Single atom - light interactions in free space

Lukáš Slodička

Department of Optics, Faculty of Science, Palacký University, Olomouc, Czech Republic

MU, Brno, 20. 5. 2014

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Observation of a single isolated atom!

We never experiment with just one electron or atom or (small) molecule. In thoughtexperiments we sometimes assume that we do; this envariably entails ridiculous consequences.

E. Schrödinger British Journal of the Philosophy of Science III (10), (**1952**)

What do we actually see?

Observation of a single atom in free space

- quantum jumps
- resonance fluorescence experiments
- laser cooling
- precision spectroscopy and metrology
- etc.

nce

Observation of single atom in free space

Ion trapping basics

Single charged atom with electronic level structure

harmonic trap

Single charged atom

Ion trapping basics

with

Paul trap

Do it dynamically \rightarrow Paul trap

 $\Phi(\overrightarrow{r},t) = \Phi_0(t) \cdot (x^2 + y^2 - 2z^2)$ time depending potential $\Phi_0(t) = (U + V \cos(\Omega_{BF} t)) / \tilde{r}^2$

Effectively harmonic in all three dimensions

Ion trapping basics

Linear Paul traps

Boulder, Mainz, Aarhus

Ion trapping basics Quantum charge-coupled device

Kielpinsky, Monroe, Wineland (NIST)

Ion trapping basics

Classical ion motion

$$r_i(t) \propto \cos(\beta_i \frac{\omega_{\rm rf}}{2} t) (1 - \frac{q_i}{2} \cos(\omega_{\rm rf} t))$$

Ion trapping basics

Quantized motion

lon trapping basics Spectroscopy - electron shelving method

Ion trapping basics

Electron shelving

- 1. Initialization in a pure quantum state
- 2. Quantum state manipulation on $S_{1/2} D_{5/2}$ transition
- 3. Quantum state measurement by fluorescence detection

One ion : Fluorescence histogram

50 experiments / s

Repeat experiments 100-200 times

Detection efficiency \rightarrow 100 %

Ion trapping basics Laser – ion interactions in Lamb-Dicke regime

Ion trapping basics

Excitation spectrum

lon trapping basics

Laser cooling of ions

$$u \ll \Gamma$$
 weak confinement,
Doppler cooling
 $\langle n \rangle = \frac{\Gamma}{2\nu} > 1$
if laser detuned by $\Delta = -\Gamma/2$

$$\nu \gg \Gamma$$
 strong confinement,
sideband cooling
 $\langle n \rangle = \frac{\Gamma^2}{4\nu^2} \ll 1$
if laser detuned by $\Delta = -\nu$

Ion trapping basics

Doppler cooling

Ion trapping basics

Sideband cooling

Signature: no further excitation possible "dark state" |0>

Summary – ion trapping basics

Trapping of charged particles \rightarrow Paul traps Precise spectroscopy \rightarrow electron shelving

P_{1/2} D_{5/2} S_{1/2}

Ion's motion \rightarrow Quantum harmonic oscillator

Can we see a "shadow" of a single atom?

Extinction Extinction from single atom in free space

- Destructive interference of scattered and transmited fields!
- In the weak probe limit

 $T = |1 - 2\epsilon|^2$

Full reflection for lens covering half of the full solid angle!

Extinction

Ring trap

Extinction Extinction from single atom in free space

Experimental setup

Extinction Extinction from single atom in free space

Results

Extinction of 1.35%

Good agreement with our effective solid angle $\varepsilon \sim 0.01!$

Extinction

Electromagnetically induced transparency

Coherent optical process which renders a medium transparent over a narrow spectral range within an absorption line

Electromagnetically induced transparency

Extinction

Phase-shift measurements

Experimental setup

Extinction

Phase-shift measurements

G. Hétet et al., Phys. Rev. A 88, 041804 (R) (2013)

Quantum communication using detection of scattered fluorescence?

Atom-atom entanglement Quantum communication

- Absolutely secure communication (Quantum cryptography)
- Faithful transfer of unknown quantum state (Quantum teleportation)

Atom-atom entanglement Single-photon scheme

1. Initialization:

atoms (A,B) in the same state |gg>

2. Weak excitation:

with p_e << 1 through a spontaneous Raman process

 \rightarrow Atom-photon entanglement:

$$\sqrt{1-p_e}|g,0
angle+\sqrt{p_e}|e,1
angle e^{i\phi_D-i\phi_L}$$

Phase acquired from

atom to detector

Excitation laser

phase

Atom-atom entanglement Single-photon scheme

Projective measurement of a Raman scattered photon

Interference: final entangled state depends on distance between atoms + Projective measurement: detection of a *single* Raman-scattered photon

Atom-atom entanglement Linear trap

We can hold the phase and control the ion-ion distance to within $\lambda/10$

Atom-atom entanglement Indistinguishability measurements

Atom-atom entanglement Experimental sequence APD1 m_j -1/2 mi 6P_{1/2} 6P. •5D_{5/2} 5D_{5/2} 493 nm mi m_i +1/2+1/26S_{1/2} $6S_1$ -1/2-1/2 |e>|e>

(5 µs)

(100 ns)

YES

Entanglement generation

- Cooling and phase stabilization (4 ms)
- Optical pumping
 - Raman excitation
 - Single photon detection

NO ? Photon detected ?

🖌 State analysis

- RF q-bit rotations (6 µs)
- Shelving to D state (2 µs)
- Fluorescence detection (5 ms)

 $F = \langle \Psi^+ | \rho | \Psi^+ \rangle = \frac{1}{2} \left[\rho_{ge} + \rho_{eg} + 2 \operatorname{Re}(\rho_{eg,ge}) \right]$

Measured directly (electron shelving) Parity measurement

Atom-atom entanglement

Measurement results

In 89% of the cases correct correlation between atomic states

Atom-atom entanglement Measurement results

Off diagonal elements - coherences Coherence Population 1 0.75 0.5 ~ 0.39 0.25 Parit -0.25 -0.5 -0.75 -1 $\frac{3\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$ $\frac{5\pi}{4}$ 0 π Phase of analysing pulse ϕ (rad)

Measured parity contrast ≈ 58%

Fidelity with $\left|\Psi^{+}\right\rangle~$ = 64 \pm 2%

Atom-atom entanglement Results

• First demonstration of the single-photon entanglement scheme with single atoms

• Fidelity with $|\Psi^+
angle\,$ = 64%

Limited by atomic recoils Can be improved by excitation along the detection direction

• Entanglement generation rate:

1 photon is easier to detect than 2!

With our experimental duty cycle ~ 14 entanglement events/min

~ Two orders of magnitude gain in P_{succ}

Summary

Our group

Rainer Blatt Markus Hennrich

Innsbruck

Nadia Röck

Gabriel Hétet

Miroslav Ježek

Martina Miková

Ivo Straka

Miloslav Dušek

Olomouc Jaromír Fiurášek

D. Wineland (NIST)

"Ion trappers are encouraged because we can at least see a straightforward path to making a large processor, but the technical problems are extremely challenging. It might be fair to say that ion traps are currently in the lead; however, a good analogy might be that we're leading in a marathon race, but only one metre from the start line."

Atom-atom entanglement State analysis $|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|eg\rangle + |ge\rangle)$ • We aim to generate All we need to measure! $\hat{\rho} = \begin{pmatrix} \rho_{gg} & \rho_{gg,eg} & \rho_{gg,ge} & \rho_{gg,ee} \\ \rho_{gg,eg}^* & \rho_{eg} & \rho_{eg,ge} & \rho_{eg,ee} \\ \rho_{gg,ge}^* & \rho_{eg,ge}^* & \rho_{ge} & \rho_{ge,ee} \\ \rho_{eg,ee}^* & \rho_{eg,ee}^* & \rho_{ge,ee} & \rho_{ee} \end{pmatrix}$ • Any 2-qubit state • Fidelity $F = \langle \Psi^+ | \rho | \Psi^+ \rangle = \frac{1}{2} \left[\rho_{ge} + \rho_{eg} + \rho_{eg} \right]$ $2\text{Re}(\rho_{eg,ge})$ Populations Coherences

• We measure:

Populations ~ directly (electron shelving)

Coherences ~ the value of parity operator for collective RF rotations $R(\theta, \phi)$

$$\hat{P} = \hat{p}_{gg} + \hat{p}_{ee} - \hat{p}_{eg} - \hat{p}_{ge}$$
 Phase of the pulse

Amplitude of the pulse

Atom-atom entanglement

Measurement results

Off diagonal elements - coherences

• Parity signal oscillates when applying $R(\pi/2,\phi)$ rotation on this state

Measured parity contrast ≈ 58%

Atom-atom entanglement Motivation

Works well, but quantum physics can offer us more!

- Absolutely secure communication (Quantum cryptography)
- Faithful transfer of unknown quantum state (Quantum teleportation)

Overview

Overview

Single atom in free space

Phase interference of scattered light!