

Institut de Ciències Fotòniques

Estimation of the dimension of classical and quantum systems

M. Mičuda, M. Hendrych, R. Gallego, N. Brunner, A. Acín and J. P. Torres

7.5.2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Measuring the dimension

Q: Is it be possible to assess the dimension of a completely unknown system only from the results of measurements performed on it?

A: Yes, but we can establish only lower bounds on the dimension of an unknown system in a device independent way.

- 4 possible preparations (x)
- 3 measurements (y)
- Possible outcomes b=±1

Our scenario

Dimension witness is:

 $I_{4} \equiv E_{11} + E_{12} + E_{13} + E_{21} + E_{22} - E_{23} + E_{31} - E_{32} - E_{41}$ $E_{xy} = P(b = +1|x,y) - P(b = -1|x,y)$

Classical and quantum bounds for the dimension witness I_4 :

	C ₂	Q ₂	C ₃	Q ₃	C ₄
	(bit)	(qubit)	(trit)	(qutrit)	(quart)
۱ ₄	5	6	7	7,97	9

Experiment

- Photon pairs are generated in SPDC.
- We use polarization and orbital angular momentum.
- Our orthogonal vectors are:

|H,±1> and |V,±1>.

• Our entangled state is:

 $|\Psi^{-}\rangle_{POL} \otimes |\Psi^{-}\rangle_{OAM}$,

where $|\Psi^-\rangle_{POL} = (1/Sqrt[2])(|H\rangle_s|V\rangle_i - |V\rangle_s|H\rangle_i)$ and $|\Psi^-\rangle_{AOM} = (1/Sqrt[2])(|m=1\rangle_s|m=-1\rangle_i - |m=-1\rangle_s|m=1\rangle_i)$

Results

Results

Thank you for your attention.