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VIEWPOINT

Unlocking the Hidden Information in
Starlight
Quantum metrology shows that it is always possible to estimate the separation of two stars,
no matter how close together they are.

by Gabriel Durkin⇤

Aprovocative new result [1] by Mankei Tsang, Ran-
jith Nair, and Xiao-Ming Lu of the National Uni-
versity of Singapore suggests that a long-standing
limitation to the precision of astronomical imag-

ing, the Rayleigh criterion, proposed in 1879 [2] is itself only
an apparition. Using quantum metrology techniques, the re-
searchers have shown that two uncorrelated point-like light
sources, such as stars, can be discriminated to arbitrary pre-
cision even as their separation decreases to zero.

Quantum metrology, a field that has existed since the late
1960s with the pioneering work of Carl Helstrom [3], is
a peculiar hybrid of quantum mechanics and the classical
estimation theory developed by statisticians in the 1940s.
The methodology is a powerful one, quantifying resources
needed for optimal estimation of elementary variables and
fundamental constants. These resources include preparation
of quantum systems in a characteristic (entangled) state, fol-
lowed by judiciously chosen measurements, from which a
desired parameter, itself not directly measurable, may be in-
ferred.

In the context of remote sensing, for example, in the
imaging of objects in the night sky, the ability to prepare a
physical system in an optimal state does not exist. In the
case of starlight, the typical assumption is that the source is
classical thermal light, the state of maximum entropy or “un-
informativeness.” Imaging such sources is plagued by the
limits of diffraction when the objects are in close proximity.
The wave-like nature of light causes it to spread as it moves
through space, bending around obstacles, for example when
traversing a telescope aperture. This results in a diffraction
pattern described by a so-called point spread function (PSF)
in the image plane. The Rayleigh criterion states that two
closely spaced objects are just resolvable—that is, discern-
able from one another—when the center of the diffraction
pattern, or peak of the PSF, of one object is directly over
the first minimum of the diffraction pattern of the other.

⇤Berkeley Quantum Information and Computation Center, Univer-
sity of California, Berkeley, CA 94720, USA

Roughly, the PSF maxima must be farther apart than their
widths (Fig. 1).

Some astronomers say they are able to resolve objects
that are slightly closer than the Rayleigh limit allows. Yet
inevitably, as the angular separation between the objects
decreases, the information that can be obtained about that
separation using direct detection becomes negligible, and
even the most optimistic astronomer, utilizing the most
sophisticated signal-processing techniques, must admit de-
feat. Correspondingly, as the separation approaches zero,
the minimum error on any unbiased estimation of the sep-
aration blows up to infinity, which has limited angular
resolution in imaging since the time of Galileo. Typically, the
mean-squared error on the estimation of a parameter scales
with the number of repeated measurements or data points, n,
as 1/n. Even for a large error per measurement, any desired
precision is attained by taking multiple data points. When,
however, the lower bound on direct estimation of the separa-
tion is divergent because of the Rayleigh limit, the 1/n factor
makes no impact. This is what Tsang and collaborators call
Rayleigh’s curse.

Using a quantum metrology formalism to minimize the
estimation error, the initial achievement of their work has
been to show that there is no fundamental obstacle to the es-
timation of the separation of two PSFs in one dimension (that
is, for sources that sit on a line). As the separation of two
PSFs decreases to zero, the amount of obtainable informa-
tion stays constant. This discovery is nicely summed up by
Tsang, who says we should apologize to the starlight “as it
travels billions of light years to reach us, yet our current tech-
nology and even our space telescopes turn out to be wasting
a lot of the information it carries.” [4]

It could be suggested that this is merely a theoretical
proof; the quantum metrology formalism indicates that there
is always an optimal measurement, which minimizes the
estimation error for the separation parameter. Paradoxi-
cally, this optimal measurement can, however, depend on
the value of the parameter. To obviate such concerns,
Tsang and his colleagues propose a strategy, based on
state-of-the-art quantum optics technology, that produces
a minimal error in the estimation of the separation vari-
able—counterintuitively, this error remains constant for all
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tive on the utility of quantum metrology, and they have
reminded us that even in observational astronomy—one of
the oldest branches of science—there are (sometimes) still
new things to be learned, at the most basic level.

This research is published in Physical Review X.
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super-rozlišení: ohlas



Optical resolution- Rayleigh criterion

two-point resolution

● two mutually incoherent point sources

● imaging – linear system

● PSF – point spread function

● unlimited resources = unlimited resolution for any PSF

● what can be achieved with limited resources?

s

standard resolution super-resolution



Measurement: Born rule  for (normalized) measurement 
on j-channel of transformed state 

Measurement and  parameter estimation

• Estimation: read-out  of the parameter s from the 
registered values  

• Variance of any unbiased estimation is limited by the 
Fisher  Information (FI) 

• Quantum Fisher Information (QFI)  =Fisher information 
optimized over all possible detections



Fisher Information

Fisher information:  limit for unbiased parameter estimation



Rayleigh curse 

Fisher information for two point resolution:  limit for unbiased 
parameter estimation



Quantum Fisher Information

For  QFI, see the arguments of   Helstrom 1975 … 
Optimize over all the measurement!!! 
The necessary ingredient are symmetric logarithmic 
derivation expressed in diagonalizing basis.



Example: QFI for pure state

Zero eigenvalues cannot be neglected but eliminated ! 
Problems of QFI:  large ambiguity as far 
measurement is concerned, optimality many aspects…



Two-point resolution

• FI and QFI for  two-point resolution: Tsang 2016 
• Here: optical arguments  and  symmetry 

arguments“ for optimal measurement achieving 
QFI 



The measurement does not feel the two-component structure of 
the signal! The original two-point resolution problem has been 
effectively transformed to localization of a single point source.  

Symmetry for achieving QFI

Assume symmetry of the point-spread- function as 
well as the symmetry of the measurement



Optimality conditions:

QFI can be obtained from FI just by expressing  
probabilities  by  complex  amplitudes … 



FI vs FQI

efficient unbiased estimators ...

optimal detection – ”quantum” CRLB (quantum limit)

● two-point resolution is reduced to localization (PALM, astrometry)

● super-resolution is easy, at least in theory ...

M. Tsang et al. PRX 2016



Results: Gaussian and sinc PDFresults: Gaussian and sinc PSFs

 



Experimental setup

experimental setup

● signal preparation – DMD

● projection – cross-correlation

● detection – EMCCD

● data – read from two pixels in the Fourier plane



Measurement achieving FQI

There is an ambiguity how to fulfill the optimality 
conditions. The ultimate resolution should not be 
considered as a rarity, but rather as a feature 
shared by many permissible detection schemes.  



Efficiency vs. universality

How to do  the detection efficiently? 
Suggestion:   Project the signal on a set of 
orthonormalized derivatives of Ψ(x)-PSF 
adapted  schemes



Example 1: Gaussian PSF 

The optimal PSF-adapted set :   

Hermite-Gauss modes



Example 2: Sinc PSF 

The optimal PSF-adapted set is linked with   

Legendre polynomials orthogonal on  (-1/2,1/2)



Example 2: Sinc PSF… 

Efficient measurement modes:

Fisher information consists of partial contributions:



0

0.1

0.2

0.3

1 5 10 15 20

D
�
1

P n
=
0
F

s,
n

D

FI for  the first D projections on the HG basis with arbitrarily 
chosen σ = π (orange bars) and the PSF Sinc adapted measurement, 
Separation  s= 1,  Rayleigh limit  = π. More than a hundred of 
Hermite-Gauss projections must be measured to access 98.5% of 
the QFI (horizontal red line), whereas just three projections of the 
PSF-adapted measurement are sufficient.  



 As before, Separation  s= 2,  Rayleigh limit  = π   
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As before, Separation  s= 15,Rayleigh limit  = π  



Realistic Superresolution  

J. Rehacek, Z. Hradil, B. Stoklasa, M. Paur, J. Grover, A. Krzic, L. L. 
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We establish the multiparameter quantum Cramér-Rao bound for simultaneously estimating the centroid, the
separation, and the relative intensities of two incoherent optical point sources using a linear imaging system.
For equally bright sources, the Cramér-Rao bound is independent of the source separation, which confirms that
the Rayleigh resolution limit is just an artifact of the conventional direct imaging and can be overcome with an
adequate strategy. For the general case of unequally bright sources, the amount of information one can gain
about the separation falls to zero, but we show that there is always a quadratic improvement in an optimal
detection in comparison with the intensity measurements. This advantage can be of utmost important in realistic
scenarios, such as observational astronomy.

The time-honored Rayleigh criterion [1] specifies the mini-
mum separation between two incoherent optical sources using
a linear imaging system. As a matter of fact, it is the size of the
point spread function [2] that determines the resolution: two
points closer than the PSF width will be difficult to resolve
due to the substantial overlap of their images.

Thus far, this Rayleigh criterion has been considered as a
fundamental limit. Resolution can only be improved either
by reducing the wavelength or by building higher numerical-
aperture optics, thereby making the PSF narrower. Nonethe-
less, outstanding methods have been developed lately that can
break the Rayleigh limit under special circumstances [3–12].
Though promising, these techniques are involved and require
careful control of the source, which is not always possible,
especially in astronomical applications.

Despite being very intuitive, the common derivation of the
Rayleigh limit is heuristic and it is deeply rooted in classical
optical technology [13]. Recently, inspired by ideas of quan-
tum information, Tsang and coworkers [14–17] have revisited
this problem using the Fisher information and the associated
Cramér-Rao lower bound (CRLB) to quantify how well the
separation between two point sources can be estimated. When
only the intensity at the image is measured (the basis of all the
conventional techniques), the Fisher information falls to zero
as the separation between the sources decreases and the CRLB
diverges accordingly; this is known as the Rayleigh curse [14].
However, when the Fisher information of the complete field is
calculated, it stays constant and so does the CRLB, revealing
that the Rayleigh limit is not essential to the problem.

These remarkable predictions prompted a series of ex-
perimental implementations [18–21] and further generaliza-
tions [22–28], including the related question of source local-
ization [29–31]. All this previous work has focused on the
estimation of the separation, taking for granted a highly sym-
metric configuration with identical sources. In this Letter, we
approach the issue in a more realistic scenario, where both
sources may have unequal intensities. This involves the si-
multaneous estimation of separation, centroid, and intensi-

ties. Typically, when estimating multiple parameters, there
is a trade-off in how well different parameters may be esti-
mated: when the estimation protocol is optimized from the
point of view of one parameter, the precision with which the
remaining ones can be estimated deteriorates.

Here, we show that including intensity in the estimation
problem does lead to a reduction in the information for unbal-
anced sources. However the information available in an opti-
mal measurement still surpasses that of a conventional direct
imaging scheme by a significant margin at small separations.
This suggests possible applications, for example, in observa-
tional astronomy, where sources typically have small angular
separations and can have large differences in brightness.

Let us first set the stage for our simple model. We assume
quasimonochromatic paraxial waves with one specified polar-
ization and one spatial dimension, x denoting the image-plane
coordinate. The corresponding object-plane coordinates can
be obtained via the lateral magnification of the system, which
we take to be linear spatially invariant [2].

To facilitate possible generalizations, we phrase what fol-
lows in a quantum parlance. A wave of complex amplitude
U(x) can thus be assigned to a ket |U⟩, such that U(x)= ⟨x|U⟩,
where |x⟩ is a vector describing a point-like source at x.

The system is characterized by its PSF, which represents its
normalized intensity response to a point source. We denote
this PSF by I(x) = |⟨x|Ψ⟩|2 = |Ψ(x)|2, so that Ψ(x) can be
interpreted as the amplitude PSF.

Two incoherent point sources, of different intensities and
separated by a distance s, are imaged by that system. The
signal can be represented as a density operator

ρθ = qρ++(1− q)ρ− , (1)

where q and 1− q are the intensities of the sources, with the
proviso that the total intensity is normalized to unity. In ad-
dition, we have defined ρ± = |Ψ±⟩⟨Ψ±| and the x-displaced
PSF states are

⟨x|Ψ±⟩= ⟨x− s0 ∓ s/2|Ψ⟩= Ψ(x− s0 ∓ s/2), (2)

2

so that they are symmetrically located around the geometric
centroid s0 =

1
2(x++ x−). Note that

|Ψ±⟩= exp[−i(s0 ± s/2)P]|Ψ⟩ , (3)

where P is the momentum operator, which generates displace-
ments in the x variable. As in quantum mechanics, it acts as a
derivative P = −i∂x. These spatial modes are not orthogonal
(⟨Ψ−|Ψ+⟩ ≠ 0), so they cannot be separated by independent
measurements.

The density matrix ρθ gives the normalized mean intensity:
ρθ(x) = q |Ψ(x− s0 − s/2)|2+(1−q) |Ψ(x−s0+s/2)|2, and
depends on the centroid s0, the separation s, and the relative
intensities of the sources q. This is indicated by the vector
θ = (s0,s,q)t . The task is to estimate the values of θ through
the measurement of some observables on ρθ. In turn, a quan-

tum estimator θ̂ for θ is a selfadjoint operator representing a
proper measurement followed by data processing performed
on the outcomes. Such a parameter estimation implies an ad-
ditional uncertainty for the measured value, which cannot be
avoided.

In this multiparameter estimation scenario, the cen-
tral quantity is the quantum Fisher information matrix
(QFIM) [32]. This is a natural generalization of the classi-
cal Fisher information, which is a mathematical measure of
the sensitivity of an observable quantity (the PSF, in our case)
to changes in its underlying parameters. However, the QFIM
it is optimized over all the possible quantum measurements. It
is define reads

Qαβ (θ) =
1
2 Tr(ρθ{Lα ,Lβ}) , (4)

where the Greek indices run over the components of the vec-
tor θ and {·, ·} denotes the anticommutator. Here, Lα stands
for the symmetric logarithmic derivative [33] with respect the
parameter θα , defined implicitly by 1

2 (Lα ρθ+ρθLα ) = ∂α ρθ ,
with ∂α = ∂/∂θα .

Upon writing ρθ in its eigenbasis ρθ = ∑n λn|λn⟩⟨λn|, the
QFIM per detection event can be concisely expressed as [34]

Qαβ (θ) = 2 ∑
m,n

1

λm +λn
⟨λm|∂α ρθ|λn⟩⟨λn|∂β ρθ|λm⟩ , (5)

and the summation extends over m,n with λm+λn ̸= 0. In ad-
dition, the constraints of unity trace ∑m λm = 1 and the com-
pleteness relation ∑m |λm⟩⟨λm|= 11 have to be imposed.

The QFIM is a distinguishability metric on the space of
quantum states and leads to the multiparameter quantum
CRLB [35, 36]:

Cov(θ̂)≥ Q−1(θ) , (6)

where Cov(θ̂) = E[(θ̂α − θα)(θ̂β − θβ )] refers to the covari-

ance matrix for a locally unbiased estimator θ̂ of the quantity
θ and E[Y ] is the expectation value of the random variable
Y . In particular, the individual parameter θα can be estimated

with a variance satisfying Var(θ̂α)≥ (Q−1)αα(θ), and a pos-
itive operator-valued measurement (POVM) attaining this ac-
curacy is given by the eigenvectors of Lα . Unlike for a single
parameter, the collective bound is not always saturable: the
intuitive reason for this is incompatibility of the optimal mea-
surements for different parameters [37].

If the operators Lα corresponding to the different param-
eters commute, there is no additional difficulty in extracting
maximal information from a state on all parameters simul-
taneously. If they do not commute, however, this does not
immediately imply that it is impossible to simultaneously ex-
tract information on all parameters with precision matching
that of the separate scenario for each. As discussed in a num-
ber of papers [38–40] the multiparameter quantum CRLB can
be saturated provided (with [·, ·] being the commutator)

Tr(ρθ[Lα ,Lβ ]) = 0 . (7)

Then, optimal measurements can be found by optimizing over
the classical Fisher information, as the QFIM is an upper
bound for the former quantity. This can be efficiently ac-
complished by global optimization algorithms [41]. For our
particular case, it is easy to see that the condition (7) is ful-
filled whenever the PSF is real, Ψ(x)∗ = Ψ(x), which will be
assumed henceforth.

To proceed further, we note that the density matrix ρθ is, by
definition, of rank 2. The QFIM reduces then to the simpler
form

Qαβ =−
3

λ1
⟨λ1|∂α ρθ|λ1⟩⟨λ1|∂β ρθ|λ1⟩

−
3

λ2
⟨λ2|∂α ρθ|λ2⟩⟨λ2|∂β ρθ|λ2⟩

+4

(
1−

1

λ1
−

1

λ2

)
⟨λ1|∂α ρθ|λ2⟩⟨λ2|∂β ρθ|λ1⟩

+
4

λ1
⟨λ1|∂α ρθ∂β ρθ|λ1⟩+

4

λ2
⟨λ2|∂α ρθ∂β ρθ|λ2⟩ . (8)

The derivatives involved in this equation can be easily evalu-
ated; the result reads

∂s0 ρθ = i[ρθ,P] ,

∂sρθ = i
2 (q[ρ+,P]− (1− q)[ρ−,P]) ,

∂qρθ = ρ+−ρ− .

(9)

To complete the calculation it proves convenient to write the
two nontrivial eigenstates of ρθ in terms of non-orthogonal
component states |Ψ±⟩: |λ1,2⟩ = a1,2|Ψ+⟩+ b1,2|Ψ−⟩, where
a1,2 and b1,2 are easy-to-find yet complex functions of the sep-
aration and the intensities and whose explicit form is of no
relevance for our purposes here. Substituting this and Eq. (9)
into Eq. (8), and after a lengthy calculation, we obtain a com-
pact expression for the QFIM

Q = 4

⎛

⎜⎜⎝

p2 +4q(1− q)℘2 (q− 1/2)p2 −iw℘
(q− 1/2)p2 p2/4 0

−iw℘ 0
1−w2

4q(1− q)

⎞

⎟⎟⎠ .

(10)
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so that they are symmetrically located around the geometric
centroid s0 =

1
2(x++ x−). Note that

|Ψ±⟩= exp[−i(s0 ± s/2)P]|Ψ⟩ , (3)

where P is the momentum operator, which generates displace-
ments in the x variable. As in quantum mechanics, it acts as a
derivative P = −i∂x. These spatial modes are not orthogonal
(⟨Ψ−|Ψ+⟩ ≠ 0), so they cannot be separated by independent
measurements.

The density matrix ρθ gives the normalized mean intensity:
ρθ(x) = q |Ψ(x− s0 − s/2)|2+(1−q) |Ψ(x−s0+s/2)|2, and
depends on the centroid s0, the separation s, and the relative
intensities of the sources q. This is indicated by the vector
θ = (s0,s,q)t . The task is to estimate the values of θ through
the measurement of some observables on ρθ. In turn, a quan-

tum estimator θ̂ for θ is a selfadjoint operator representing a
proper measurement followed by data processing performed
on the outcomes. Such a parameter estimation implies an ad-
ditional uncertainty for the measured value, which cannot be
avoided.

In this multiparameter estimation scenario, the cen-
tral quantity is the quantum Fisher information matrix
(QFIM) [32]. This is a natural generalization of the classi-
cal Fisher information, which is a mathematical measure of
the sensitivity of an observable quantity (the PSF, in our case)
to changes in its underlying parameters. However, the QFIM
it is optimized over all the possible quantum measurements. It
is define reads

Qαβ (θ) =
1
2 Tr(ρθ{Lα ,Lβ}) , (4)

where the Greek indices run over the components of the vec-
tor θ and {·, ·} denotes the anticommutator. Here, Lα stands
for the symmetric logarithmic derivative [33] with respect the
parameter θα , defined implicitly by 1

2 (Lα ρθ+ρθLα ) = ∂α ρθ ,
with ∂α = ∂/∂θα .

Upon writing ρθ in its eigenbasis ρθ = ∑n λn|λn⟩⟨λn|, the
QFIM per detection event can be concisely expressed as [34]

Qαβ (θ) = 2 ∑
m,n

1

λm +λn
⟨λm|∂α ρθ|λn⟩⟨λn|∂β ρθ|λm⟩ , (5)

and the summation extends over m,n with λm+λn ̸= 0. In ad-
dition, the constraints of unity trace ∑m λm = 1 and the com-
pleteness relation ∑m |λm⟩⟨λm|= 11 have to be imposed.

The QFIM is a distinguishability metric on the space of
quantum states and leads to the multiparameter quantum
CRLB [35, 36]:

Cov(θ̂)≥ Q−1(θ) , (6)

where Cov(θ̂) = E[(θ̂α − θα)(θ̂β − θβ )] refers to the covari-

ance matrix for a locally unbiased estimator θ̂ of the quantity
θ and E[Y ] is the expectation value of the random variable
Y . In particular, the individual parameter θα can be estimated

with a variance satisfying Var(θ̂α)≥ (Q−1)αα(θ), and a pos-
itive operator-valued measurement (POVM) attaining this ac-
curacy is given by the eigenvectors of Lα . Unlike for a single
parameter, the collective bound is not always saturable: the
intuitive reason for this is incompatibility of the optimal mea-
surements for different parameters [37].

If the operators Lα corresponding to the different param-
eters commute, there is no additional difficulty in extracting
maximal information from a state on all parameters simul-
taneously. If they do not commute, however, this does not
immediately imply that it is impossible to simultaneously ex-
tract information on all parameters with precision matching
that of the separate scenario for each. As discussed in a num-
ber of papers [38–40] the multiparameter quantum CRLB can
be saturated provided (with [·, ·] being the commutator)

Tr(ρθ[Lα ,Lβ ]) = 0 . (7)

Then, optimal measurements can be found by optimizing over
the classical Fisher information, as the QFIM is an upper
bound for the former quantity. This can be efficiently ac-
complished by global optimization algorithms [41]. For our
particular case, it is easy to see that the condition (7) is ful-
filled whenever the PSF is real, Ψ(x)∗ = Ψ(x), which will be
assumed henceforth.

To proceed further, we note that the density matrix ρθ is, by
definition, of rank 2. The QFIM reduces then to the simpler
form

Qαβ =−
3

λ1
⟨λ1|∂α ρθ|λ1⟩⟨λ1|∂β ρθ|λ1⟩

−
3

λ2
⟨λ2|∂α ρθ|λ2⟩⟨λ2|∂β ρθ|λ2⟩

+4

(
1−

1

λ1
−

1

λ2

)
⟨λ1|∂α ρθ|λ2⟩⟨λ2|∂β ρθ|λ1⟩

+
4

λ1
⟨λ1|∂α ρθ∂β ρθ|λ1⟩+

4

λ2
⟨λ2|∂α ρθ∂β ρθ|λ2⟩ . (8)

The derivatives involved in this equation can be easily evalu-
ated; the result reads

∂s0 ρθ = i[ρθ,P] ,

∂sρθ = i
2 (q[ρ+,P]− (1− q)[ρ−,P]) ,

∂qρθ = ρ+−ρ− .

(9)

To complete the calculation it proves convenient to write the
two nontrivial eigenstates of ρθ in terms of non-orthogonal
component states |Ψ±⟩: |λ1,2⟩ = a1,2|Ψ+⟩+b1,2|Ψ−⟩, where
a1,2 and b1,2 are easy-to-find yet complex functions of the sep-
aration and the intensities and whose explicit form is of no
relevance for our purposes here. Substituting this and Eq. (9)
into Eq. (8), and after a lengthy calculation, we obtain a com-
pact expression for the QFIM

Q = 4

⎛

⎜⎜⎝

p2 +4q(1− q)℘2 (q−1/2)p2 −iw℘
(q−1/2)p2 p2/4 0

−iw℘ 0
1−w2

4q(1− q)

⎞

⎟⎟⎠ .

(10)
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FIG. 1. Precision Hs in the separation s as inferred by optimal (red
solid lines) and direct (blue broken lines) detections for different rel-
ative intensities of the two sources. The values of q, from top to bot-
tom, are 0.5, 0.45, 0.3, and 0.1. Notice that the performance of the
optimal detection is rather sensitive to small deviations from equal
brightness over a wide range of separations.

This is our central result. The QFIM depends only on the
following quantities

w ≡ ⟨Ψ±|Ψ∓⟩= ⟨Ψ|exp(isP)|Ψ⟩ ,

p2 ≡ ⟨Ψ±|P
2|Ψ±⟩= ⟨Ψ|P2|Ψ⟩ , (11)

℘≡±⟨Ψ±|P|Ψ∓⟩= ⟨Ψ|exp(isP)P|Ψ⟩ .

Interestingly, p2 is fully determined by the shape of the PSF,
whereas both w and ℘ depend on the separation s. Further-
more, ℘ is purely imaginary.

In what follows, rather than the variances themselves, we
will use the inverses Hα = 1/Var(θα ), usually called the pre-
cisions [42]. In this way, we avoid potential divergences at
s= 0.

The QFIM (10) nicely shows the interplay between vari-
ous signal parameters. First, notice that Q is independent
of the centroid, as might be expected. Second, for equally
bright sources, q = 1/2, the measurement of separation s is
uncorrelated with the measurements of the remaining param-
eters and we have Hs(q = 1/2) = p2, a well known result,
and the Rayleigh curse is lifted [20]. This happy coincidence
does not hold for unequal intensities q ̸= 1/2; now, the sep-
aration is correlated with the centroid (via the intensity term
q− 1/2) and the centroid is correlated with the intensity (via
p2). This can be intuitively understood: unequal intensities
result in asymmetrical images and finding the centroid is no
longer a trivial task. This asymmetry, in turn, depends on
the relative brightness of the two components. Hence, all the
three parameters become entangled and, as we shall see, hav-
ing separation-independent information about s is no longer
possible.

By inverting the QFIM we immediately get

Hs = p2 Q2℘2 +Q2 p2(1−w2)

Q2℘2 + p2(1−w2)
, (12)

FIG. 2. Precisions as in Fig. 1, but visualized on a logarithmic scale.
Slopes of straight lines translate to the powers of s. The values of q
are, from top to bottom, 0.5, 0.4, and 0.1.

where 0 ≤ Q2 ≡ 4q(1− q)≤ 1. Obviously, Hs(q) ≤ Hs(q =
1/2) = p2 and lim

q→0,1
Hs(q) = 0, which demonstrates that re-

solving two highly unequal sources is difficult, even at the
quantum limit.

The instance of large brightness differences and small sepa-
rations is probably the most interesting regime encountered, e.
g., in exoplanet observations. We first expand the s-dependent
quantities:

w(s) = ⟨Ψ|eisP|Ψ⟩ ≃ 1− 1
2 p2

s
2 + 1

24 p4
s

4,

p(s) = ⟨Ψ|PeisP|Ψ⟩ ≃ ip2
s− i 1

6 p4
s

3 ,
(13)

where p4 = ⟨Ψ|P4|Ψ⟩ is the fourth moment of the PSF mo-
mentum. Then, as s≪ 1, we get (for 0 < Q < 1)

Hs0 ≃ Q
2 Var(P̂2)s2 ,

Hs ≃
Q2

4(1−Q2)
Var(P̂2)s2,

Hq ≃
1

Q2
Var(P̂2)s4 .

(14)

The PSF enters these expressions through the variance of P2:
Var(P̂2) = p4 − p2. This leaves room for optimization, pro-
vided the PSF can be controlled. For a fixed PSF, the infor-
mation about all three parameters apparently vanishes with
s → 0 unless q = 1/2. And since exactly balanced sources
never happen, the information about very small separations al-
ways drops to near zero and the Rayleigh curse is unavoidable.
However, significant improvements of the optimal measure-
ment schemes over the standard intensity detection are still
possible.

To illustrate this point let us consider a Gaussian response
⟨x|Ψ⟩= (2π)(1/4) exp(−x2/4) of unit width, which will serve
from now on as our basic unit length. We shall compare the
quantum limit given by (10) with that given by the classical
Fisher information for the direct intensity measurement. We
assume no prior knowledge about any of the three parameters.
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Precision about relative intensity q as inferred by the optimal 
detection (red solid lines) and the direct detection (blue broken 
lines) for different relative intensities of the two sources. The 
values of q, from bottom to top are 0.5, 0.2, 0.1, 0.01. 
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FIG. 3. Precision about relative intensity q as inferred by the optimal
detection (red solid lines) and the direct detection (blue broken lines)
for different relative intensities of the two sources. The values of q,
from bottom to top are 0.5, 0.2, 0.1, and 0.01.

Figure 1 plots information about separation Hs for different
relative intensities q. Unbalanced intensities make both opti-
mal and intensity detection go to zero for small separations,
however the former at a much slower rate. Hence, optimal in-
formation to intensity information increases with decreasing
separations, regardless of whether the sources are balanced.

The reason becomes obvious with the same data visualized
on the logarithmic scales, as shown in Fig. 2. In the region
of s ≪ σ , we can discern two regimes of importance. For
balanced sources, H

opt
s ∝ 1 and H int

s ∝ s2. For unbalanced
sources, H

opt
s ∝ s2, as we have seen, and H int

s ∝ s4. In con-
sequence, there is always a factor of s−2 improvement of the
optimal detection over the standard one, irrespective of the
true values of the signal parameters. In practice, this means
that when we already are well below the Rayleigh limit, if we
decrease the separation 10 times, about 10,000 times more
photons must be detected with a CCD camera to keep the ac-
curacy of the measurement, while only 100 times more would
suffice for optimal measurement. This amounts to saving 99%
of detection time with the optimal detection scheme.

Finally, Fig. 3 presents a similar comparison now concern-
ing the information about the relative intensity Hq. Here, op-
timal information and intensity information always scale as s4

and s6, respectively, and the same s−2 gain in performance
appears. Notice the reversed ordering of curves with q, mean-
ing that now, the information increases rather than decreases
with increasing intensity difference, which reveals the com-
plementarity between these magnitudes. Also notice that the
broken lines converge as we approach s= 0. It can be shown
that the leading term for intensity detection for small sepa-
rations is p-independent in contrast to the optimal detection,
which displays a strong H

opt
q ∝ q−1 dependence for q≪ 1/2.

This highlights the advantage of an optimal detection scheme
for astronomical observations. For example more than a quar-
ter of catalogued binary systems consist of stars that differ in

brightness by more than an order of magnitude [43], and the
darkest known exoplanet is three orders of magnitude dimmer
than its host star in the infrared [44].

In summary, we have presented a comprehensive analysis
of the ultimate precision bounds for estimating the centroid,
the separation, and the relative intensities of two pointlike in-
coherent sources. For equally bright sources, the quantum
Fisher information remains constant, which translates into the
fact that the Rayleigh limit is not essential and can be lifted.
On the other hand, for unequally bright sources, the informa-
tion about very small separations always drops to near zero
and the Rayleigh curse is unavoidable. Nonetheless, signifi-
cant improvements can still be expected with optimal detec-
tion schemes.
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the IGA Project of the Palacký University (Grant No. IGA PrF
2016-005), the European Space Agency’s ARIADNA scheme,
and the Spanish MINECO (Grant FIS2015-67963-P).

[1] Lord Rayleigh, “Investigations in optics, with special reference
to the spectroscope,” Phil. Mag. 8, 261–274 (1879).

[2] J. W. Goodman, Introduction to Fourier Optics (Roberts and
Company, Englewood, 2004).

[3] A. J. den Dekker and A. van den Bos, “Resolution: a survey,”
J. Opt. Soc. Am. A 14, 547–557 (1997).

[4] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser,
S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-
Schwartz, and H. F. Hess, “Imaging intracellular fluorescent
proteins at nanometer resolution,” Science 313, 1642 (2006).

[5] S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high
resolution imaging by fluorescence photoactivation localization
microscopy,” Biophys. J. 91, 4258–4272 (2006).

[6] S. W. Hell, “Far-field optical nanoscopy,”
Science 316, 1153–1158 (2007).

[7] M. I. Kolobov, “Quantum Imaging,” (Springer, Berlin, 2007)
Chap. Quantum Limits of Optical Super-Resolution, pp. 113–
138.

[8] Focus issue: Super-resolution Imaging,
Nat. Photonics 3, 361–420 (2009).

[9] S. W. W Hell, “Microscopy and its focal switch,”
Nat. Meth. 6, 24–32 (2009).

[10] G. Patterson, M. Davidson, S. Manley, and J. Lippincott-
Schwartz, “Superresolution imaging using single-molecule lo-
calization,” Annu. Rev. Phys. Chem. 61, 345–367 (2010).

[11] P. R. Hemmer and T. Zapata, “The universal scaling laws that
determine the achievable resolution in different schemes for
super-resolution imaging,” J. Opt. 14, 083002 (2012).

[12] C. Cremer and R. B. Masters, “Resolution enhancement tech-
niques in microscopy,” Eur. Phys. J. H 38, 281–344 (2013).

[13] E. Abbe, “Ueber einen neuen Beleuchtungsapparat am
Mikroskop,” Arch. Mikrosk. Anat. 9, 469–480 (1873).

[14] M. Tsang, R. Nair, and X.-M. Lu, “Quantum theory of
superresolution for two incoherent optical point sources,”
Phys. Rev. X 6, 031033 (2016).

[15] R. Nair and M. Tsang, “Far-field superresolution of
thermal electromagnetic sources at the quantum limit,”





Fisher Info Matrix provides a useful tool for  assessing the 
performance of reconstruction schemes 

• Z. Hradil, J. Rehacek, Quantum interference and Fisher information, Phys. Lett. A 334 
(2005) 267–272.  

• J. Rehacek et al,., Tomography for quantum diagnostics, New Journal of Physics 10 (2008) 043022. 
• Rehacek, J et. al.,Determining which quantum measurement performs better for state estimation 

PHYSICAL REVIEW A, 2015, 92, 012108.  
• L. Motka et. al., Optical resolution from Fisher information,  Eur. Phys. J. Plus (2016) 131: 130. doi:10.1140/

epjp/i2016-16130-7  
• Rehacek, J et al., Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography 

with quadrature squeezing,  SCIENTIFIC REPORTS, 2015, 5, 12289   

• C. R. Muller et. al., Evading Vacuum Noise: Wigner Projections or Husimi Samples? Phys. Rev. Lett. 117, 
070801 (2016). doi.org/10.1103/PhysRevLett.117.070801  

• Y. S. Teo et. al, A fast universal performance certification of measurements for quantum tomography, 
Phys. Rev. A 94, 022113 (2016). doi.org/10.1103/PhysRevA.94.022113. 

• M. Paúr et al., Achieving the ultimate optical resolution,  Optica 3, pp. 1144-1147 (2016). doi.org/10.1364/
OPTICA.3.001144. 

• J. Rehacek, et al., Optimal measurements for resolution beyond the Rayleigh limit, to appear in  
Opt. Lett. 42 (2017), January 2017.

http://doi.org/10.1103/PhysRevA.94.022113
http://doi.org/10.1364/OPTICA.3.001144




Thanks for your attention!


