Fuzzy Relational Equations

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

■ Bartl E. and Belohlavek R. Hardness of Solving Relational Equations. Accepted in IEEE Transactions on Fuzzy Systems.

- Bartl E. and Prochazka P.

Do We Need Minimal Solutions of Fuzzy Relational Equations in Advance? Submitted to IEEE Transactions on Fuzzy Systems.

Fuzzy relational equations: introduction
■ Prof. Elie Sanchez (1944-2014), French mathematician

■ Sanchez's seminal paper:
Sanchez E. 1976.
Resolution of composite fuzzy relation equations.
Information and Control 30:38-48.

Fuzzy relational equations: introduction
■ we consider:
L... lattice of truth degrees (Sanchez: Brouwerian lattice)
$X \in L^{n} \ldots$ unknown unary fuzzy relation (fuzzy set)
$S \in L^{n \times m} \ldots$ given fuzzy relation
$T \in L^{m} \ldots$ given fuzzy set

- ...sup-t-norm composition operator (other types are also possible)
- fuzzy relational equation is an expression

$$
X \circ S=T
$$

■ a solution to $X \circ S=T$ is any $R \in L^{n}$ for which $R \circ S=T$, i.e.

$$
\bigvee_{l=1}^{n}\left(R_{l} \otimes S_{l j}\right)=T_{j}
$$

where $S_{l j} \in L$ denotes the degree to which l is related to j by S, R_{l} is the degree to which l belongs to R; similarly for T_{j}

Application: medical diagnosis

- known fuzzy relations:
$S \ldots$ association between diagnoses and symptoms (corpus of medical knowledge)
$T \ldots$...symptoms of a patient
- we want to find:
$R \ldots$ diagnosis of the patient such that $R \circ S=T$

Projects:
■ 1968-2004, University of Vienna's Medical School: CADAIG I, II (Computer Assisted Diagnosis System)
■ nowadays, Vienna General Hospital: MedFrame, MONI system (Monitoring of Nosocomial Infections)

Application: rule based fuzzy control

■ we suppose:
$\Phi \ldots$...control function
$\mathcal{D}=\left\{\left\langle S_{i}, T_{i}\right\rangle \mid i \in I\right\} \ldots$ incomplete description of Φ using input-output data pairs

- \mathcal{D} can be seen as a list of linguistic control rules:

$$
\text { if } \sigma \text { is } S_{i} \text { then } \tau \text { is } T_{i}, \quad i \in I,
$$

where σ is input variable, and τ is output variable
■ aim: to interpolate Φ, i.e. to find Φ^{*} such that

$$
\Phi^{*}\left(S_{i}\right)=T_{i}, \quad i \in I
$$

Application: rule based fuzzy control

■ controler is realized by fuzzy relation R connecting inputs S_{i} with outputs T_{i} via compositional rule of inference

- that is, we try to solve a system of equations

$$
X \circ S_{i}=T_{i}, \quad i \in I
$$

■ in practice, solution is given by (Mamdani and Assilian approach)

$$
R_{\mathrm{MA}}=\bigcup_{i \in I}\left(S_{i} \times T_{i}\right)
$$

Criteria of solvability

■ well-known fundamental theorem providing a condition for solvability

Theorem (Sanchez, 1976)

An equation $X \circ S=T$ has a solution iff $\left(S \triangleleft T^{-1}\right)^{-1}$ is a solution. If $X \circ S=T$ is solvable then $\left(S \triangleleft T^{-1}\right)^{-1}$ is its greatest solution.

■ what is the relationship between

$$
\begin{aligned}
\hat{R} & =\left(S \triangleleft T^{-1}\right)^{-1} \text { and } \\
R_{\mathrm{MA}} & =\bigcup_{i \in I}\left(S_{i} \times T_{i}\right) ?
\end{aligned}
$$

Theorem (corollary of some results of Klawonn, 2000)

If all S_{i} are normal fuzzy sets and $R_{M A} \subseteq \hat{R}$, then $R_{M A}$ is solution of $X \circ S=T$.

Minimal solutions

- solvable equation:
unique maximal solution \hat{R};
how many minimal solutions?
■ there may be no minimal solution but usually there are variety of them
- for instance:

$$
x \otimes 0.5=0.5
$$

where $x \in[0,1], \otimes$ is nilpotent minimum defined as

$$
a \otimes b= \begin{cases}0 & \text { if } a+b \leq 1 \\ \min \{a, b\} & \text { otherwise }\end{cases}
$$

- this equation has solution-set $(0.5,1]$, i.e. it has no minimal solution

All solutions

- if there is a minimal solution, the set of all solutions may be represented as the union of intervals bounded from above by the greatest solution and from below by the minimal solutions

- therefore, minimal solutions play a crucial role

Papers on minimal solutions

■ due to the importance of minimal solutions, several methods to find all of them have been published
■ but more fundamental is the computational complexity of finding minimal solutions

- recently, some papers addressing this issue appeared

■ all of them adopt the well-known set-cover problem to justify that the problem of finding all minimal solutions is NP-hard

Various flaws in the literature

(i) the notion of covering is used in confusing manner
(ii) the concept of minimal solution is used in confusing manner
(iii) the problem of computing all minimal solutions, presented in the literature as an optimization problem, is ill-conceived since it does not fit the notion of an optimization problem

Recall: Set-cover problem

Set-cover is optimization problem given by:
■ instances: pairs $\langle U, \mathcal{S}\rangle$ where $U=\{1, \ldots, m\}$ and $\mathcal{S}=\left\{C_{i} \subseteq U \mid i=1, \ldots, n\right\}$ such that $\bigcup_{i=1}^{n} C_{i}=U$
■ feasible solution: $\mathcal{C} \subseteq \mathcal{S}$ such that $\cup \mathcal{C}=U$
■ function sol: assigning to every instance the set of all feasible solutions
■ function cost: assigning to every instance $\langle U, \mathcal{S}\rangle$ and every feasible solution $\mathcal{C} \in \operatorname{sol}(U, \mathcal{S})$ a positive rational number specifying the cost of the given solution:

$$
\operatorname{cost}(\langle U, \mathcal{S}\rangle, \mathcal{C})=|\mathcal{C}|
$$

■ our aim is to minimize the cost

We also require some additional conditions:
■ for every instance $\langle U, \mathcal{S}\rangle$, the length of each feasible solution $\mathcal{C} \in \operatorname{sol}(U, \mathcal{S})$ is bounded by a polynomial of the length of $\langle U, \mathcal{S}\rangle$

- cost is computable in polynomial time

It is sufficient to restrict to a special case: ordinary (Boolean) relational equations.
It is optimization problem given by:

- instances: ordinary equations $X \circ S=T$
- feasible solution: relation R such that $R \circ S=T$
- function sol: assigning to every instance the set of all feasible solutions
- function cost: assigning to every $X \circ S=T$ and every solution $R \in \operatorname{sol}(X \circ S=T)$ the cost of the given solution (next slide)
- our aim is to minimize the cost

Two notions of a minimal solution

A solution $R \in \operatorname{sol}(X \circ S=T)$ is called
■ \#-minimal (cardinality-minimal) if $|R| \leq\left|R^{\prime}\right|$ for every $R^{\prime} \in \operatorname{sol}(X \circ S=T)$, where $|R|=\sum_{i=1}^{n} R_{i}$ is the cardinality of R; cost function is then defined by

$$
\operatorname{cost}_{\#}(X \circ S=T, R)=|R|
$$

$■ \subseteq$-minimal (inclusion-minimal) if R is minimal w.r.t. \subseteq in $\langle\operatorname{sol}(X \circ S=T), \subseteq\rangle$, i.e. if no R_{i} may be flipped from 1 to 0 without losing the property of being a solution; cost function is then defined by

$$
\operatorname{cost}_{\subseteq}(X \circ S=T, R)= \begin{cases}1 & \text { if } R \text { is } \subseteq \text {-minimal } \\ 2 & \text { otherwise }\end{cases}
$$

Two Corresponding Optimization Problems

- MINSOL ${ }_{\text {\# }}$ with \#-minimal solutions

■ MINSOL \subseteq with \subseteq-minimal solutions

Lemma

Function cost \subseteq is computable in polynomial time.
Proof: We have algorithm computing cost \subseteq in polynomial time $\left(R\left[R_{i}=0\right]\right.$ denotes the relation resulting from R by flipping the i-th element to 0):

Input: a solution R to equation $X \circ S=T$
Output: 1 if R is \subseteq-minimal; 2 otherwise

$$
\text { for } i=1, \ldots, n \text { do }
$$

if $R_{i}=1$ and $R\left[R_{i}=0\right] \circ S=T$ then return 2
end if
end for return 1

Relationship between set-cover and MINSOL..

Definition

By the equation associated to $\langle U, \mathcal{S}\rangle$ (we assume a fixed indexation of elements of U and \mathcal{S}) we understand the equation $X \circ S=T$ where $S \in\{0,1\}^{n \times m}$ and $T \in\{0,1\}^{m}$ are defined by

$$
S_{i j}=\left\{\begin{array}{ll}
1, & \text { if } j \in C_{i}, \\
0, & \text { if } j \notin C_{i},
\end{array} \quad \text { and } \quad T_{j}=1\right.
$$

for all $i=1, \ldots, n$ and $j=1, \ldots, m$.

Relationship between set-cover and MINSOL..

Lemma

Let $X \circ S=T$ be an equation associated to $\langle U, \mathcal{S}\rangle$ of set-cover problem. Then
(a) the mapping sending an arbitrary $\mathcal{C} \subseteq \mathcal{S}$ to $R_{\mathcal{C}} \in\{0,1\}^{n}$, defined by

$$
\left(R_{\mathcal{C}}\right)_{i}=1 \text { iff } C_{i} \in \mathcal{C}
$$

is a bijection for which

$$
\mathcal{C} \in \operatorname{sol}(U, \mathcal{S}) \text { iff } R_{\mathcal{C}} \in \operatorname{sol}(X \circ S=T)
$$

(b) $\mathcal{C} \in \operatorname{opt}_{\#}(U, \mathcal{S})$ iff $R_{\mathcal{C}} \in$ opt $_{\#}(X \circ S=T)$
(c) $\mathcal{C} \in$ opt $_{\subseteq}(U, \mathcal{S})$ iff $R_{\mathcal{C}} \in$ opt $_{\subseteq}(X \circ S=T)$

■ by opt ... (...) we denote the set of all optimal solutions (solutions with minimal cost)

Complexity of MINSOL..

Theorem

(a) MINSOL \# is NP-hard.
(b) $\mathrm{MINSOL}_{\subseteq} \in \mathrm{PO}$.

Proof:
(a) Directly from NP-hardness of a decision version of set-cover problem.
(b) The following algorithm solves $\mathrm{MINSOL}_{\subseteq}$ and has a polynomial time complexity:

Input: FRE $X \circ S=T$
Output: \subseteq-minimal solution to $X \circ S=T$
$R_{i} \leftarrow 1$ for every $i \in\{1, \ldots, n\}$
while there is $i \in\{1, \ldots, n\}$ such that $\left(R_{i}=1\right)$ and $\left(R\left[R_{i}=0\right] \circ S=T\right)$ do $R \leftarrow R\left[R_{i}=0\right]$
end while
return R

Problem of computing all \subseteq-minimal solutions

■ existing papers: allMINSOL ${ }_{\subseteq}$ is NP-hard optimization problem

- but NP-hardness imply that:
if $\mathrm{P} \neq \mathrm{NP}$ then there does not exist an efficient algorithm computing all minimal solutions;

■ we show a stronger version of this claim is true: condition "if $\mathrm{P} \neq \mathrm{NP}$ " can be dropped

- allMINSOL \subseteq is not an optimization problem in terms of computational complexity theory since there are equations with exponentially many minimal solutions
■ original idea: is there any equation such that all \subseteq-minimal solutions forms the longest antichain in $\left\langle\{0,1\}^{n}, \subseteq\right\rangle$? (Sperner's theorem)

Problem of computing all \subseteq-minimal solutions

Lemma

For every positive integer m, there exist relations $S \in\{0,1\}^{2 m \times m}$ and $T \in\{0,1\}^{m}$ such that the set of all \subseteq-minimal solutions of $X \circ S=T$ has 2^{m} elements.

Proof: Define equation:

$$
X \circ\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)=\left(\begin{array}{lllll}
1 & 1 & \ldots & 1
\end{array}\right)
$$

If $R \in\{0,1\}^{2 m}$ is a solution, then $R_{j}=1$ or $R_{2 j}=1$ or both. If both $R_{j}=1$ and $R_{2 j}=1$, then R is not \subseteq-minimal. Hence, in a minimal solution R, exactly one of R_{j} and $R_{2 j}$ equals 1 . The number of such $R \mathrm{~s}$ is clearly 2^{m}.

Problem of computing all \subseteq-minimal solutions

Theorem

There does not exist a polynomial time algorithm solving allMINSOL \subseteq.

