_{AB} = \sigma \eta / \log 4 + O[\eta]^2$

Upper bound on Eve's information (Holevo quantity)

Ineffective post-processing

 $\beta \ll 1$

 $\eta \ll 1$ $I_{AB} = \sigma \eta / \log 4 + O[\eta]^2$

Holevo quantity turns to 0 upon pure channel loss when

 $V + \sigma = 1$

i.e. modulation must be

$$\sigma = 1 - V$$

Canceling information leakage

$$\sigma = 1 - V$$

Pure channel loss:

Canceling information leakage

$$\sigma = 1 - V$$

Pure channel loss:

Canceling information leakage

$$\sigma = 1 - V$$

Pure channel loss:

Holevo quantity $\chi_{BE} = 0$ since $S(E) - S(E \mid B) = 0$

Summary

• CV QKD is based on the solid Gaussian security proofs and is free from the single-photon assumptions of DV QKD;

- Optimal combination of resources improves CV QKD protocols;
- Nonclassical resource (squeezing) can partly substitute the classical (computational) resource;
- By properly adjusting modulation applied to squeezed states we can cancel or minimize the information leakage.

CV QKD: current challenges

- Side-channels (trusted-side leakage), decoupling of Eve;
- Fluctuating & non-Markovian environment
- Device independence;
- Finite-size effects, channel estimation.

Acknowledgements

Collaborators:

Radim Filip, Laszlo Ruppert, Ivan Derkach (UPOL, Olomouc);

Ulrik Andersen (DTU, Lyngby);

Christoph Marquardt, Bettina Heim, Christian Peuntinger (MPI, Erlangen)

Thank you for attention!

usenko@optics.upol.cz