Identification of mutations in protein-coding DNA sequences by mass-spectrometry of proteome

Miroslav Hruška

Outline

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Outline

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Study of proteins

What is proteomics?

Large-scale study of proteins.

- proteins large macromolecules¹ performing variety of biological functions
- peptides macromolecules of the same kind as proteins, but significantly shorter and usually without specific biological function

Bottom-up proteomics

- proteins are separated using biochemical methods from sample of interest
- **2** proteins are digested using protease to peptides²
- Imass spectra of peptides are measured
- peptide identification is performed
- oproteins are assembled from identified peptides

²This is because of identification using mass-spectrometry. Proteins are in general too large for mass-spectrometry. $(\Box \rightarrow \langle \Box \rangle \land \Box \rightarrow \langle \Box \rangle \land \Box \rightarrow \langle \Box \rangle$

Mass-spectrometry

- destructive analytical chemistry technique for identification of analytes
- molecules are ionized—based on acquired charge, they have specific mass-to-charge ratio (mz)³

Fundamental ability of mass-spectrometer

 isolation of charged ion with specific mz from a pool of molecules

³For charge 1, this essentialy means mass, however with mass of the charge-giving particle, i.e. a proton. $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$

Tandem mass spectrometry for peptide identification

One step in mass-spectrometer cycle:

- molecules are entering the mass-spectrometer for some short amount of time⁴ and are ionized
- 2 mass spectrum of these molecules is created⁵
- Scandidate mz's representing peptides are selected⁶
- elected molecules then undergo fragmentation
- **(3)** the mass spectrum after fragmentation is created⁷

⁴Usually at most hundreds of milliseconds. ⁵So-called MS¹ spectrum.

⁶By means of isotopic envelope.

⁷So-called MS² spectrum.

Example: MS² spectrum

Spectrum for VGAHAGEYGAEALER/3

Mass-to-charge (m/z)

< 17 ▶ <

Methods Homeometricity

▲ □ ▶ ▲ □ ▶ ▲

Outline

Proteomics

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Methods Homeometricity

・ 同 ト ・ 三 ト ・

Outline

Proteomics

2 Peptide identification• Methods

Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Peptide identification task

Notation

S set of all spectra;
$$\mathbb{S} \equiv \langle 0, 1 \rangle^{\mathbb{R}^+}$$

 $\mathbb{A}\mathbb{A}^C$ set of coded amino-acids; $\mathbb{A}\mathbb{A}^C = \{A, C, D, E, ...\}$
 \mathbb{P}_e set of peptides; $\langle a_1, ..., a_n \rangle \in \mathbb{P}_e, n \ge 1, a_i \in \mathbb{A}\mathbb{A}^C, \{1, ..., n\}$
 $m(p)$ mass of peptide $p \in \mathbb{P}_e$

- suppose $\psi : \mathbb{P}_e \to \mathbb{S}$ is a function representing the fragmentation of peptide and construction of MS² spectrum from molecular fragments
- the identification task is the reversed process—given MS^2 spectrum $s \in S$ obtain $p \in \mathbb{P}_e$ which produced it

i∈

Identification methods

database methods

- spectral database search
- peptide database search⁸
- de novo methods
 - peptide tagging⁹
 - de novo peptide reconstruction

⁸Theoretical spectrum database search. ⁹Partial identification.

Methods Homeometricity

Spectral database search

Spectrum for VGAHAGEYGAEALER/3

Mass-to-charge (m/z)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ・ クタぐ

General fragmentation model Ψ

Let peptide $p = \langle a_1, \dots, a_n \rangle \in \mathbb{P}_e$, consider $\Psi^+ : \mathbb{P}_e \to \mathbb{S}$, where

$$\Psi^+(p)\left(\psi_j\left(\sum_{i=1}^k m(a_i)\right)\right) = 1$$

$$k \in \{1, \dots, n\}, j \in \{1, \dots, m\}$$

and 0 everywhere else. Each $\psi_j : \mathbb{R}^+ \to \mathbb{R}^+, j \in \{1, \dots, m\}$ is of following form:

$$\psi_j(r)=rac{r+q+zp}{z}, q\in\mathbb{R}, z\in\mathbb{N}, ppprox 1.007276$$
 (Da)

 ψ_j are functions mapping the mass of peptide into mass-to-charge ratio of specific type of peptide fragment (q) at given charge (z).

Methods Homeometricity

Peptide database search

Spectrum for VGAHAGEYGAEALER/3

Mass-to-charge (m/z)

De-novo peptide reconstruction

Have $s \in \mathbb{S}$ with peaks $q = \{a \in \mathbb{R}^+ \mid s(a) > 0\}$. Using fragmentation model Ψ with set ψ_j , $j \in \{1, \ldots, l\}$ of mass-to-fragment-mz functions obtain set of candidate masses q_m :

$$q_m = \bigcup_{j=1}^l \psi_j^{-1}(q)$$

Construct directed graph $G = \langle q_m, E \rangle$, where

$$E = \left\{ \langle a, b \rangle \in q_m \times q_m \mid (\exists x \in \mathbb{AA}^{\mathcal{C}}) \ m(b) - m(a) \approx_{\varepsilon} m(x) \right\}$$

Then return highest scoring path starting at zero and ending at mass of the molecule prior to fragmentation.

Methods Homeometricity

・ 同 ト ・ 三 ト ・

Outline

Proteomics

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Fragmentation considerations

- \bullet molecular fragmentation ψ is not well understood
- we are not able to tell ψ is injective
- in practice the situation is more complicated because of noise peaks when performing the identification task

Definition

 $\Phi: \mathbb{S} \times \mathbb{S} \to \langle 0, 1 \rangle$ is a spectra similarity measure, if following holds:

$$\Phi(x, y) = \Phi(y, x)$$

$$\Phi(x, y) = 1 \iff x = y$$

Peptide homeometricity

Definition

Let $p, q \in \mathbb{P}_e$, ϕ a spectra similarity measure and ψ a fragmentation function. Then call $p, q \phi_t$ -homeometric if

 $\phi(\psi(p),\psi(q)) \geqslant t, t \in \langle 0,1 \rangle.$

Definition

Let $p, q \in \mathbb{P}_e$ and $\Psi : \mathbb{P}_e \to \mathbb{S}$, ϕ a spectra similarity measure. Then call $p, q \Psi$ -model- ϕ_t -homeometric if

 $\phi(\Psi(p), \Psi(q)) \ge t, t \in \langle 0, 1 \rangle.$

We would like to have approximately this behaviour:

• p, q ϕ_t -homeometric \iff p, q Ψ -model- ϕ_t -homeometric

・ 同 ト ・ ヨ ト ・ - ヨ ト …

Methods Homeometricity

イロト イポト イヨト イヨト

Ψ_{b_1} fragmentation model

- ${\ensuremath{\, \bullet }}\xspace \Psi_{b_1}$ considers only so-called b fragments and only charge 1
- the only mass-to-fragment-mz function is $\psi_{b_1}(r) = r b + p$
- the inverse fragment-mz-to-mass function is $\theta_{b_1}(s) = s + b p$

$$\Psi_{b_1}(\langle a_1,\ldots,a_n\rangle)\Big(\psi_{b_1}\Big(\sum_{i=1}^k m(a_i)\Big)\Big) = 1$$
$$k \in \{1,\ldots,n\}$$

Methods Homeometricity

Properties of Ψ_{b_1}

- non-injectivity of Ψ_{b_1} follows from existence of $a, b \in \mathbb{AA}^C$, $a \neq b$ with $m(a) = m(b)^{10}$
- thus there are $p, q \in \mathbb{P}_e$ which are Ψ_{b_1} -model- ϕ_1 -homeometric for any ϕ

Equivalence relation on \mathbb{P}_e

Let $\theta \subseteq \mathbb{P}_e \times \mathbb{P}_e$, $\langle p, q \rangle \in \theta \iff \Psi_{b_1}(p) = \Psi_{b_1}(q)$. Directly by definition, θ is an equivalence relation.

Thus it is meaningful to consider the identification task as a function: $\Psi_{b_1}(\mathbb{P}_e) \to \mathbb{P}_e/\theta$

¹⁰Leucine and Isoleucine are coded amino-acids, that are molecular isomers; having the same chemical formula, but different structure. $\langle \sigma \rangle \land \langle z \rangle \land \langle z$

Ψ_{b_1} -model-homeometric peptides enumeration

So having a similarity measure ϕ , the set of Ψ_{b_1} -model- ϕ_t -homeometric peptides for p whose mass differ¹¹ at most ϵ is

 $H_{\epsilon}(p) = \{ q \in \mathbb{P}_{e} \mid \phi(\Psi_{b_{1}}(p), \Psi_{b_{1}}(q)) \ge t \text{ and } m(p) \approx_{\epsilon} m(q) \}$

We will approach the enumeration of $H_{\epsilon}(p)$.

Properties of peptides with given mass

Define $f_{\epsilon}(x)$ as a function which returns all peptides with mass equal to x (up to ϵ).

$$f_{\epsilon}(x) = \big\{ \langle a_1, \dots, a_n \rangle \in \mathbb{P}_e \mid x \approx_{\epsilon} m(\langle a_1, \dots, a_n \rangle) \big\}$$

Note that for any $y = f_{\epsilon}(x)$ if $a \in y$ then any permutation b of a is in y, so $b \in y$; which follows from commutativity of addition.

 $H_{\epsilon}(p) \subseteq f_{\epsilon}(m(p))$

Related problem

The homeometricity peptides enumeration problem is related to the following problem:

Inputs

Let $x \in \mathbb{R}^+$ be desired value, $\epsilon \ge 0$ a tolerance, finite set of atoms $\mathbb{A} = \{a_i \in \mathbb{R}^+ \mid i \in \{1, \dots, k\}\}, k \ge 1$ and finite set of "checkpoints" $\mathbb{C} = \{c_i \in \mathbb{R}^+ \mid i \in \{1, \dots, l\}\}, l \ge 1$.

What we are interested is following:

Output

Obtain sequences of atoms that sum up to desired value x (up to ϵ), and for each checkpoint c, there is some prefix subsequence which sums up to c (up to ϵ).

Problem decomposition [1/2]

Formally:

$$g_{\epsilon}^{\mathbb{C}}(x) = \left\{ \langle a_1, \dots, a_n \rangle \in \mathbb{A}^n \mid \sum_{i=1}^n a_i \approx_{\epsilon} x \text{ and} \\ (\forall c \in \mathbb{C}) \ (\exists j \in \{1, \dots, n\}) \ m(\langle a_1, \dots, a_j \rangle) \approx_{\epsilon} c \right\}$$

We can decompose the problem and consider summing up to each "checkpoint" separately. This is obvious for $\epsilon = 0$, however there is a subtle change when $\epsilon > 0$.

Consider having ordered elements of \mathbb{C} as $c_1 \leqslant c_2 \leqslant \cdots \leqslant c_l$ and define:

$$x_{1} = c_{2} - c_{1}$$

$$\vdots$$

$$x_{l-1} = c_{l} - c_{l-1}$$

$$x_{l} = x - c_{l}$$

$$x_{l} = x - c_{l}$$

Methods Homeometricity

Problem decomposition [2/2]

$$\begin{aligned} \mathbb{X}_1 &= f_{\epsilon}(x_1) \\ \mathbb{X}_2 &= f_{2\epsilon}(x_2) \\ \mathbb{X}_3 &= f_{2\epsilon}(x_3) \\ \vdots \end{aligned}$$

 $\mathbb{X}_I = f_{2\epsilon}(x_I)$

Then the union of solutions obtained by concatenating candidate subsolutions contains $g_{\epsilon}^{\mathbb{C}}(x)$.

$$\bigcup \left\{ a_1 \oplus \cdots \oplus a_n \mid (\forall i \in \{1, \ldots, I\}) \ a_i \in \mathbb{X}_i \right\} \supseteq g_{\epsilon}^{\mathbb{C}}(x)$$

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ クタぐ

Application for homeometric peptides

Have $\langle a_1, \ldots, a_n \rangle = p \in \mathbb{P}_e$. Observe that p has n peaks in Ψ_{b_1} .

$$q = \{a \in \mathbb{R}^+ \mid \Psi_{b_1}(a) > 0\}$$
$$x = m(p)$$
$$\mathbb{A} = m(\mathbb{A}\mathbb{A}^C)$$
$$\mathbb{C}_q = \theta_{b_1}(q)$$

Pick number $m \leq n$ as the desired least amount of intersecting peaks. Let $\mathbb{C} \subseteq \mathbb{C}_q$, $|\mathbb{C}| = m$. Then each solution to previously addressed problem (for a given $x, \mathbb{A}, \mathbb{C}$) will contain at least m intersecting peaks (up to ϵ).

Database construction dentification Post-identification artefact analysis

< 17 > <

Outline

Proteomics

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Motivation

- typical cancer cell carry mutations in up to hundreds of genes
- early diagnostics of potential disease-relevant information
- knowledge of mutation profile helps in selection of therapy¹²

¹²There are well-known cases where mutations are the reason why patients do not respond to drug treatment. $\langle \Box \rangle \langle \Box$

Database construction Identification Post-identification artefact analysis

Outline

Proteomics

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Database construction

- obtain DNA sequences
- e transcribe to RNA and obtain protein-coding sequences by cutting out non-coding subsequences ⇒ obtain mRNA
- update sequences by DNA/RNA alterations from known, disease-relevant sources
- Itranslate altered mRNA to proteins
- Ø digest to peptides

mRNA translation

- biological process which synthesizes proteins from mRNA
- the translation machinery maps triplets of RNA bases to one amino-acid, the mapping is dictated by so-called genetic code¹³
- the genetic code could be thought of as function $\{A, C, G, U\}^3 \to \mathbb{A}\mathbb{A}^C$ and it is non-injective, surjective mapping
- denote Ω function that maps sequences of RNA bases to peptides (the mapping is induced by genetic code)

¹³Genetic code is highly similar between organisms. $\Box \rightarrow \langle \Box \rangle \wedge \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

Database construction Identification Post-identification artefact analysis

Position-Aware strings

▲ロト ▲掃ト ▲注ト ▲注ト 二注 …のへで

Database construction Identification Post-identification artefact analysis

▲ 伊 ▶ - ▲ 三 ▶

Simplified example of database record

Peptide: AAIEQSMK Protein: ENSP00000377197 Protein position: 2098 Protein reference: V (Valine) Protein altered: M (Methionine) Peptide position: 6 Chromosome: 16 Chromosome position: 70,989,298 Chromosome reference: G (Guanine) Chromosome altered: A (Adenine)

Enumeration of peptides

Algorithm 1 Naïve enumeration pseudo-algorithm

- 1: procedure naïve-enumerate(alts, mRNA)
- 2: $combs \leftarrow Combinations(alts)$
- 3: for $c \in combs$ do
- 4: $protein \leftarrow Translate(Update(mRNA, c))$
- 5: $peptides \leftarrow Digest(protein)$
- 6: Append-Output(*peptides*)
- 7: end for
- 8: end procedure

Database construction Identification Post-identification artefact analysis

< 1 → <

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA

P74 P71	

Database construction Identification Post-identification artefact analysis

▲ (日本) → ● ▲

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA

Alteration induced proteolytic pattern

Database construction Identification Post-identification artefact analysis

< 17 ▶ <

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA

Alteration induced proteolytic pattern

Database construction Identification Post-identification artefact analysis

< 17 ▶ <

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA

Alteration induced proteolytic pattern

PDDI algorithm

Definition

Sequence of mRNA alterations which when applied to given mRNA changes proteolytic digest pattern when translated is called proteolytic-digest difference introducer, shortened as PDDI.

Algorithm's main steps:

- Identification of PDDIs—these change digest pattern
- If for each combination of non-overlapping PDDIs: digestion of protein into peptides
- then just combinations over alterations in scope of peptide—digest pattern remains the same

Database construction Identification Post-identification artefact analysis

< 17 ▶ <

Outline

Proteomics

Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Dymka—identification system

Motto: "Reliable identification of peptides from MS² spectra."

Integrated with:

- 5 peptide database search engines¹⁴
- 2 spectral database search engines¹⁵
- 3 de-novo systems¹⁶

Other properties:

- cluster-powered, deployed at IMTM (250+ cores)
- statistical evaluation based on target-decoy approach¹⁷

¹⁴crux (Sequest), MASCOT, MyriMatch, OMSSA, X!Tandem
¹⁵Pepitome, SpectraST
¹⁶CompNovoCID, DirecTag, PepNovo
¹⁷This is not true anymore.

Target-decoy approach

- for use with database systems
- search engines are given decoyed databases
- databases consist of two equal-sized parts
 - target—what we are searching for
 - decoy-what, we know, is not there
- assumption—incorrect target match is equally likely as match to decoy database
- then each match to decoy part is incorrect
- each score, say s, is associated with q-value
 - the proportion of decoy matches with score $\geqslant s$

Example of conflicting information

• conflicting information can be analyzed

Example of conflicting information							
 consider a candidate peptide for a spectrum 							
	scan numbe 12311	er p ALGFE	eptide NATQALGR	charge 2	MZ 674.8461	RT 3192.8735	
 its scores and associated q-values across search engines 							
score	SpectraST	Pepitome	MyriMatch	OMSSA	X!Tandem	Crux 723 587	Mascot
q-value	0.0	0.0	0.7139	NA	NA	0.0	0.02877

Database construction Identification Post-identification artefact analysis

< 17 ▶ <

Outline

Proteomics

2 Peptide identification

- Methods
- Homeometricity

Identification of mutations

- Database construction
- Identification
- Post-identification artefact analysis

Observations regarding the identification

- search engines do not address the homeometricity problem \implies even high-scoring matches are incorrect
- this problem does not show up so often for reference peptides¹⁸ because in majority of cases their presence is more likely than their non-reference homeometric cognates
- this is in direct contrast with mutant peptides which often have homeometric peptide among reference peptides¹⁹

Outcome

Only mutant peptides with unlikely interpretation by homeometric peptides are selected.

Observations regarding the peptide origin

- suppose $p \in \mathbb{P}_e$ is correctly identified reference peptide and there is only one reference mRNA sequence r, such that $\Omega(r) = p$
- warning this doesn't neccessarily mean that p originated from r
 - it could happen that *p* originated from other "reference" mRNA, which was adequately mutated
 - we use Occam's razor principle

Outcome

Especially, in identification of non-reference peptides we're interested in those that originated from unique (non-reference) mRNA.

Results

- the system was recently validated on cancer cell line HCT116
- both RNA and proteins were separated from the sample
 - RNA underwent sequencing
 - peptide spectra were measured using mass-spectrometry
- the system was used to deduce DNA/RNA alterations and these were compared to alterations obtained by RNA sequencing²⁰
- without artefact analysis—enormous amount of false positives²¹
- 73 alterations were identified, of which 13 were cancer-related

²⁰The comparison is not as trivial as it may seem.

²¹Alteration which was not found using RNA sequencing. \Rightarrow (=)

Database construction Identification Post-identification artefact analysis

Conclusions & Future work

Conclusions

- system capable of reliable identification of small mutations using mass-spectrometry was developed
- treatment of homeometricity was shown to be important to remove one class of artefacts

Future work

- construction of spectras for mutant peptides from spectral databases
- extension of system to work reliably with large mutations and splice site alterations

Proteomics	Database construction
Peptide identification	
Identification of mutations	Post-identification artefact analysis

Thank you for your attention!