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Abstract

We introduce the so-called tense operators in lattice effect
algebras. Tense operators express the quantifiers “it is
always going to be the case that” and “it has always been
the case that” and hence enable us to express the
dimension of time in the logic of quantum mechanics. We
present an axiomatization of these tense operators and
prove that every lattice effect algebra whose underlying
lattice is complete can be equipped with tense operators.
Such an effect algebra is called dynamic since it reflects
changes of quantum events from past to future.



Effect algebras were introduced by Foulis and Bennett as
an abstraction of the Hilbert space effects which play an
important role in the logic of quantum mechanics.
Detailed source of the properties of effect algebras
together with description of their alter ego called D-posets
is summarized in [1]. However, this description does not
corporate the dimension of time. This means that effect
algebras can serve to describe the states of effects in a
given time but they cannot reveal what these effects
expressed in the past or what they will reveal in the next
time. A similar problem was already solved for the
classical propositional calculus by introducing the
so-called tense operators in Boolean algebras. For
MV-algebras and for Łukasiewicz-Moisil algebras, the
tense operators were introduced by Diaconescu and
Georgescu. We introduce such tense operators for lattice
effect algebras and hence set up an axiomatic tool which
enable us to consider quantum structures dynamically, i.e.
to capture also time dimension in our investigations.



At first, let us recall the concept of effect algebra. By an
effect algebra is meant a system E = (E ;+,0,1) where 0
and 1 are distinguished elements of E , 0 6= 1, and + is a
partial binary operation on E satisfying the following
axioms for p,q, r ∈ E :

(E1) if p +q is defined then q +p is defined and
p +q = q +p

(E2) if q + r is defined and p +(q + r) is defined then p +q
and (p +q)+ r are defined and p +(q + r) = (p +q)+ r

(E3) for each p ∈ E there exists a unique p′ ∈ E such that
p +p′ = 1; p′ is called a supplement of p

(E4) if p +1 is defined then p = 0.



Having an effect algebra E = (E ;+,0,1), we can introduce
the induced order ≤ on E as follows

a≤ b if for some c ∈ E c +a = b.

An effect algebra E is called a lattice effect algebra if
(E ;≤) is a lattice (with respect to the induced order).
Evidently, 0≤ a≤ 1 for each a ∈ E and a≤ b implies
b′ ≤ a′ for the supplements. Of course, 1 = 0′ and x ′′ = x .
If the underlying lattice (E ;≤) is complete, we will call E a
complete lattice effect algebra. It is worth noticing that
a+b exists in an effect algebra E if and only if a≤ b′ (or
equivalently, b ≤ a′). This condition is usually expressed
by the notation a⊥b (we say that a,b are orthogonal).



The second concept which will be used are so-called
tense operators. They are in certain sense quantifiers
which quantify the time dimension of the logic under
consideration. The semantical interpretation of these
tense operators G and H is as follows. Consider a pair
(T ,≤) where T is a non-void set and ≤ is a partial order
on T . Let x ∈ T and f (x) be a formula of a given logical
calculus. We say that G

(
f (t)
)

is valid if for any s ≥ t the
formula f (s) is valid. Analogously, H

(
f (t)
)

is valid if f (s) is
valid for each s ≤ t . Thus the unary operators G and H
constitute an algebraic counterpart of the tense
operations “it is always going to be the case that” and “it
has always been the case that”, respectively.



These tense operators were firstly introduced as
operators on Boolean algebras by the axioms

(B1) G(1) = 1, H(1) = 1
(B2) G(x ∧y) = G(x)∧G(y), H(x ∧y) = H(x)∧H(y)

(B3) x ≤GP(x), x ≤ HF (x),
where F (x) = ¬G(¬x) and P(x) = ¬H(¬x).



For MV-algebras, two more axioms were inserted, namely

G(x→ y)≤G(x)→G(y) and H(x→ y)≤H(x)→H(y)

and

G(x)⊕G(y)≤G(x⊕y) and H(x)⊕H(y)≤ H(x⊕y).

Since every lattice effect algebra is composed by means
of blocks which are MV-algebras as it was shown by
Z. Riečanová, this motivates us to apply a similar
axiomatization of tense operators on effect algebras.
However, the binary operation + in effect algebras is only
partial and hence we must consider its definability.
Moreover, the operation of implication does not play the
role in effect algebras but a unary operation of supplement
is important. Hence, we can state in the following:



Definition
By a dynamic effect algebra is meant a triple
D = (E ;G,H) such that E = (E ;+,0,1) is a lattice effect
algebra and G,H are mappings of E into itself satisfying

(T1) G(1) = 1 and H(1) = 1
(T2) G(x ∧y) = G(x)∧G(y), H(x ∧y) = H(x)∧H(y)

(T3) if x +y exists then G(x)+G(y) exists and
H(x)+H(y) exists and
G(x)+G(y)≤G(x +y), H(x)+H(y)≤ H(x +y)

(T4) G(x ′)≤G(x)′, H(x ′)≤ H(x)′

(T5) x ≤GP(x), x ≤ HF (x), where P(x) = H(x ′)′ and
F (x) = G(x ′)′.

Just defined G and H will be called tense operators of a
dynamic effect algebra D .



We can derive some basic properties.

Theorem
Let D = (E ;G,H) be a dynamic effect algebra. Then
(a) G(0) = 0 = H(0)

(b) x ≤ y implies G(x)≤G(y) and H(x)≤ H(y)

(c) PG(x)≤ x and FH(x)≤ x
(d) x ≤ y implies P(x)≤ P(y) and F (x)≤ F (y).



Example 1/3
Let E = ({0,a,b,c,a′,b′,c′,1};+,0,1) be an effect algebra
where the operation + is determined by

+ 0 a b c a′ b′ c′ 1
0 0 a b c a′ b′ c′ 1
a a b′ a′ − 1 − − −
b b a′ − c′ − 1 − −
c c − c′ b′ − − 1 −
a′ a′ 1 − − − − − −
b′ b′ − 1 − − − − −
c′ c′ − − 1 − − − −
1 1 − − − − − − −

Table: operation +



Example 2/3
Then E is a complete lattice effect algebra whose
underlying lattice is depicted in figure. It contains just two
blocks, namely {0,a,a′,b,b′,1} and {0,c,c′,b,b′,1} which
are MV-algebras.
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Figure: underlying lattice of complete lattice effect algebra



Example 3/3
Further, let us define on E the operators G and H by

x 0 a b c a′ b′ c′ 1
G(x) 0 0 0 0 0 b′ 0 1
H(x) 0 0 b 0 b 0 b 1

Table: operators G and H

One can check that (E ;G,H) is a dynamic effect algebra
with two different non-trivial unary operators G and H.



In what follows, we are going to show how to introduce
the tense operators on every complete lattice effect
algebra in a “natural way”.

Theorem
Let (E ;G,H) be a dynamic effect algebra. If

∧
{xi ; i ∈ I}

exists then also∧
{G(xi); i ∈ I} and

∧
{H(xi); i ∈ I}

exist and

G(
∧
{xi ; i ∈ I}) =

∧
{G(xi); i ∈ I},

H(
∧
{xi ; i ∈ I}) =

∧
{H(xi); i ∈ I}.



Lemma
Let E = (E ;+,0,1) be a complete lattice effect algebra.
Let ai ,bi ,ci ∈ E for i ∈ I and assume ai⊥bi for all i ∈ I.
Then
(1)

∧
{ai ; i ∈ I}+

∧
{bi ; i ∈ I} exists and∧

{ai ; i ∈ I}+
∧
{bi ; i ∈ I} ≤

∧
{ai +bi ; i ∈ I}

(2)
∧
{c′i ; i ∈ I} ≤ (

∧
{ci ; i ∈ I})′.



By a frame is meant a couple (T ,R) where T is a
non-void set and R is a binary relation on T . For our sake,
we will assume that R is reflexive. The set T is
considered to be a time scale and a relation R expresses
a relationship “to be before” or “to be after”. Having an
effect algebra E = (E ;+,0,1) and a non-void set T , we
can produce the direct power E T = (ET ;+,o, j) where the
operation + is defined and evaluated on p,q ∈ ET

componentwise, i.e. p +q is defined if p(t)+q(t) is
defined for each t ∈ T and then (p +q)(t) = p(t)+q(t).
Moreover, o, j are such the elements of ET that o(t) = 0
and j(t) = 1 for all t ∈ T .



Main Theorem
Let E = (E ;+,0,1) be a complete lattice effect algebra
and let (T ,R) be a frame. Define mappings G,H of ET

into itself as follows

G(p)(x) =
∧
{p(y);xRy} and H(p)(x) =

∧
{p(y);yRx}.

Then G,H are tense operators on E T , i.e. D = (E T ;G,H)
is a dynamic effect algebra.



Remark. If the relation R on a non-void set T is a partial
order, i.e. our frame is (T ,≤), then x ≤ y expresses the
fact that y “follows” x and y ≤ x means y “is before” x .
Then the operator H as defined in Main Theorem can be
interpreted as “a history” of an element p ∈ ET and G(p)
is “a future” of p. More precisely, H(p) says that p was
true in past with at least the same degree as p in present
and G(p) says that p will be true in future with at least the
same degree as it is now.

Having a lattice effect algebra E = (E ;+,0,1) and a frame
(T ,R), let Gt ,Ht be tense operators on E for each t ∈ T . It
is evident that the functions G,H defined on ET

componentwise, i.e. G(p)(t) = Gt
(
p(t)

)
and

H(p)(t) = Ht
(
p(t)

)
are tense operators on E T . The aim of

the following example is to show that this is not the only
possibility how to define tense operators on E T .



Example 1/5
Let E = (E ;+,0,1) be an effect algebra where
E = {0,a,b,1} and the operation + is determined by

+ 0 a b 1
0 0 a b 1
a a 1 − −
b b − 1 −
1 1 − − −
Table: operation +



Example 2/5
Then E is a complete lattice effect algebra whose
underlying lattice is depicted in
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Figure: underlying lattice of complete lattice effect algebra



Example 3/5
One can easily check that there exists seven couples of
tense operators on this effect algebra E which are
indicated in Table (since always G(0) = 0 = H(0) and
G(1) = 1 = H(1), we list only outcomes on a and b).

x a b a b a b a b a b a b a b
G(x) 0 0 0 a 0 b a 0 a b b 0 b a
H(x) 0 0 b 0 0 b a 0 a b 0 a b a

Table: tense operators

However, if the frame is ({1,2,3},≤) where ≤ is a natural
order on integers, then ET has 43 = 64 elements and we
can compute the tense operators G and H as defined in
Main Theorem (see next table).



Example 4/5
x G(x) H(x)

(000) (000) (000)
(00a) (00a) (000)
(00b) (00b) (000)
(001) (001) (000)
(0a0) (000) (000)
(0aa) (0aa) (000)
(0ab) (00b) (000)
(0a1) (0a1) (000)
(0b0) (000) (000)
(0ba) (00a) (000)
(0bb) (0bb) (000)
(0b1) (0b1) (000)
(010) (000) (000)
(01a) (0aa) (000)
(01b) (0bb) (000)
(011) (011) (000)
(a00) (000) (a00)
(a0a) (00a) (a00)
(a0b) (00b) (a00)
(a01) (001) (a00)
(aa0) (000) (aa0)
(aaa) (aaa) (aaa)
(aab) (00b) (aa0)
(aa1) (aa1) (aaa)
(ab0) (000) (a00)
(aba) (00a) (a00)
(abb) (0bb) (a00)
(ab1) (0b1) (a00)
(a10) (000) (aa0)
(a1a) (aaa) (aaa)
(a1b) (0bb) (aa0)
(a11) (a11) (aaa)

x G(x) H(x)
(b00) (000) (b00)
(b0a) (00a) (b00)
(b0b) (00b) (b00)
(b01) (001) (b00)
(ba0) (000) (b00)
(baa) (0aa) (b00)
(bab) (00b) (b00)
(ba1) (0a1) (b00)
(bb0) (000) (bb0)
(bba) (00a) (bb0)
(bbb) (bbb) (bbb)
(bb1) (bb1) (bbb)
(b10) (000) (bb0)
(b1a) (0aa) (bb0)
(b1b) (bbb) (bbb)
(b11) (b11) (bbb)
(100) (000) (100)
(10a) (00a) (100)
(10b) (00b) (100)
(101) (001) (100)
(1a0) (000) (1a0)
(1aa) (aaa) (1aa)
(1ab) (00b) (1a0)
(1a1) (aa1) (1aa)
(1b0) (000) (1b0)
(1ba) (00a) (1b0)
(1bb) (bbb) (1bb)
(1b1) (bb1) (1bb)
(110) (000) (110)
(11a) (aaa) (11a)
(11b) (bbb) (11b)
(111) (111) (111)

Table: operators G and H



Example 5/5
One can easily check that e.g.

G
(
(b,1,a)

)
= (0,a,a) and H

(
(b,1,a)

)
= (b,b,0)

but, when working with Gt ,Ht on E componentwise, it
have to be G

(
(b,1,a)

)
(2) = 1 and H

(
(b,1,a)

)
(2) = 1

since (b,1,a)(2) = 1 and Gt(1) = Ht(1).
Among other things, it means that the tense operators
G,H (as defined in Main Theorem) cannot be
decomposed into direct factors.
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Thank you for your attention.


