Formal Concept Analysis & Logical Analysis of Data

Jan Konečný

Outline

- Logical Analysis of Data (LAD)
- Fuzzy Rough Concept Analysis (FRCA) = FCA + Fuzzy sets + Rough sets
- FRCA \land LAD
- FRCA \lor LAD

LOGICAL ANALYSIS OF DATA

Logical Analysis of Data

Sources:

I. Chikalov, V. Lozin, I. Lozina, M. Moshkov, H.S. Nguyen, A. Skowron, B. Zielosko Three Approaches to Data Analysis: Test Theory, Rough Sets and Logical Analysis of Data Series: Intelligent Systems Reference Library, Vol. 41 2013, XVIII, 202 p.

G. Alexe, S. Alexe, T.O. Bonates, A. Kogan
 Logical Analysis of Data — the Vision of Peter L. Hammer.
 Annals of Mathematics and Artificial Intelligence, April 2007, 49(1-4), pp. 265–312.

Wikipedia:

Peter Ladislaw Hammer (December 23, 1936 – December 27, 2006) was an American mathematician native to Romania. He contributed to the fields of operations research and applied discrete mathematics through the study of pseudo-Boolean functions and their connections to graph theory and data mining.

LAD – Input: Dataset (Context)

Denote

$$\Omega^+ = \langle X^+, Y, I^+ \rangle, \Omega^- = \langle X^-, Y, I^- \rangle, \Omega = \langle X^+ \cup X^-, Y, I^+ \cup I^- \rangle.$$

		y_1	y_2	y_3	y_4	y_5
	a	1	0	1	1	1
	b	0	0	0	1	1
	c	1	1	1	1	1
Ω^+	d	1	1	1	0	1
	e	1	1	1	0	0
	p	1	0	0	1	0
	q	0	0	1	0	1
	r	1	0	1	0	0
Ω^{-}	s	1	0	0	0	0
	t	0	0	1	0	0

LAD - Overview

- Redundant variables in the original dataset we extract from it a subset S, capable of distinguishing the positive observations from the negative ones.
- Cover dataset Ω⁺ with a family of possibly overlapping homogeneous subsets of {0,1}ⁿ, each of these subsets having a significant intersection with with Ω⁺, but being disjoint from Ω⁻. Similarly handle dataset Ω⁻.
- A subset of the positive (resp. negative) patterns, the union of which covers every observation in Ω⁺ (resp. Ω⁻) is identified. The collection of these two subsets of intervals is called a "model."
- A classification method is developed which defines the positive or negative intervals of the model, leaving as "unclassified" those observations which are not covered by this union.
- One of the standard validation methods is applied to verify the accuracy of the resulting classification system.

LAD – Terms

- Term over Y conjunction of literals,
- Literal either y or $\neg y$.

Example

 $C = \neg y_1 y_3$

For term C, denote

- Pos(C) positive literals of C,
- Neg(C) negative literals of C,
- $\operatorname{Lit}(C)$ all literals of C; $\operatorname{Pos}(C) \cup \operatorname{Neg}(C)$,
- Mod(C) set of all models of C

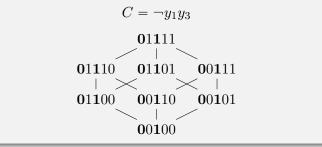
that is, evaluations w, s.t. $||C||_w = 1$.

LAD – Terms

Mod(C) forms *n*-dimensional subcube of $\{0,1\}^Y$; n = |Y - Lit(C)|.

Example

Considering $Y = \{y_1, y_2, \dots, y_n\}$ we can unify evaluation w with the string $w(y_1)w(y_2)\dots w(y_n)$.



Such subcubes of $\{0,1\}^Y$ are in one-to-one correspondence with terms over Y.

LAD – Patterns

- Basic notion in LAD
- Positive pattern is simply a subcube of $\{0,1\}^Y$ which intersect Ω^+ and is disjoint from $\Omega^-.$

Negative patterns have a similar definition.

Definition

A term C is called a *positive pattern* of a dataset Ω if

- $\|C\|_w = 0$ for every $w \in \Omega^-$,
- $||C||_w = 1$ for at least one vector $w \in \Omega^+$.

A term C is called a *negative pattern* of a dataset Ω if

- $\|C\|_w = 0$ for every $w \in \Omega^+$,
- $||C||_w = 1$ for at least one vector $w \in \Omega^-$.

Pareto-optimality of Patterns

Definition

Given a preorder \leq on the set of patterns, a pattern P will be called *pareto-optimal* with respect to \leq , if there is no distinct pattern P' such that $P \leq P'$.

Definition (Simplicity preference)

A pattern P_1 is simplicity-wise preferred to a pattern P_2 (denoted by $P_2 \leq_{\sigma} P_1$) if $\operatorname{Lit}(P_1) \supseteq \operatorname{Lit}(P_2)$.

Pareto-optimal patters w.r.t. \leq_{σ} are called *prime*

Remark

Inspired by the Occam's razor.

Pareto-optimality of Patterns

Definition (Evidential preference)

A pattern P_1 is evidentially preferred to a pattern P_2 (denoted by $P_2 \leq_{\epsilon} P_1$) if $Cov(P_1) \supseteq Cov(P_2)$.

 $\operatorname{Cov}(P)$ denotes $\operatorname{Mod}(P) \cap \Omega$.

Evidentially Pareto-optimal patterns are called strong.

Definition (Evidential preference)

A pattern P_1 is selectively-wise preferred to a pattern P_2 (denoted by $P_2 \leq_{\Sigma} P_1$) if and only if $Mod(P_1) \subseteq Mod(P_2)$.

Pareto-optimal patterns w.r.t. $\Sigma \wedge \epsilon$ are called *spanned*.

Classification with LAD

Lets have

- Γ^+ collection of (selected) positive patterns, s.t. it covers Ω^+ ,
- Γ^- collection of (selected) negative patterns, s.t. it covers Ω^- .

For collection of positive (or negative) patterns Γ and new observation w define

$$\delta(w,\Gamma) = \{ \|P\|_w \mid P \in \Gamma \}$$

Diskriminant

$$\Delta(w) = \frac{|\delta(w, \Gamma^+)|}{|\Gamma^+|} - \frac{|\delta(w, \Gamma^-)|}{|\Gamma^-|}.$$

FUZZY CONCEPT ANALYSIS

more precisely...

Structure of truth degrees = complete residuated lattice $\mathbf{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ $\langle L, \wedge, \vee, 0, 1 \rangle \dots$ complete lattice $\langle L, \otimes, 1 \rangle \dots$ commutative monoid $\langle \otimes, \rightarrow \rangle \dots$ adjoint pair ($a \otimes b \leqslant c$ iff $a \leqslant b \rightarrow c$)

L-set A in universe $U \dots$ mapping A: $U \rightarrow L$ Interpretation of A(u): "degree to which u belongs to A"

Operations with L-sets defined component-wise

- \wedge -intersection $(A \cup B)(u) = A(u) \cup B(u)$
- complement $(\neg A)(u) = A(u) \rightarrow 0$

Set of all L-sets in U is denoted by L^U .

Binary L-relation R between sets $U, V \dots$ mapping $R: U \times V \rightarrow L$, Interpretation of R(u, v): "degree to which u and v are R-related"

Fuzzy Concept Analysis

Fuzzy Context – triple $\langle X, Y, I \rangle$

 $X \dots$ (finite crisp) set of objects $Y \dots$ (finite crisp) set of attributes $I \dots$ L-relation $I : X \times Y \rightarrow L$

	y_1	y_2	y_3	y_4
x_1	0.1	1.0	0.2	0.3
x_2				0.6
x_3				0.6
x_4	0.0	0.0	1.0	1.0

Antitone L-concept-forming operators: $(\cdot)^{\uparrow}: L^X \to L^Y, \ (\cdot)^{\downarrow}: L^Y \to L^X.$

$$A^{\uparrow}(y) = \bigwedge_{x \in X} A(x) \to I(x,y) \quad \text{and} \quad B^{\downarrow}(x) = \bigwedge_{y \in Y} B(y) \to I(x,y)$$

Formal concept w.r.t. $\langle \uparrow, \downarrow \rangle$ is pair $\langle A, B \rangle$ s.t. $A^{\uparrow} = B, B^{\downarrow} = A$ A=extent, B=intent

Concept lattice

$$\mathcal{B}^{\uparrow\downarrow}(X,Y,I) = \{ \langle A,B \rangle \mid A^{\uparrow} = B, B^{\downarrow} = A \}$$

Fuzzy Concept Analysis – Isotone case Isotone L-concept-forming operators $\langle 0, 0 \rangle$: $(\cdot)^{0} : L^{X} \to L^{Y}, (\cdot)^{0} : L^{Y} \to L^{X}.$

$$A^{\cap}(y) = \bigvee_{x \in X} A(x) \otimes I(x,y) \quad \text{and} \quad B^{\cup}(x) = \bigwedge_{y \in Y} I(x,y) \to B(y)$$

Formal concept w.r.t. $\langle \cap, \cup \rangle$ is pair $\langle A, B \rangle$ s.t. $A^{\cap} = B, B^{\cup} = A$; A=extent, B=intent Concept lattice

$$\mathcal{B}^{\cap \cup}(X,Y,I) = \{ \langle A,B \rangle \mid A^{\cap} = B, B^{\cup} = A \}$$

Isotone L-concept-forming operators $\langle \wedge, \vee \rangle (\cdot)^{\wedge} : L^X \to L^Y, \ (\cdot)^{\vee} : L^Y \to L^X.$

$$A^{\wedge}(y) = \bigwedge_{x \in X} I(x,y) \to A(x) \quad \text{and} \quad B^{\vee}(x) = \bigvee_{y \in Y} B(y) \otimes I(x,y)$$

Formal concept w.r.t. $\langle \wedge, \vee \rangle$ is pair $\langle A, B \rangle$ s.t. $A^{\wedge} = B, B^{\vee} = A$; A=extent, B=intent

Concept lattice

$$\mathcal{B}^{\wedge\vee}(X,Y,I) = \{ \langle A,B \rangle \mid A^{\wedge} = B, B^{\vee} = A \}$$

intermezzo: ROUGH SETS

Rough Sets

Pawlak approximation space – $\langle U, E \rangle$, where

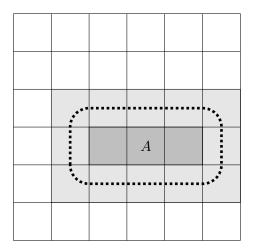
- U is a non-empty set of *objects* (universe),
- E is an equivalence relation on U,

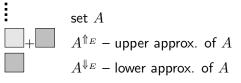
the rough approximation of a crisp set $A \subseteq U$ by E is the pair $\langle A^{\Downarrow_E}, A^{\uparrow_E} \rangle$ of sets in U defined by

$$\begin{split} &x \in A^{\Downarrow_E} \quad \text{iff} \quad ((\forall y \in U) \, \langle x, y \rangle \in E \text{ implies } y \in A), \\ &x \in A^{\Uparrow_E} \quad \text{iff} \quad ((\exists y \in U) \, \langle x, y \rangle \in E \text{ and } y \in A). \end{split}$$

 A^{\Downarrow_E} and A^{\Uparrow_E} are called *lower and upper approximation* of the set A by E, respectively.

Rough Sets





Fuzzy Rough Sets

In the fuzzy setting, one can generalize $\langle A^{\Downarrow_E}, A^{\Uparrow_E} \rangle$ as in

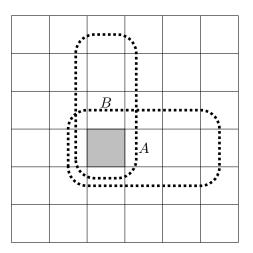
Didier Dubois and Henri Prade. Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, 17(2–3):191–209, 1990.

- Didier Dubois and Henri Prade.
 Putting rough sets and fuzzy sets together.
 Intelligent Decision Support, volume 11 of Theory and Decision Library, pages 203–232., 1992.
- Anna Maria Radzikowska and Etienne E. Kerre. Fuzzy rough sets based on residuated lattices. Transactions on Rough Sets II, volume 3135 of Lecture Notes in Computer Science, pages 278–296., 2005.

$$A^{\Downarrow_E}(x) = \bigwedge_{y \in U} (E(x,y) \to A(y)) \quad \text{and} \quad A^{\Uparrow_E}(x) = \bigvee_{y \in U} (A(y) \otimes E(x,y))$$

for L-equivalence $E \in \mathbf{L}^{U \times U}$ and L-set $A \in \mathbf{L}^{U}$.

Rough Sets – properties of approximations

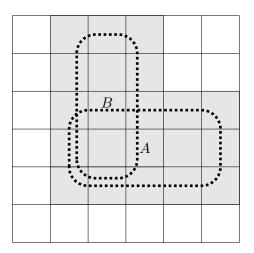


$$sets A, B (A \cap B)^{\bigcup_E}$$

We have:

$$(A \cap B)^{\Downarrow_E} = A^{\Downarrow_E} \cap B^{\Downarrow_E}$$

Rough Sets – properties of approximations



sets
$$A, B$$

 $(A \cup B)^{\uparrow_E}$

We have:

$$(A \cup B)^{\uparrow_E} = A^{\uparrow_E} \cup B^{\uparrow_E}$$

(Fuzzy Rough) Concept Analysis

Observation

Intents in $\mathcal{B}^{\cap \cup}(X, Y, I)$ behave like upper approximations in FRS. Intents in $\mathcal{B}^{\uparrow \downarrow}(X, Y, I)$ behave like lower approximations in FRS.

Robert E. Kent Rough Concept Analysis Rough Sets, Fuzzy Sets and Knowledge Discovery Workshops in Computing 1994, pp 248-255

Ming-Wen Shao, Min Liu, and Wen-Xiu Zhang. Set approximations in fuzzy formal concept analysis. Fuzzy Sets Syst., 158(23):2627–2640, December 2007.

More precisely,...

$$A^{\uparrow E} = A^{\cap E}$$
 and $A^{\downarrow E} = A^{\wedge E}$

Let $E \in L^{Y \times Y}$ be Leibniz L-equivalence induced by $I \subseteq L^{X \times Y}$, that is

$$E(y_1, y_2) = \bigwedge_{x \in X} I(x, y_1) \leftrightarrow I(x, y_1),$$

then E is compatible with I:

$$I = I \circ E = I \triangleright E.$$

where

$$(A \circ B)(x, y) = \bigvee_{f \in F} A(x, f) \otimes B(f, y),$$
$$(A \triangleright B)(x, y) = \bigwedge_{f \in F} B(f, y) \to A(x, f).$$

$$I = I \circ E = I \triangleright E.$$

🕨 R. Belohlavek.

Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell, USA, 2002.

From that we have

$$A^{\uparrow} = (A^{\uparrow})^{\wedge_E},$$
$$A^{\cap} = (A^{\cap})^{\cap_E}.$$

Belohlavek R., Konecny J. Row and Column Spaces of Matrices over Residuated Lattices. Fundamenta Informaticae 115(4)(2012), 279-295.

(Fuzzy Rough) Concept Analysis

Definition

Let $\langle X, Y, I \rangle$ be an L-context. Define L-rough concept-forming operators as

$$A^{\vartriangle} = \langle A^{\uparrow}, A^{\cap} \rangle \quad \text{and} \quad \langle \underline{B}, \overline{B} \rangle^{\triangledown} = \underline{B}^{\downarrow} \cap \overline{B}^{\lor}$$

for $A \in \mathbf{L}^X, \underline{B}, \overline{B} \in \mathbf{L}^Y$.

L-rough concept is then a fixed point of $\langle \Delta, \nabla \rangle$, i.e. a pair $\langle A, \langle \underline{B}, \overline{B} \rangle \rangle \in \mathbf{L}^X \times (\mathbf{L} \times \mathbf{L})^Y$ such that

$$A^{\vartriangle} = \langle \underline{B}, \overline{B} \rangle$$
 and $\langle \underline{B}, \overline{B} \rangle^{\nabla} = A.$

 A^{\uparrow} and A^{\cap} are called *lower intent approximation* and *upper intent approximation*, respectively.

Will be presented at CLA 2014.

THE LINK BETWEEN FRCA AND LAD

Crisp Case $L = \{0, 1\}$

not very interesting

• similar results would be obtained using apposition of the context with its complement.

	y_1	y_2	y_3]		y_1	y_2	y_3	$\neg y_1$	$\neg y_2$	$\neg y_3$
x_1	0	1	0		x_1	0	1	0	1	0	1
x_2	1	1	0		x_2	1	1	0	0	0	1
x_2	1	0	1		x_2	1	0	1	1 0 0	1	0

Still, it provides a connection to LAD.

(crisp) rough sets on Y correspond to subcubes of $\{0,1\}^Y$

Example

 $\langle \underline{A}, \overline{A} \rangle = \langle \{y_3\}, \{y_2, y_3, y_4, y_5\} \rangle$

Characteristic vectors of sets for which $\langle \underline{A}, \overline{A} \rangle$ is their rough approximation:

 $C = \neg y_1 y_3$ 01111
01110
01101
00111
001101
00110
00110
00101
00101
00100

Formal Rough (Crisp) Concept Analysis and Logical Analysis of Data Denote

$$\Omega^+ = \langle X^+, Y, I^+ \rangle, \Omega^- = \langle X^-, Y, I^- \rangle, \Omega = \langle X^+ \cup X^-, Y, I^+ \cup I^- \rangle.$$

Definition

For a term C define pair rs(C) of sets as

$$\operatorname{rs}(C) \mapsto \langle \operatorname{Pos}(C), Y - \operatorname{Neg}(C) \rangle.$$

Theorem

Term C is a positive pattern iff

$$\emptyset \neq \operatorname{rs}(C)^{\nabla_{\Omega}} \subseteq X^+ \text{ and } \operatorname{rs}(C)^{\nabla_{\Omega}} \cap X^- = \emptyset.$$

Term C is a negative pattern iff

 $\emptyset \neq \operatorname{rs}(C)^{\nabla_{\Omega}} \subseteq X^{-} \text{ and } \operatorname{rs}(C)^{\nabla_{\Omega}} \cap X^{+} = \emptyset.$

Denote

$$\hat{\Omega} = \langle X^+ \cup X^-, Y \cup \{d\}, I^+ \cup I^- \cup D \rangle.$$

Theorem

Term C is a positive pattern iff

$$\operatorname{rs}(C \cdot d)^{\nabla_{\hat{\Omega}}} = \operatorname{rs}(C)^{\nabla_{\hat{\Omega}}} \neq \emptyset.$$

Term C is a negative pattern iff

$$\operatorname{rs}(C \cdot \neg d)^{\nabla_{\hat{\Omega}}} = \operatorname{rs}(C)^{\nabla_{\hat{\Omega}}} \neq \emptyset.$$

Theorem

 $P_1 \leq_{\Sigma} P_2 \text{ iff } \operatorname{rs}(P_1) \subseteq \operatorname{rs}(P_2).$

Theorem

$$P_1 \leq_{\epsilon} P_2 \text{ iff } \operatorname{rs}(P_1)^{\nabla_{\omega}} \subseteq \operatorname{rs}(P_2)^{\nabla_{\omega}}.$$

Theorem

Pattern P is spanned iff rs(P) is intent in $\mathcal{B}^{\Delta \nabla}(\Omega)$.

Conclusions

We have some meeting points between FRCA and LAD. What now?

- Algorithms for LAD based on FCA
- Fuzzy setting

Algorithm SPIC (for generating all spanned patterns)

Input: C_0 : the collection of patterns spanned by each individual observation in Ω^+ . Initialize $C := C_0$ Repeat the following operation until the collection C cannot be furthermore enlarged. if their consensus P' exists and if it is not absorbed by a pattern already contained in C, then add it to C.

From the point of view of FCA this is a naïve generation of (part of) a concept lattice.

Algorithms for LAD based on FCA

Petr Krajca, Jan Outrata, Vilem Vychodil Advances in algorithms based on CbO. Proc. CLA 2010, 2010, pp. 325337.

Patterns as closure systems.

$$\mathsf{close-positive}(A) = \begin{cases} A & \text{ if } X^- \cap A = \emptyset, \\ X & \text{ otherwise.} \end{cases}$$

Belohlavek R., Vychodil V.

Closure based constraints in formal concept analysis. Discrete Applied Mathematics 161(13-14)(2013), 1894-1911. closures

Algorithms for LAD based on FCA

Do they know or not?

From

Alexe, Gabriela and Alexe, Sorin and Bonates, Tibérius O. and Kogan, Alexander. Logical Analysis of Data — the Vision of Peter L. Hammer. Annals of Mathematics and Artificial Intelligence, April 2007, 49(1-4), pp. 265–312.

For instance, Malgrange (ref) used a consensus-type approach to find all maximal submatrices consisting of ones of a 0-1 matrix (see also Kuznetsov and Obiedkov (ref) for references to algorithms with polynomial delay), while a concensus-type algorithm for finding all maximal bicliques of a graph was presented in (ref).

🔋 Kuznetsov, S.O., Obiedkov S.A.

Comparing performance of algorithms for generating concept lattices.

J. Exp. Theor. Artif. Intell. 14, 189-216 (2002)

Since the concept-forming operators $\langle \Delta, \nabla \rangle$ are defined in fuzzy setting, we have a direct lead to **fuzzy logical analysis of data**.

THANK YOU FOR YOUR ATTENTION.