Vortex self-imaging experiments on aberration insensitive localization of microobjects

Michal Baránek¹, Petr Bouchal^{2,3}, Zdeněk Bouchal¹

¹Department of Optics, Palacký University, Olomouc, Czech Republic ²Institute of Physical Engineenring, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic ³Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic

Outline

- 1. Introduction
- 2. Theoretical model
- 3. Experimental setup
- 4. Results
- 5. Conclusions

Rotating point spread function (PSF)

The rotating PSF has been incorporated into techniques of optical microscopy as a precise tool for three-dimensional localization and tracking of microparticles.

A. Greengard, Y.Y. Schechner, R. Piestun, Depth from diffracted rotation, Opt. Lett. 31, 181-183 (2006).

Principle of the rotating PSF

The axial position of each monitored point-like object is determined from angular orientation of a rotationally asymmetrical image spot, rotating under defocusing.

Methods of the rotating PSF implementation

1. Modulation mask composed of L-G modes

Double-helix PSF

S.R.P. Pavani, R. Piestun, High-efficiency rotating point spread function, Opt. Express 16, 3484-3489 (2008).

Corkscrew PSF

M.D. Lew, S.F. Lee, M. Badieirostami, W.E. Moerner, Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects, Opt. Lett. 36, 202-204 (2011).

2. Sampled spiral phase mask

Azimuthal sampling

M. Baranek, Z. Bouchal, Rotating vortex imaging implemented by a quantized spiral phase modulation, J. Europ. Opt. Soc. Rap. Public 8, 13017 (2013).

Radial sampling

S. Prasad, Rotating point spread function via pupil-phase engineering, Opt. Lett. 38, 585-587 (2013).

Nobel prize in chemistry 2014

Super-resolution in optical microscopy

S.W. Hell, E. Betzig, W.E. Moerner

Fluorescence microscopy:

- **SIM** Structured Illumination Microscopy
- **STED** Stimulated Emission Depletion

Fluorescence localization microscopy:

STORM - Stochastic Optical Reconstruction MicroscopyPALM - Photoactivated Localization Microscopy

3D STORM

B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science 319, 810-813 (2008).

S.R.P. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, W.E. Moerner, Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function, Proc. Nat. Acad. Sci. USA 106, 2995-2999 (2009).

Rotating PSF => 3D super-resolution microscopy

Theoretical model

Experimental setup

L – He-Ne laser (20 mW, 632.8 nm); SF – spatial filter; IS – illumination system; P – pinhole ($d = 2 \mu m$); MO – microscope objective (Newport 20x, NA = 0.4, $f_o = 9 mm$); M – mirrors; TL – tube lens ($f_t = 200 mm$); L₁, L₂ – lenses ($f_1 = 200 mm$, $f_2 = 400 mm$); BS – beam splitter; SLM – Hamamatsu (X10468, 600x800 pix); CCD – Olympus F-view II

Shape invariant PSF rotation in extended axial range

M. Baranek, P. Bouchal, M. Siler, Z. Bouchal, Aberration resistant axial localization using a self-imaging of vortices, Opt. Express 23, 15316-15331 (2015).

Aberration resistant PSF rotation

M. Baranek, P. Bouchal, M. Siler, Z. Bouchal, Aberration resistant axial localization using a self-imaging of vortices, Opt. Express 23, 15316-15331 (2015).

Evaluation of the pinhole axial position

 Δz_1 – pinhole axial position – set by precise microtranslation. Δz_2 – pinhole axial position – obtained from rotated image.

Experimental setup

LED – Thorlabs (625 nm, FWHM 10 nm); C – capillary tube with polystyrene beads (1 μ m); MO – microscope objective (Melles Griot 10x, NA = 0.28, $f_o = 20$ mm); M – mirrors; TL – tube lens ($f_t = 200$ mm); L₁, L₂ – lenses ($f_1 = 200$ mm, $f_2 = 400$ mm); BS – beam splitter; SLM – Hamamatsu (X10468, 600x800 pix)

Defocusing rotation of microparticles

Vortex self-imaging applied to 3D localization of freely moving 1 µm polystyrene beads.

M. Baranek, P. Bouchal, M. Siler, Z. Bouchal, Aberration resistant axial localization using a self-imaging of vortices, Opt. Express 23, 15316-15331 (2015).

Conclusions

Summary

New technique for rotating PSF generation was presented. The advantages of the method are:

- resistance against aberrations,
- localization in a large axial range substantially exceeding the depth of field of the microscope objective used,
- shape and size invariance of the PSF during rotation,
- possibility to control the rotation sensitivity and the energy efficiency by SLM addressing.

Outlook

Our future research is focused on application potencial of designed rotating PSF.

Conclusions

Summary

New technique for rotating PSF generation was presented. The advantages of the method are:

- resistance against aberrations,
- localization in a large axial range substantially exceeding the depth of field of the microscope objective used,
- shape and size invariance of the PSF during rotation,
- possibility to control the rotation sensitivity and the energy efficiency by SLM addressing.

Outlook

Our future research is focused on application potencial of designed rotating PSF.

Thank You for Your attention