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* A new cyclic scheme to implement with cold atoms
« What is really non-Abelian? Necessity for Wilson loops

« A way to measure the full Wilson matrix
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Brief primer on Gauge Fields,
Geometric Phase and Wilson loops
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eABe 4 = B+ [A, B]
Gauge Transformation

* In quantum mechanics, only the expectation is physical (v)|p[v))

» So if the wave function is multiplied by a phase factor ) — e~"¢%4)
then so should the operator p = —ihV

A —1e0 ~ _1e0 A : A
p— e "“pe'r = p —ielf, P

« Reconsider the extra term as part of a new ‘gauge’ potential

(0 +eA) = e (p+eA)e™ = p+ e(A+hVh)
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Geometric Phase

* Expand state in instantaneous eigenstates W(t) = > w; (t)®; (1)
« Assume adiabatic evolution so it follows one eigenstate U(t) ~ wd
 Assume it has zero eigenvalue, so  ihd:[w®] = H(t)[w®] =0

o Left multiply by @ and integrate to get diw = —(P|d;|P)w

iff dtA

» The formal solution w(t) = e

« Time dependence is not relevant,
depends on path C in parameter space R

v = 7,/ dR - (P|V|D)
C
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Wilson Matrix

* Assume TWO degenerate dark states y(¢) ~ Z w;®,

* Then, the relations from before  d;w = iAw A = i(P|d:| D)

are replaced by vector versions  q,w; = iApw,  Aj = (P, V] Py)

« Make a matrix of the amplitudes based

on which dark state is the initial state dtwi,;\ = ‘iAjsz?z

...written as a matrix equation d:W = iAW

We call this the Wilson matrix ||}/ — PetJ 44
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Synthetic Gauge Field

 |If we phase-multiply the eigenstate
we get

(I)> N e—fie@‘q)>

A = i(D|V|D) — i(D|V|D) + eV

which is exactly the form for U(1) Abelian gauge transformation

A— A+ eVeo

» For the degenerate case, an unitary transformation |®) — U|®)
leads to

A = i(®|V|D) — ((DUT|V|UD) = iU(®|V|O\UT + iUTVU
which is exactly the form for a non-Abelian gauge transformation

A—UAU" +iU'VU
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Gauge Invariance and Wilson loop

For an open curve, like any phase the geometric phase is arbitrary
due to the ‘gauge freedom’ to choose the reference phase

For a closed curve, since the state has to be single-valued, the
freedom is removed, the geometric phase becomes ‘gauge invariant’

w(t) — el fdta ”}’:jgth://dS-(VxA)

For the non-Abelian case, we have likewise,

Wo _ Pe?,jg dtA

The trace of the matrix is called the Wilson loop [y = tr[WO]
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A new cyclic scheme to implement
with cold atoms
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One Ring to Rule them All ...

« Anew cyclic Hamiltonian for synthetic gauge field

0 el 0 e Pip
hi| e %ip § elr2q 0
2 0 e ¥2q 0 e'P3
elPip 0 e g TF§

H —

e The phases need to add up to 0 or multiples of 2
* One dark state when detunings have the same sign: H,, = +4

Eigenvalues: {0.30, 7(6 £ /62 +8(p* + ¢*))}

« Two dark states when detunings have opposite signs: Hyy = —9o

Eigenvalues : 10,0, +1/02 +2 (p% + ¢2)}
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Physical Implementation |

Abelian : Red 0 0f 0 O
Non-Abelian: Blue f, — & [ & {0
210 Q2 0 €
O 0 O FA

mp 2 -1 0 -1 +2
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Physical Implementation 11

Abelian : Red (0 Q7 0 O
Non-Abelian: Blue g, — a [ & €2 0
210 Q5 0 Q
_Q4 0 Q?, :FA_

S s

|a> JY¥=

Y |c)  F=I
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Hamiltonian and Parameter Space

« We pick a slightly restricted form of the Hamiltonian for simulation

(

0 Ei&'p 0 Eicx‘p

h — 10
g p o q O
2 0 g 0 gq
\ e 0 q FI

* Reparametrize [ " /52 T 9(p2 1 ¢2) § = Qsin(o)
p = J5Qsin(0) cos(¢) g = J5Qcos(6) cos(o)

* Note the gauge structures are NOT in physical space but
In the space of parameters, {p,q,a,0} or equivalently {06,¢,o}
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Dark States

« The non-Abelian degenerate dark states are coupled

oY = (e C%S(e), 0, — Siﬂ(@%
<I>j2V — (em sin(¢) sin(6), —% cos(¢), cos(f) sin(o), % COS((b))

« By varying the detuning ( hidden in ¢) these states can be
continuously morphed to the Abelian case, where the two states
decouple and there is only one dark state

@f — (em cos(#), 0, —sin(é’),())

A 1 1
(1)2 — (Oa_ﬁaoa\_ﬁ)a
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Abelian Potential and Field

 In the Abelian case, in the space of the single dark state, there are
only two parameters (the space is two dimensional, oc and 0)

<I>14 — (em cos(#), 0, —sin(é)),())

« Only one non-zero component of the vector potential

Ay = i(D40,| P4 = —cos” 6 Ag =0
« The corresponding field is

F.o = 0,49 — 0pA, = —Sin(29)
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Non-Abelian Potential Field

 In the non-Abelian case, there are two degenerate dark states, and

there are three parameters (the space is 3-dimensional , o, ¢ and 0)
R (em COS(Q)jOj—sin(é’),O)

oY = (em sin(¢) sin(0), —% cos(), cos(0) sin(o), % cos(¢))

- The components of the vector potential |4,,;; = i(®;" |0,,|®7)

Ay |= —sino oy, Ay, =20
An |= —% sin ¢ sin(20) o, — cos® 0 o — sin® psin? 6 o)

* The components of the field are |}, = 0, A, — 0, A, —ilA,. A

Non-zero commutator

679AQ5 — 8¢A9 = —COS QD g
o Ao — OaAy | = — sinddos(20)0, + sin(26)[o — sin® ¢ o]
—i[Ag, An] |= sing (0082 f — sin® ¢ sin® 9) 0. —sin® ¢sin(26)o.
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What is really non-Abelian?
Necessity for Wilson loops
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What Is non-Abelian?

« There are a lot of misconceptions in the context of synthetic
gauge fields about how to identify what is really non-Abelian.

Even published papers contain erroneous conclusions about how
to i1dentify non-Abelian gauge fields
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Confusion 1. Gauge Dependence

« Consider the degenerate case, but now set a=0, then the vector
potential has only one non-zero component

« All commutators of the vector potentials are zero

* 5o the field should be Abelian F),, =0, A, — 0, A, —i[A,. A,
as claimed in some recent reviews and papers

» N. Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman ,

Reports on Progress in Physics 77, 126401 (2014)
» J. Ruseckas, G. Juzeliunas, P. Ohberg ,G. M. Fleischhauer,

PRL 95, 010404 (2005)

* Yet, since there are two dark states, some called this case non-Abelian
» R. G. Unanyan, B. W. Shore, K. Bergmann et al PRA 59 2910 (1999)
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Potential and Field are not Adequate

* The vector potential is not gauge invariant A — UAUT — i(dU)U

« S0, a decision about whether the system is Abelian or non-Abelian
cannot be based on the vector potential

e The field is gauge covariant, F = dA — iA2 — UFU?
« ... only because of cancellation of terms from curl & commutator
dA — UdAUT-UAdUT +dU AUT+idUdU T
—iA? — —UA2UT + UAdUT — dUAUT — idUdU "
« The field is not gauge invariant either

* Moreover, when you measure the field, it is challenging to
distinguish which contributions are from the commutator!
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Need for Wilson Loops

« Wilson Loops are gauge invariant
and provide a reliable way
to identify non-Abelian cases

« Evolve the system through two
separate paths A and B in parameter
space, evaluate Wilson loop at the end

« Switch their order, B-A, evolve again and measure the Wilson loop

 |f the Wilson loops are the same in both orders then it is Abelian, if
they are different then it is non-Abelian
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Confusion 2: Two Loops are Not Enough

In recent review, it was stated two Wilson loops will do the job
» N. Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman,

Reports on Progress in Physics 77, 126401 (2014)

Actually at least three Wilson loops are needed

Because it is always true that Trace[AB]=Trace[BA]

So, we need NON-CYCLIC permutation of at least THREE
LOOPs: A-B-C and then A-C-B
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Confusion 3: Magnitude of Trace

 In another recent paper, for a U(2) gauge it was suggested that \W<2
Is sufficient to identify non-Abelian

» N. Goldman, A. Kubasiak, P. Gaspartd, and M. Lewenstein
PRA 79 023624 (2009)

« That is incorrect, because, for the case when o.=0, we get W<2

« But it is Abelian: Commutators vanish, and also we can show that
Wilson loop value in order ABC and ACB are identical
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Confusion 4: Only Expectations Matter

« The latest consensus by experts is that the system is non-Abelian if
the Wilson matrices (not the trace) do not commute

[Wo(A), Wo(B)] # 0
« But U(2) matrices with the same trace are unitary similar
UWo (AW (B)UT = Wo(B)W,(A)

« So even If the operators do not commute, in general their trace may

tr{ pWo (B)W,(A)} = tr{UT pUW,(A)W,(B)}

since for mixed states, p = U pU
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A way to measure
the full Wilson matrix
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Creating the Closed Paths

« Keep detuning 6 constant
« Vary the couplings and the phase in Gaussian pulses

2 2
h(t) = hoe (t=Tn)"/ah h € {p,q,a}
SOA | | | |
Chang_e loops by M )
changing delay, t,, 27\
o so|B
= |z
5 40 -
L ZXX
ROC
qy o /Py |
40 5
NVAVAVANRN
-5 -3 —ltl 3 5
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Confirm Adiabatic Evolution

Compare evolution by the full Hamiltonian

T2
with evolution within the two state subspace
by the Wilson Matrix |d;W = iAW

WAIVH,

6

Magnitude
- -
o ®
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Gauge Invariance of Wilson Loops

« Compare two Wilson loops that differ by a gauge transformation

Ut = ((1.0).(0.€)) and ¢(t) = Ja(t)

« They have the same final magnitude and phase

2 . 5 .
1 B | C \ B | C
0.5¢ |
0 3 ~N
0 5 Timelo 15 5 Timem 15 20
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Two loops versus Three loops

1

2 T
Magnitude \ |
_ 15}
0.5
L C | B
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Measuring Wilson Loop

The Wilson Matrix can be factorized as

. w11
W, =
W2y

The Wilson loop is the trace

W12
w22

W11 + Woo = 2 0089008(7.91)

etV

Note the phase comes from the U(1) part, so it always commutes

Starting with 1 gives

That only gives us

We will also need

Wi = ') o5 fland

20 + 11 — o

v — o

and
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Measuring the Matrix Elements

« Start with all the population in bare state 1) , then like in STIRAP

vary the couplings counter-intuitively, q precedes p

cos(¢)

cos(0)

p = %Q sin(f)fcos(¢) g = %Q
e At the start the wavefunction matches the first dark state
P = (em cos(6], 0,|—sin(0)}, 0) |

at the end, the population is in bare state |3)
(1,0,0,0) — (0,0, -1,0)

 But the coupling due to constant detuning
0 = Qsin(¢) transfers population to the other dark state as well

dY = (em sin(@isin(@)j —% cos(), cos(#) sin(), -
leading to population in bare state |1) at the end (0,0,0,0) — (1,0,0,0)
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Counterintuitive Evolution

|2

Ci
<
o0

<
o)

opulation,
=
4=

P
-
2
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<

46
Tlme}

-

10

The state evolution matches first column of Wilson matrix

vF(T) = (0.626 + 0.510i,0, —0.570 — 0.152i, 0)
wEry — ( 05704 0.155i —0.806 4 0.025;
° 0.622 + 0.513i  0.546 + 0.227i
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Still Not Enough

« That only givesus 29 + 11 — 99

« We Still need |1 — ¥o

and
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Run 1t Backwards

« Again start with all the population in bare state |1)
p= \%Q sin(6)jcos(¢) ¢ = \fQ cos(f) cos(o)
« But, now do intuitive evolution, p precedes q

so now the initial state matches the second dark state
dY = (em sin(@)[sin(6), —% cos(@), cos(6) sin(o), \/— COS(O))

which evolvesas (1,0,0,0) — (0,0,1,0)

* Due to the coupling there is population in the first dark state

<D]1V = (emcos(Q),Oj—sin(@)?o) o 80)
o | 1z
hich evol 40 -
wnicn evolves as (0,0,0,0) — (1,0,0,0)
L AN N\
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Intuitive Evolution

R

.

|12

Ci
<
>
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opulation,
-
4

~an | _
0.2 (d) bY./d)
09 2 4 . 6 g 10
Time
The state evolution matches second column of Wilson matrix
() = (0.626 — 0.5104, 0, 0.544 — 0.2264, 0)
woe) = (SR e BRI
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Forward and Backward

Magnitude and Phase of the Wilson loop, for both cases

2 o - . |
Reverse
.50 | =
_ =4 _
Z, | E
i=} Forward Reverse 2,
=gl |
0.5
a “ b v Forward
. (@) | | | . (b) | . |
0 2 4 6 8 10 0 2 4 6 8 10

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Kunal K. Das



Thank You!

« Miroslav Gajdacz, University of Aarhus, Denmark
currently Development Engineer at OFS Denmark
Simulations for external states implementation

« Support from National Science Foundation (NSF)
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