Estimation of the dimension of classical and quantum systems

M. Mičuda,

M. Hendrych, R. Gallego, N. Brunner, A. Acín and J. P. Torres
7.5.2013

\qquad

social fund in the czech republic

Measuring the dimension

Q: Is it be possible to assess the dimension of a completely unknown system only from the results of measurements performed on it?

A: Yes, but we can establish only lower bounds on the dimension of an unknown system in a device independent way.

Our scenario

- 4 possible preparations (x)
- 3 measurements (y)
- Possible outcomes $\mathrm{b}= \pm 1$

Our scenario

Dimension witness is:

$$
\begin{aligned}
& \mathrm{I}_{4}=\mathrm{E}_{11}+\mathrm{E}_{12}+\mathrm{E}_{13}+\mathrm{E}_{21}+\mathrm{E}_{22}-\mathrm{E}_{23}+\mathrm{E}_{31}-\mathrm{E}_{32}-\mathrm{E}_{41} \\
& \mathrm{E}_{\mathrm{xy}}=\mathrm{P}(\mathrm{~b}=+1 \mid \mathrm{x}, \mathrm{y})-\mathrm{P}(\mathrm{~b}=-1 \mid \mathrm{x}, \mathrm{y})
\end{aligned}
$$

Classical and quantum bounds for the dimension witness I_{4} :

	\mathbf{C}_{2} (bit)	\mathbf{Q}_{2} (qubit)	\mathbf{C}_{3} (trit)	\mathbf{Q}_{3} (qutrit)	\mathbf{C}_{4} (quart)
I_{4}	5	6	7	7,97	9

Experiment

- Photon pairs are generated in SPDC.
- We use polarization and orbital angular momentum.
- Our orthogonal vectors are:

$$
\mid \mathrm{H}, \pm 1>\text { and } \mid \mathrm{V}, \pm 1>.
$$

- Our entangled state is:

$$
\left|\Psi^{-}\right\rangle_{\text {POL }} \otimes\left|\Psi^{-}\right\rangle_{\mathrm{OAM}},
$$

where $\left|\Psi^{-}\right\rangle_{\text {POL }}=\left(1 / \mathrm{Sqrt[2])}\left(\left|\mathrm{H}>_{s}\right| \mathrm{V}\right\rangle_{i}|\mathrm{~V}\rangle_{s} \mid \mathrm{H}>_{i}\right)$ and
$\left|\Psi^{-}\right\rangle_{\text {AOM }}=(1 / \mathrm{Sqrt}[2])\left(\left|m=1>_{s}\right| m=-1>_{i}-|m=-1\rangle_{s} \mid m=1>_{i}\right)$

Setup

Results

Results

Results

Thank you for your attention.

