Visit to Le LIMOS (France)

Jan Laštovička (jan.lastovicka@upol.cz)

International Center for Information and Uncertainty
Palacky University, Olomouc, Czech Republic

social fund in the czech republic
INVESTMENTS IN EDUCATION DEVELOPMENT

Basic Information

- institution: Le LIMOS, Universit Blaise Pascal
- location: Clermont-Ferrand, France
- date: November 17th - December 2nd, 2013
- guarantee: prof. Lhouari Nourine

Le LIMOS (Laboratoire d'Informatique, de Modlisation et d'Optimisation des Systemes)

Research

- Models and Algorithms of Decision Support (Algorithms, Graphs, Complexity)
- Information Systems and Communication
- Production Systems
- Operations Research Industrial Engineering

Members

- 8 professors (Lhouari Nourine)
- 24 research and teaching assistants
- 32 PhD students

Seminar

New Cluster Mining algorithm via Data Cleaning by Takeaki Uno

PhD defence

Enumeration of minimal dominating sets of graphs by Amaud Mary

Research

Distributive concept lattices

Let $\langle X, Y, I\rangle$ is a formal context, $x \in X$, and $y \in Y$.

Definition (Arrow relations)

$$
\begin{aligned}
& x \swarrow_{I} y \quad \text { if }\left\{\begin{array}{l}
\langle x, y\rangle \notin I \text { and } \\
\{x\}^{\uparrow} \subset\left\{x_{1}\right\}^{\uparrow} \text { imply }\left\langle x_{1}, y\right\rangle \in I
\end{array}\right. \\
& x \nearrow_{I} y \quad \text { if }\left\{\begin{array}{l}
\langle x, y\rangle \notin I \text { and } \\
\{y\}^{\downarrow} \subset\left\{y_{1}\right\}^{\downarrow} \text { imply }\left\langle x, y_{1}\right\rangle \in I
\end{array}\right. \\
& x \swarrow_{I} y \quad \text { if } x \swarrow_{I} y \text { and } x \nearrow_{I} y
\end{aligned}
$$

Proposition

For a finite concept lattice $\mathscr{B}(X, Y, I)$, the following conditions are equivalent:

- $\mathscr{B}(X, Y, I)$ is distributive.
- From $x \swarrow y_{1}$ and $x \nearrow y_{2}$ it follows that $\left\{y_{1}\right\}^{\downarrow}=\left\{y_{2}\right\}^{\downarrow}$.
- From $x_{1} \swarrow y$ and $x_{2} \swarrow y$ it follows that $\left\{x_{1}\right\}^{\uparrow}=\left\{x_{2}\right\}^{\uparrow}$.

\mathbf{L}-relations of \mathbf{L}-sets

Let \mathbf{L} be a Boolean algebra with variables and $A, B \in L^{X}$. Then the degree $S_{\subset}(A, B)$ to which A is strictly contained in B is defined by

$$
S_{\subset}(A, B)=S(A, B) \wedge(S(B, A))^{\prime}
$$

Lemma

For each admissible assignment v we have
(1) $\bar{v}(S(A, B))=1$ iff $\bar{v} \circ A \subseteq \bar{v} \circ B$,
(2) $\bar{v}(A \approx B)=1$ iff $\bar{v} \circ A=\bar{v} \circ B$,
(3) $\bar{v}\left(S_{\subset}(A, B)\right)=1$ iff $\bar{v} \circ A \subset \bar{v} \circ B$.

Incomplete arrow relations

Let $\langle X, Y, I\rangle$ be an incomplete \mathbf{L}-context.

$$
\begin{gathered}
x \nearrow_{I} y=I(x, y)^{\prime} \wedge \bigwedge_{y_{1} \in Y} S_{\subset}\left(\{y\}^{\downarrow},\left\{y_{1}\right\}^{\downarrow}\right) \rightarrow I\left(x, y_{1}\right) \\
x \swarrow_{I} y=I(x, y)^{\prime} \wedge \bigwedge_{x_{1} \in X} S_{\subset}\left(\{x\}^{\uparrow},\left\{x_{1}\right\}^{\uparrow}\right) \rightarrow I\left(x_{1}, y\right) \\
x \swarrow_{I} y=\left(x \swarrow_{I} y\right) \wedge\left(x \nearrow_{I} y\right)
\end{gathered}
$$

Lemma

For an admissible assignment v we have $x \nearrow_{\overline{\mathrm{v}} \mathrm{I} I} y=\bar{v}\left(x \nearrow_{I} y\right), x_{\swarrow_{\bar{v} I I}} y=\bar{v}\left(x \swarrow_{I} y\right)$, and $x \swarrow_{\bar{v} O I} y=\bar{v}\left(x \swarrow_{I} y\right)$.

Completations with distributive concept lattice

Let $\langle X, Y, I\rangle$ be an incomplete \mathbf{L}-context.

Theorem

Let v an admissible assignment. Then the following conditions are equivalent.
(1) $\mathscr{B}(X, Y, \bar{v} \circ I)$ is distributive.
(2) $\bar{v}\left(\bigwedge_{x \in X, y_{1} \in Y, y_{2} \in Y}\left(x_{\swarrow} \bigwedge_{I} y_{1}\right) \wedge\left(x \nearrow_{I} y_{2}\right) \rightarrow\left(\left\{y_{1}\right\}^{\downarrow_{I}} \approx\left\{y_{2}\right\}^{\downarrow_{I}}\right)\right)=1$.
(3) $\bar{v}\left(\bigwedge_{x_{1} \in X, x_{2} \in X, y \in Y}\left(x_{1} \swarrow_{I} y\right) \wedge\left(x_{2} \swarrow_{I} y\right) \rightarrow\left(\left\{x_{1}\right\}^{\uparrow_{I}} \approx\left\{x_{2}\right\}^{\uparrow I}\right)\right)=1$.

Theorem

A problem whether an incomplete \mathbf{L}-context where each assignment is admissible has a completion with distributive concept lattice is NP-complete.

Example

Let \mathbf{L} he Boolean algebra with variables u_{1}, u_{2}, u_{3} such that each admissible assignment v satisfy $v\left(u_{1}\right)^{\prime} \leq v\left(u_{2}\right)^{\prime} \wedge v\left(u_{3}\right)^{\prime}, v\left(u_{1}\right) \wedge v\left(u_{2}\right) \leq v\left(u_{3}\right)$.

Admissible assignments: $v_{1}=\emptyset, v_{2}=\left\{u_{1}, u_{3}\right\}, v_{3}=\left\{u_{1}, u_{2}\right\}, v_{4}=\left\{u_{1}, u_{2}, u_{3}\right\}$. Incomplete L-context $\langle X, Y, I\rangle$:

	y_{1}	y_{2}	y_{3}
x_{1}	u_{1}		
x_{2}		u_{2}	u_{3}
x_{3}			\times

$\bigwedge_{x \in X, y_{1} \in Y, y_{2} \in Y}\left(x_{\swarrow} \swarrow_{I} y_{1}\right) \wedge\left(x \nearrow_{I} y_{2}\right) \rightarrow\left(\left\{y_{1}\right\}^{\downarrow_{I}} \approx\left\{y_{2}\right\}^{\downarrow_{I}}\right)=u_{2}^{\prime}$
Completions with distributive concept lattices: $\left\langle X, Y, \bar{v}_{1} \circ I\right\rangle$ and $\left\langle X, Y, \bar{v}_{2} \circ I\right\rangle$.

