

Fuzzy Relational Equations

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

 Bartl E. and Belohlavek R. Hardness of Solving Relational Equations. Accepted in *IEEE Transactions on Fuzzy Systems*.

 Bartl E. and Prochazka P.
 Do We Need Minimal Solutions of Fuzzy Relational Equations in Advance? Submitted to *IEEE Transactions on Fuzzy Systems*.

Fuzzy relational equations: introduction

U

Prof. Elie Sanchez (1944–2014), French mathematician

 Sanchez's seminal paper: Sanchez E. 1976.
 Resolution of composite fuzzy relation equations. Information and Control 30:38–48.

Fuzzy relational equations: introduction

we consider:

L ... lattice of truth degrees (Sanchez: Brouwerian lattice)

 $X \in L^n$... unknown unary fuzzy relation (fuzzy set)

 $S \in L^{n \times m}$. . . given fuzzy relation

 $T \in L^m \, \dots$ given fuzzy set

 \circ ... sup-t-norm composition operator (other types are also possible)

fuzzy relational equation is an expression

$$X \circ S = T$$

• a solution to $X \circ S = T$ is any $R \in L^n$ for which $R \circ S = T$, i.e.

$$\bigvee_{l=1}^n (R_l \otimes S_{lj}) = T_j,$$

where $S_{lj} \in L$ denotes the degree to which l is related to j by S, R_l is the degree to which l belongs to R; similarly for T_j

Application: medical diagnosis

U

known fuzzy relations:

 $S\ldots$ association between diagnoses and symptoms (corpus of medical knowledge)

- $T\,\ldots$ symptoms of a patient
- we want to find:

R . . . diagnosis of the patient such that $R\circ S=T$

Projects:

- 1968–2004, University of Vienna's Medical School: CADAIG I, II (Computer Assisted Diagnosis System)
- nowadays, Vienna General Hospital: MedFrame, MONI system (Monitoring of Nosocomial Infections)

Application: rule based fuzzy control

• we suppose: Φ ... control function $\mathcal{D} = \{\langle S_i, T_i \rangle | i \in I\}$... incomplete description of Φ using input-output data pairs • \mathcal{D} can be seen as a list of linguistic control rules:

```
if \sigma is S_i then \tau is T_i, i \in I,
```

where σ is input variable, and τ is output variable

 \blacksquare aim: to interpolate $\Phi,$ i.e. to find Φ^* such that

 $\Phi^*(S_i) = T_i, \quad i \in I$

Application: rule based fuzzy control

- controler is realized by fuzzy relation R connecting inputs S_i with outputs T_i via compositional rule of inference
- that is, we try to solve a system of equations

$$X \circ S_i = T_i, \quad i \in I$$

• in practice, solution is given by (Mamdani and Assilian approach)

$$R_{\mathsf{MA}} = \bigcup_{i \in I} (S_i \times T_i)$$

Criteria of solvability

• well-known fundamental theorem providing a condition for solvability

Theorem (Sanchez, 1976)

An equation $X \circ S = T$ has a solution iff $(S \triangleleft T^{-1})^{-1}$ is a solution. If $X \circ S = T$ is solvable then $(S \triangleleft T^{-1})^{-1}$ is its greatest solution.

what is the relationship between

$$\hat{R} = (S \triangleleft T^{-1})^{-1} \text{ and}$$
$$R_{\mathsf{MA}} = \bigcup_{i \in I} (S_i \times T_i)?$$

Theorem (corollary of some results of Klawonn, 2000)

If all S_i are normal fuzzy sets and $R_{MA} \subseteq \hat{R}$, then R_{MA} is solution of $X \circ S = T$.

Minimal solutions

solvable equation:

unique maximal solution \hat{R} ; how many minimal solutions?

there may be *no* minimal solution but usually there are *variety* of themfor instance:

 $x \otimes 0.5 = 0.5$

where $x \in [0,1],$ \otimes is nilpotent minimum defined as

$$a \otimes b = \begin{cases} 0 & \text{if } a + b \leq 1 \\ \min\{a, b\} & \text{otherwise} \end{cases}$$

 \blacksquare this equation has solution-set (0.5,1], i.e. it has no minimal solution

All solutions

 if there is a minimal solution, the set of all solutions may be represented as the union of intervals bounded from above by the greatest solution and from below by the minimal solutions

• therefore, minimal solutions play a crucial role

Papers on minimal solutions

- due to the importance of minimal solutions, several methods to find all of them have been published
- but more fundamental is the *computational complexity* of finding minimal solutions
- recently, some papers addressing this issue appeared
- all of them adopt the well-known set-cover problem to justify that the problem of finding all minimal solutions is NP-hard

Various flaws in the literature

- (i) the notion of *covering* is used in confusing manner
- (ii) the concept of minimal solution is used in confusing manner
- (iii) the problem of computing all minimal solutions, presented in the literature as an optimization problem, is ill-conceived since it does not fit the notion of an optimization problem

Recall: Set-cover problem

U

Set-cover is optimization problem given by:

- instances: pairs $\langle U, S \rangle$ where $U = \{1, \ldots, m\}$ and $S = \{C_i \subseteq U \mid i = 1, \ldots, n\}$ such that $\bigcup_{i=1}^n C_i = U$
- feasible solution: $\mathcal{C} \subseteq \mathcal{S}$ such that $\bigcup \mathcal{C} = U$
- function sol: assigning to every instance the set of all feasible solutions
- function cost: assigning to every instance $\langle U, S \rangle$ and every feasible solution $C \in sol(U, S)$ a positive rational number specifying the cost of the given solution:

$$\operatorname{cost}(\langle U, \mathcal{S} \rangle, \mathcal{C}) = |\mathcal{C}|$$

our aim is to minimize the cost

We also require some additional conditions:

- for every instance $\langle U, S \rangle$, the length of each feasible solution $C \in sol(U, S)$ is bounded by a polynomial of the length of $\langle U, S \rangle$
- $\hfill \ensuremath{\mathsf{cost}}$ is computable in polynomial time

Problem to find a minimal solution to fuzzy relational equation

It is sufficient to restrict to a special case: ordinary (Boolean) relational equations.

It is optimization problem given by:

- instances: ordinary equations $X \circ S = T$
- \blacksquare feasible solution: relation R such that $R\circ S=T$
- function sol: assigning to every instance the set of all feasible solutions
- function cost: assigning to every $X \circ S = T$ and every solution $R \in sol(X \circ S = T)$ the cost of the given solution (next slide)
- our aim is to minimize the cost

Two notions of a minimal solution

A solution $R \in \operatorname{sol}(X \circ S = T)$ is called

• #-minimal (cardinality-minimal) if $|R| \le |R'|$ for every $R' \in sol(X \circ S = T)$, where $|R| = \sum_{i=1}^{n} R_i$ is the cardinality of R; cost function is then defined by

$$\cot_{\#}(X \circ S = T, R) = |R|$$

• \subseteq -minimal (inclusion-minimal) if R is minimal w.r.t. \subseteq in $\langle sol(X \circ S = T), \subseteq \rangle$, i.e. if no R_i may be flipped from 1 to 0 without losing the property of being a solution; cost function is then defined by

$$\operatorname{cost}_{\subseteq}(X \circ S = T, R) = \begin{cases} 1 & \text{if } R \text{ is } \subseteq \text{-minimal} \\ 2 & \text{otherwise} \end{cases}$$

Two Corresponding Optimization Problems

- $MINSOL_{\#}$ with #-minimal solutions
- \blacksquare $MINSOL_{\subseteq}$ with $\subseteq\text{-minimal solutions}$

Lemma

Function $cost_{\subseteq}$ is computable in polynomial time.

Proof: We have algorithm computing cost_{\subseteq} in polynomial time ($R[R_i = 0]$ denotes the relation resulting from R by flipping the *i*-th element to 0):

```
Input: a solution R to equation X \circ S = T
Output: 1 if R is \subseteq-minimal; 2 otherwise
for i = 1, ..., n do
if R_i = 1 and R[R_i = 0] \circ S = T then
return 2
end if
end for
return 1
```

Relationship between set-cover and MINSOL_{\dots}

Definition

By the equation associated to $\langle U, S \rangle$ (we assume a fixed indexation of elements of U and S) we understand the equation $X \circ S = T$ where $S \in \{0, 1\}^{n \times m}$ and $T \in \{0, 1\}^m$ are defined by

$$S_{ij} = \begin{cases} 1, & \text{if } j \in C_i, \\ 0, & \text{if } j \notin C_i, \end{cases} \quad \text{and} \quad T_j = 1$$

for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$.

Lemma

Let X ∘ S = T be an equation associated to ⟨U,S⟩ of set-cover problem. Then
(a) the mapping sending an arbitrary C ⊆ S to R_C ∈ {0,1}ⁿ, defined by (R_C)_i = 1 iff C_i ∈ C is a bijection for which C ∈ sol(U,S) iff R_C ∈ sol(X ∘ S = T)
(b) C ∈ opt_#(U,S) iff R_C ∈ opt_#(X ∘ S = T)
(c) C ∈ opt_C(U,S) iff R_C ∈ opt_C(X ∘ S = T)

• by $\operatorname{opt}_{\dots}(\dots)$ we denote the set of all optimal solutions (solutions with minimal cost)

Complexity of MINSOL_{\dots}

Theorem

(a) MINSOL_# is NP-hard.
(b) MINSOL_⊆ ∈ PO.

Proof:

(a) Directly from NP-hardness of a decision version of set-cover problem.

(b) The following algorithm solves $MINSOL_{\subseteq}$ and has a polynomial time complexity:

```
Input: FRE X \circ S = T

Output: \subseteq-minimal solution to X \circ S = T

R_i \leftarrow 1 for every i \in \{1, \dots, n\}

while there is i \in \{1, \dots, n\} such that (R_i = 1) and (R[R_i = 0] \circ S = T) do

R \leftarrow R[R_i = 0]

end while

return R
```

Problem of computing all \subseteq -minimal solutions

- \blacksquare existing papers: $\operatorname{allMINSOL}_{\subseteq}$ is NP-hard optimization problem
- but NP-hardness imply that:

% if P \neq NP then there does not exist an efficient algorithm computing all minimal solutions;

• we show a stronger version of this claim is true: condition "if $P \neq NP$ " can be dropped

- allMINSOL_⊆ is not an optimization problem in terms of computational complexity theory since there are equations with exponentially many minimal solutions
- original idea: is there any equation such that all \subseteq -minimal solutions forms the longest antichain in $\langle \{0,1\}^n, \subseteq \rangle$? (Sperner's theorem)

Problem of computing all \subseteq -minimal solutions

Lemma

For every positive integer m, there exist relations $S \in \{0,1\}^{2m \times m}$ and $T \in \{0,1\}^m$ such that the set of all \subseteq -minimal solutions of $X \circ S = T$ has 2^m elements.

Proof: Define equation:

$$X \circ \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} = (1 \ 1 \ \dots \ 1)$$

If $R \in \{0,1\}^{2m}$ is a solution, then $R_j = 1$ or $R_{2j} = 1$ or both. If both $R_j = 1$ and $R_{2j} = 1$, then R is not \subseteq -minimal. Hence, in a minimal solution R, exactly one of R_j and R_{2j} equals 1. The number of such Rs is clearly 2^m .

Problem of computing all \subseteq -minimal solutions

Theorem

There does not exist a polynomial time algorithm solving $\operatorname{allMINSOL}_{\subset}$.