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Outline

Logical Analysis of Data (LAD)

Fuzzy Rough Concept Analysis (FRCA) = FCA + Fuzzy sets + Rough sets

FRCA ^ LAD

FRCA _ LAD
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LOGICAL ANALYSIS OF DATA
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Logical Analysis of Data

Sources:

I. Chikalov, V. Lozin, I. Lozina, M. Moshkov, H.S. Nguyen, A. Skowron, B. Zielosko
Three Approaches to Data Analysis:

Test Theory, Rough Sets and Logical Analysis of Data
Series: Intelligent Systems Reference Library, Vol. 41 2013, XVIII, 202 p.

G. Alexe, S. Alexe, T.O. Bonates, A. Kogan
Logical Analysis of Data — the Vision of Peter L. Hammer.
Annals of Mathematics and Artificial Intelligence, April 2007, 49(1-4), pp. 265–312.

Wikipedia:
Peter Ladislaw Hammer (December 23, 1936 – December 27, 2006) was an American
mathematician native to Romania. He contributed to the fields of operations research and
applied discrete mathematics through the study of pseudo-Boolean functions and their
connections to graph theory and data mining.
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LAD – Input: Dataset (Context)

Denote

Ω` “ xX`, Y, I`y,Ω´ “ xX´, Y, I´y,Ω “ xX` YX´, Y, I` Y I´y.

y1 y2 y3 y4 y5

a 1 0 1 1 1
b 0 0 0 1 1
c 1 1 1 1 1

Ω` d 1 1 1 0 1
e 1 1 1 0 0
p 1 0 0 1 0
q 0 0 1 0 1

r 1 0 1 0 0
Ω´ s 1 0 0 0 0

t 0 0 1 0 0
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LAD – Overview

Redundant variables in the original dataset we extract from it a subset S, capable of
distinguishing the positive observations from the negative ones.

Cover dataset Ω` with a family of possibly overlapping homogeneous subsets of
t0, 1un, each of these subsets having a significant intersection with with Ω`, but being
disjoint from Ω´. Similarly handle dataset Ω´.

A subset of the positive (resp. negative) patterns, the union of which covers every
observation in Ω` (resp. Ω´) is identified. The collection of these two subsets of
intervals is called a “model.”

A classification method is developed which defines the positive or negative intervals of
the model, leaving as “unclassified” those observations which are not covered by this
union.

One of the standard validation methods is applied to verify the accuracy of the
resulting classification system.
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LAD – Terms

Term over Y – conjunction of literals,

Literal – either y or  y.

Example

C “  y1y3

For term C, denote

PospCq – positive literals of C,

NegpCq – negative literals of C,

LitpCq – all literals of C; PospCq YNegpCq,

ModpCq – set of all models of C
that is, evaluations w, s.t. }C}w “ 1.
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LAD – Terms

ModpCq forms n-dimensional subcube of t0, 1uY ; n “ |Y ´ LitpCq|.

Example

Considering Y “ ty1, y2, . . . , ynu we can unify evaluation w with the string
wpy1qwpy2q . . . wpynq.

C “  y1y3

00100

01100 00110 00101

01110 01101 00111

01111

Such subcubes of t0, 1uY are in one-to-one correspondence with terms over Y .
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LAD – Patterns

Basic notion in LAD

Positive pattern is simply a subcube of t0, 1uY which intersect Ω` and is disjoint from
Ω´.
Negative patterns have a similar definition.

Definition

A term C is called a positive pattern of a dataset Ω if

}C}w “ 0 for every w P Ω´,

}C}w “ 1 for at least one vector w P Ω`.

A term C is called a negative pattern of a dataset Ω if

}C}w “ 0 for every w P Ω`,

}C}w “ 1 for at least one vector w P Ω´.
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Pareto-optimality of Patterns

Definition

Given a preorder ĺ on the set of patterns, a pattern P will be called pareto-optimal with
respect to ĺ, if there is no distinct pattern P 1 such that P ĺ P 1.

Definition (Simplicity preference)

A pattern P1 is simplicity-wise preferred to a pattern P2 (denoted by P2 ĺσ P1) if
LitpP1q Ě LitpP2q.

Pareto-optimal patters w.r.t. ĺσ are called prime

Remark

Inspired by the Occam’s razor.
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Pareto-optimality of Patterns

Definition (Evidential preference)

A pattern P1 is evidentially preferred to a pattern P2 (denoted by P2 ĺε P1) if
CovpP1q Ě CovpP2q.

CovpP q denotes ModpP q X Ω.

Evidentially Pareto-optimal patterns are called strong.

Definition (Evidential preference)

A pattern P1 is selectively-wise preferred to a pattern P2 (denoted by P2 ĺΣ P1) if and
only if ModpP1q Ď ModpP2q.

Pareto-optimal patterns w.r.t. Σ^ ε are called spanned.
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Classification with LAD

Lets have

Γ` – collection of (selected) positive patterns, s.t. it covers Ω`,

Γ´ – collection of (selected) negative patterns, s.t. it covers Ω´.

For collection of positive (or negative) patterns Γ and new observation w define

δpw,Γq “ t}P }w | P P Γu

Diskriminant

∆pwq “
|δpw,Γ`q|

|Γ`|
´
|δpw,Γ´q|

|Γ´|
.
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FUZZY CONCEPT ANALYSIS
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more precisely...

Structure of truth degrees = complete residuated lattice
L “ xL,^,_,b,Ñ, 0, 1y
xL,^,_, 0, 1y . . . complete lattice
xL,b, 1y . . . commutative monoid
xb,Ñy . . . adjoint pair (ab b ď c iff a ď bÑ c )

L-set A in universe U . . . mapping A: U Ñ L
Interpretation of Apuq: “degree to which u belongs to A”

Operations with L-sets defined component-wise

^-intersection pAYBqpuq “ Apuq YBpuq

complement p Aqpuq “ Apuq Ñ 0

Set of all L-sets in U is denoted by LU .

Binary L-relation R between sets U , V . . . mapping R : U ˆ V Ñ L,
Interpretation of Rpu, vq: “degree to which u and v are R-related”
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Fuzzy Concept Analysis

Fuzzy Context – triple xX,Y, Iy

X . . . (finite crisp) set of objects
Y . . . (finite crisp) set of attributes
I . . . L-relation I : X ˆ Y Ñ L

y1 y2 y3 y4

x1 0.1 1.0 0.2 0.3
x2 1.0 0.5 0.0 0.6
x3 0.5 0.8 1.0 0.6
x4 0.0 0.0 1.0 1.0

Antitone L-concept-forming operators: p¨qÒ : LX Ñ LY , p¨qÓ : LY Ñ LX .

AÒpyq “
ľ

xPX

Apxq Ñ Ipx, yq and BÓpxq “
ľ

yPY

Bpyq Ñ Ipx, yq

Formal concept w.r.t. xÒ, Óy is pair xA,By s.t. AÒ “ B,BÓ “ A
A=extent, B=intent

Concept lattice
BÒÓpX,Y, Iq “ txA,By | AÒ “ B,BÓ “ Au
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Fuzzy Concept Analysis – Isotone case
Isotone L-concept-forming operators xX, Yy: p¨qX : LX Ñ LY , p¨qY : LY Ñ LX .

AXpyq “
ł

xPX

Apxq b Ipx, yq and BYpxq “
ľ

yPY

Ipx, yq Ñ Bpyq

Formal concept w.r.t. xX, Yy is pair xA,By s.t. AX “ B,BY “ A; A=extent, B=intent

Concept lattice
BXYpX,Y, Iq “ txA,By | AX “ B,BY “ Au

Isotone L-concept-forming operators x^, _y p¨q^ : LX Ñ LY , p¨q_ : LY Ñ LX .

A^pyq “
ľ

xPX

Ipx, yq Ñ Apxq and B_pxq “
ł

yPY

Bpyq b Ipx, yq

Formal concept w.r.t. x^, _y is pair xA,By s.t. A^ “ B,B_ “ A; A=extent, B=intent

Concept lattice
B^_pX,Y, Iq “ txA,By | A^ “ B,B_ “ Au
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intermezzo: ROUGH SETS
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Rough Sets

Pawlak approximation space – xU,Ey, where

U is a non-empty set of objects (universe),

E is an equivalence relation on U ,

the rough approximation of a crisp set A Ď U by E is the pair xAóE , AòEy of sets in U
defined by

x P AóE iff pp@y P Uq xx, yy P E implies y P Aq,

x P AòE iff ppDy P Uq xx, yy P E and y P Aq.

AóE and AòE are called lower and upper approximation of the set A by E, respectively.
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Rough Sets

A

set A

` AòE – upper approx. of A

AóE – lower approx. of A
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Fuzzy Rough Sets
In the fuzzy setting, one can generalize xAóE , AòEy as in

Didier Dubois and Henri Prade.
Rough fuzzy sets and fuzzy rough sets.
International Journal of General Systems, 17(2–3):191–209, 1990.

Didier Dubois and Henri Prade.
Putting rough sets and fuzzy sets together.
Intelligent Decision Support, volume 11 of Theory and Decision Library, pages
203–232., 1992.

Anna Maria Radzikowska and Etienne E. Kerre.
Fuzzy rough sets based on residuated lattices.
Transactions on Rough Sets II, volume 3135 of Lecture Notes in Computer Science,
pages 278–296., 2005.

AóE pxq “
ľ

yPU

pEpx, yq Ñ Apyqq and AòE pxq “
ł

yPU

pApyq b Epx, yqq

for L-equivalence E P LUˆU and L-set A P LU .
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Rough Sets – properties of approximations

B

A

sets A,B

pAXBqóE

We have:

pAXBqóE “ AóE XBóE
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Rough Sets – properties of approximations

B

A

sets A,B

pAYBqòE

We have:

pAYBqòE “ AòE YBòE
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(Fuzzy Rough) Concept Analysis

Observation

Intents in BXYpX,Y, Iq behave like upper approximations in FRS.
Intents in BÒÓpX,Y, Iq behave like lower approximations in FRS.

Robert E. Kent
Rough Concept Analysis
Rough Sets, Fuzzy Sets and Knowledge Discovery
Workshops in Computing 1994, pp 248-255

Ming-Wen Shao, Min Liu, and Wen-Xiu Zhang.
Set approximations in fuzzy formal concept analysis.
Fuzzy Sets Syst., 158(23):2627–2640, December 2007.
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More precisely,. . .

AòE “ AXE and AóE “ A^E

Let E P LYˆY be Leibniz L-equivalence induced by I Ď LXˆY , that is

Epy1, y2q “
ľ

xPX

Ipx, y1q Ø Ipx, y1q,

then E is compatible with I:
I “ I ˝ E “ I Ż E.

where

pA ˝Bqpx, yq “
ł

fPF

Apx, fq bBpf, yq,

pA ŻBqpx, yq “
ľ

fPF

Bpf, yq Ñ Apx, fq.
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I “ I ˝ E “ I Ż E.

R. Belohlavek.
Fuzzy Relational Systems: Foundations and Principles.
Kluwer Academic Publishers, Norwell, USA, 2002.

From that we have

AÒ “ pAÒq^E ,

AX “ pAXqXE .

Belohlavek R., Konecny J.
Row and Column Spaces of Matrices over Residuated Lattices.
Fundamenta Informaticae 115(4)(2012), 279-295.

Jan Konecny (DAMOL) Logical Analysis of Data & Formal Concept Analysis 25 / 37



(Fuzzy Rough) Concept Analysis

Definition

Let xX,Y, Iy be an L-context. Define L-rough concept-forming operators as

AM “ xAÒ, AXy and xB,ByO “ BÓ XB
Y

for A P LX , B,B P LY .

L-rough concept is then a fixed point of xM,Oy, i.e. a pair xA, xB,Byy P LX ˆ pLˆ LqY

such that
AM “ xB,By and xB,ByO “ A.

AÒ and AX are called lower intent approximation and upper intent approximation,
respectively.

Will be presented at CLA 2014.

Jan Konecny (DAMOL) Logical Analysis of Data & Formal Concept Analysis 26 / 37



THE LINK BETWEEN FRCA AND LAD
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Crisp Case L “ t0, 1u

not very interesting

similar results would be obtained using apposition of the context with its complement.

y1 y2 y3

x1 0 1 0
x2 1 1 0
x2 1 0 1

ñ

y1 y2 y3  y1  y2  y3

x1 0 1 0 1 0 1
x2 1 1 0 0 0 1
x2 1 0 1 0 1 0

Still, it provides a connection to LAD.
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(crisp) rough sets on Y correspond to subcubes of t0, 1uY

Example

xA,Ay “ xty3u, ty2, y3, y4, y5uy

Characteristic vectors of sets for which xA,Ay is their rough approximation:

C “  y1y3

00100

01100 00110 00101

01110 01101 00111

01111
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Formal Rough (Crisp) Concept Analysis and Logical Analysis of Data
Denote

Ω` “ xX`, Y, I`y,Ω´ “ xX´, Y, I´y,Ω “ xX` YX´, Y, I` Y I´y.

Definition

For a term C define pair rspCq of sets as

rspCq ÞÑ xPospCq, Y ´NegpCqy.

Theorem

Term C is a positive pattern iff

H ‰ rspCqOΩ Ď X` and rspCqOΩ XX´ “ H.

Term C is a negative pattern iff

H ‰ rspCqOΩ Ď X´ and rspCqOΩ XX` “ H.
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Denote
Ω̂ “ xX` YX´, Y Y tdu, I` Y I´ YDy.

Theorem

Term C is a positive pattern iff

rspC ¨ dqOΩ̂ “ rspCqOΩ̂ ‰ H.

Term C is a negative pattern iff

rspC ¨  dqOΩ̂ “ rspCqOΩ̂ ‰ H.
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Theorem

P1 ĺΣ P2 iff rspP1q Ď rspP2q.

Theorem

P1 ĺε P2 iff rspP1q
Oω Ď rspP2q

Oω .

Theorem

Pattern P is spanned iff rspP q is intent in BMOpΩq.
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Conclusions

We have some meeting points between FRCA and LAD.
What now?

Algorithms for LAD based on FCA

Fuzzy setting
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Algorithm SPIC (for generating all spanned patterns)

Input: C0: the collection of patterns spanned by each individual observation in Ω`.
Initialize C :“ C0

Repeat the following operation until the collection C cannot be furthermore enlarged.
if their consensus P 1 exists and

if it is not absorbed by a pattern already contained in C,
then add it to C.

From the point of view of FCA this is a näıve generation of (part of) a concept lattice.
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Algorithms for LAD based on FCA

Petr Krajca, Jan Outrata, Vilem Vychodil
Advances in algorithms based on CbO.
Proc. CLA 2010, 2010, pp. 325337.

Patterns as closure systems.

close-positivepAq “

#

A if X´ XA “ H,

X otherwise.

Belohlavek R., Vychodil V.
Closure based constraints in formal concept analysis.
Discrete Applied Mathematics 161(13-14)(2013), 1894-1911. closures
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Algorithms for LAD based on FCA

Do they know or not?
From

Alexe, Gabriela and Alexe, Sorin and Bonates, Tibérius O. and Kogan, Alexander.
Logical Analysis of Data — the Vision of Peter L. Hammer.
Annals of Mathematics and Artificial Intelligence, April 2007, 49(1-4), pp. 265–312.

For instance, Malgrange (ref) used a consensus-type approach to find all maximal
submatrices consisting of ones of a 0-1 matrix (see also Kuznetsov and Obiedkov
(ref) for references to algorithms with polynomial delay), while a concensus-type
algorithm for finding all maximal bicliques of a graph was presented in (ref).

Kuznetsov, S.O., Obiedkov S.A.
Comparing performance of algorithms for generating concept lattices.
J. Exp. Theor. Artif. Intell. 14, 189-216 (2002)
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Fuzzy Setting

Since the concept-forming operators xM,Oy are defined in fuzzy setting, we have a direct
lead to fuzzy logical analysis of data.

THANK YOU FOR YOUR ATTENTION.
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