Synthetic Gauge Structures & Wilson Loops with Internal & External States

Kunal K. Das

Kutztown University of Pennsylvania

- Brief primer on Gauge Fields, Berry Phase and Wilson loops
- A new cyclic scheme to implement with cold atoms
- What is really non-Abelian? Necessity for Wilson loops
- A way to measure the full Wilson matrix

Brief primer on Gauge Fields, Geometric Phase and Wilson loops

 $e^{A}Be^{-A} = B + [A, B]$ Gauge Transformation

- In quantum mechanics, only the expectation is physical $\langle \psi | \hat{p} | \psi \rangle$
- So if the wave function is multiplied by a phase factor $\psi \to e^{-ie\theta}\psi$ then so should the operator $\hat{p} = -i\hbar\nabla$

$$\hat{p} \to e^{-ie\theta} \hat{p} e^{ie\theta} = \hat{p} - ie[\theta, \hat{p}]$$

• Reconsider the extra term as part of a new 'gauge' potential

$$(p + eA) \rightarrow e^{-ie\theta}(p + eA)e^{ie\theta} = p + e(A + \hbar\nabla\theta)$$

Geometric Phase

- Expand state in instantaneous eigenstates $\Psi(t) = \sum_i w_i(t) \Phi_i(t)$
- Assume adiabatic evolution so it follows one eigenstate $\Psi(t) \simeq w\Phi$
- Assume it has zero eigenvalue, so $i\hbar d_t[w\Phi] = H(t)[w\Phi] = 0$
- Left multiply by Φ and integrate to get $d_t w = -\langle \Phi | d_t | \Phi \rangle w$
- The formal solution $w(t) = e^{i \int dt A}$ • Time dependence is not relevant, depends on path *C* in parameter space *R* • $\gamma = i \int_C dR \cdot \langle \Phi | \nabla | \Phi \rangle$

Wilson Matrix

- Assume TWO degenerate dark states $\Psi(t) \simeq \sum w_i \Phi_i$
- Then, the relations from before $d_t w = iAw$ $A = i\langle \Phi | d_t | \Phi \rangle$

are replaced by vector versions $d_t w_i = i A_{jk} w_k$ $A_{jk} = i \langle \Phi_j | \nabla | \Phi_k \rangle$

• Make a matrix of the amplitudes based on which dark state is the initial state $d_t w_{il} = iA_{jk}w_{kl}$

...written as a matrix equation $d_t W = iAW$

• We call this the **Wilson matrix**

$$W = \mathbf{P}e^{i\int dtA}$$

• If we phase-multiply the eigenstate $|\Phi\rangle \rightarrow e^{-ie\theta} |\Phi\rangle$ we get $A = i\langle \Phi | \nabla | \Phi \rangle \rightarrow i\langle \Phi | \nabla | \Phi \rangle + e \nabla \theta$

which is exactly the form for U(1) Abelian gauge transformation

$$A \to A + e \nabla \theta$$

• For the degenerate case, an unitary transformation $|\Phi\rangle \rightarrow U|\Phi\rangle$ leads to $A = i\langle\Phi|\nabla|\Phi\rangle \rightarrow i\langle\Phi U^{\dagger}|\nabla|U\Phi\rangle = iU\langle\Phi|\nabla|\Phi\rangle U^{\dagger} + iU^{\dagger}\nabla U$

which is exactly the form for a non-Abelian gauge transformation

$$A \to U A U^{\dagger} + i U^{\dagger} \nabla U$$

- For an **open** curve, like any phase the geometric phase is arbitrary due to the 'gauge freedom' to choose the reference phase
- For a **closed** curve, since the state has to be single-valued, the freedom is removed, the geometric phase becomes 'gauge invariant'

$$w(t) = e^{i \oint dt A}$$
 $\gamma = \oint dt A = \int \int dS \cdot (\nabla \times A)$

• For the non-Abelian case, we have likewise,

$$W_{\circ} = \mathbf{P}e^{i \oint dt A}$$

• The **trace** of the matrix is called the **Wilson loop**

 $\mathcal{W} = \mathrm{tr}$

A new cyclic scheme to implement with cold atoms

One Ring to Rule them All ...

• A new cyclic Hamiltonian for synthetic gauge field

$$H = \frac{\hbar}{2} \begin{pmatrix} 0 & e^{i\varphi_1}p & 0 & e^{-i\varphi_4}p \\ e^{-i\varphi_1}p & \delta & e^{i\varphi_2}q & 0 \\ 0 & e^{-i\varphi_2}q & 0 & e^{i\varphi_3}q \\ e^{i\varphi_4}p & 0 & e^{-i\varphi_3}q & \mp\delta \end{pmatrix}$$

- The phases need to add up to 0 or multiples of 2π
- One dark state when detunings have the same sign: $H_{44} = +\delta_{-}$ Eigenvalues: $\{0, \frac{1}{2}\delta, \frac{1}{4}(\delta \pm \sqrt{\delta^2 + 8(p^2 + q^2)})\}$
- Two dark states when detunings have opposite signs: $H_{44} = -\delta$

Eigenvalues :
$$\{0, 0, \pm \frac{1}{2}\sqrt{\delta^2 + 2(p^2 + q^2)}\}$$

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Physical Implementation I

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Physical Implementation II

Synthetic Gauge Structures & Wilson Loops with Internal & External States

• We pick a slightly restricted form of the Hamiltonian for simulation

$$H = \frac{\hbar}{2} \begin{pmatrix} 0 & e^{i\alpha}p & 0 & e^{i\alpha}p \\ e^{-i\alpha}p & \delta & q & 0 \\ 0 & q & 0 & q \\ e^{-i\alpha}p & 0 & q & \mp \delta \end{pmatrix}$$

- Reparametrize $\begin{aligned} \Omega &= \sqrt{\delta^2 + 2(p^2 + q^2)} & \delta &= \Omega \sin(\phi) \\ p &= \frac{1}{\sqrt{2}}\Omega \sin(\theta)\cos(\phi) & q &= \frac{1}{\sqrt{2}}\Omega\cos(\theta)\cos(\phi) \end{aligned}$
- Note the gauge structures are NOT in physical space but in the space of parameters, {p,q,α,δ} or equivalently {θ,φ,α}

Dark States

• The non-Abelian degenerate dark states are coupled

$$\Phi_1^N = \begin{pmatrix} e^{i\alpha}\cos(\theta), 0, -\sin(\theta), 0 \end{pmatrix}$$

$$\Phi_2^N = \begin{pmatrix} e^{i\alpha}\sin(\phi)\sin(\theta), -\frac{1}{\sqrt{2}}\cos(\phi), \cos(\theta)\sin(\phi), \frac{1}{\sqrt{2}}\cos(\phi) \end{pmatrix}$$

 By varying the detuning (hidden in φ) these states can be continuously morphed to the Abelian case, where the two states decouple and there is only one dark state

$$\begin{split} \Phi_1^A &= \left(e^{i\alpha}\cos(\theta), 0, -\sin(\theta), 0 \right) \\ \Phi_2^A &= \left(0, -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \end{split}$$

Abelian Potential and Field

• In the Abelian case, in the space of the single dark state, there are only two parameters (the space is **two** dimensional, α and θ)

$$\Phi_1^A = \left(e^{i\alpha}\cos(\theta), 0, -\sin(\theta), 0\right)$$

• Only **one** non-zero component of the **vector potential**

$$A_{\alpha} = i \langle \Phi_1^A | \partial_{\alpha} | \Phi_1^A \rangle = -\cos^2 \theta \qquad \qquad A_{\theta} = 0$$

• The corresponding **field** is

$$F_{\alpha\theta} = \partial_{\alpha}A_{\theta} - \partial_{\theta}A_{\alpha} = -\sin(2\theta)$$

Non-Abelian Potential Field

- In the **non**-Abelian case, there are two degenerate dark states, and there are three parameters (the space is 3-dimensional, α , ϕ and θ) $\Phi_1^N = (e^{i\alpha} \cos(\theta), 0, -\sin(\theta), 0)$ $\Phi_2^N = (e^{i\alpha} \sin(\phi) \sin(\theta), -\frac{1}{\sqrt{2}} \cos(\phi), \cos(\theta) \sin(\phi), \frac{1}{\sqrt{2}} \cos(\phi))$
- The components of the vector potential $A_{\mu i j} = i \langle \Phi_i^N | \partial_\mu | \Phi_j^N \rangle$ $A_{\theta} = -\sin \phi \, \sigma_y, \qquad A_{\phi} = 0$ $A_{\alpha} = -\frac{1}{2} \sin \phi \sin(2\theta) \, \sigma_x - \cos^2 \theta \, \sigma_{\uparrow} - \sin^2 \phi \sin^2 \theta \, \sigma_{\downarrow}$
- The components of the field are $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} i[A_{\mu}, A_{\nu}]$

$$\begin{array}{l} \partial_{\theta}A_{\phi} - \partial_{\phi}A_{\theta} &= -\cos\phi \ \sigma_{y} \qquad \text{Non-zero commutator} \\ \partial_{\theta}A_{\alpha} - \partial_{\alpha}A_{\theta} &= -\sin\phi\cos(2\theta)\sigma_{x} + \sin(2\theta)[\sigma_{\uparrow} - \sin^{2}\phi \ \sigma_{\downarrow}] \\ \hline -i[A_{\theta}, A_{\alpha}] &= \sin\phi\left(\cos^{2}\theta - \sin^{2}\phi\sin^{2}\theta\right)\sigma_{x} - \sin^{2}\phi\sin(2\theta)\sigma_{z} \end{array}$$

What is really non-Abelian? Necessity for Wilson loops

What is non-Abelian?

• There are a lot of misconceptions in the context of synthetic gauge fields about how to identify what is really non-Abelian.

Even published papers contain erroneous conclusions about how to identify non-Abelian gauge fields

Confusion 1: Gauge Dependence

- Consider the degenerate case, but now set $\alpha=0$, then the vector potential has only one non-zero component
- All commutators of the vector potentials are zero
- So the field should be Abelian $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} i[A_{\mu}, A_{\nu}]$ as claimed in some recent reviews and papers
 - N. Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman, Reports on Progress in Physics 77, 126401 (2014)
 - J. Ruseckas, G. Juzeliunas, P. Ohberg ,G. M. Fleischhauer, PRL 95, 010404 (2005)
- Yet, since there are two dark states, some called this case non-Abelian
 R. G. Unanyan, B. W. Shore, K. Bergmann et al PRA 59 2910 (1999)

Potential and Field are not Adequate

- The vector potential is **not gauge invariant** $A \to UAU^{\dagger} i(dU)U^{\dagger}$
- So, a decision about whether the system is Abelian or non-Abelian cannot be based on the vector potential
- The field is gauge covariant, $F = dA iA^2 \rightarrow UFU^{\dagger}$
- ... only because of cancellation of terms from curl & commutator

 $dA \rightarrow U dA U^{\dagger} - U A dU^{\dagger} + dU A U^{\dagger} + i dU dU^{\dagger}$

 $-iA^2 \rightarrow -iUA^2U^\dagger + UAdU^\dagger - dUAU^\dagger - idUdU^\dagger$

- The field is **not gauge invariant** either
- Moreover, when you measure the field, it is challenging to distinguish which contributions are from the commutator!

Kunal K. Das

Need for Wilson Loops

- Wilson Loops are gauge invariant and provide a reliable way to identify non-Abelian cases
- Evolve the system through two separate paths A and B in parameter space, evaluate Wilson loop at the end
- $\left(\begin{array}{c} 20 \\ 15 \\ 10 \\ 5 \\ 0 \\ 80 \\ p \end{array} \right) \left(\begin{array}{c} 40 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left($
- Switch their order, **B-A**, evolve again and measure the Wilson loop
- If the Wilson loops are the **same** in both orders then it is **Abelian**, if they are **different** then it is **non-Abelian**

Confusion 2: Two Loops are Not Enough

- In recent review, it was stated two Wilson loops will do the job
 N. Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman,
 Reports on Progress in Physics 77, 126401 (2014)
- Actually at least **three** Wilson loops are needed
- Because it is always true that *Trace[AB]=Trace[BA]*

• So, we need NON-CYCLIC permutation of at least **THREE** LOOPs: A-B-C and then A-C-B Confusion 3: Magnitude of Trace

- In another recent paper, for a U(2) gauge it was suggested that W<2 is sufficient to identify non-Abelian
 - ➢ N. Goldman, A. Kubasiak, P. Gaspartd, and M. Lewenstein PRA 79 023624 (2009)
- That is incorrect, because, for the case when $\alpha=0$, we get W<2
- But it is Abelian: Commutators vanish, and also we can show that Wilson loop value in order ABC and ACB are identical

Confusion 4: Only Expectations Matter

- The latest consensus by experts is that the system is non-Abelian if the Wilson matrices (not the trace) do not commute
 [W₀(A), W₀(B)] ≠ 0
- But U(2) matrices with the same trace are unitary similar

$$UW_{\circ}(A)W_{\circ}(B)U^{\dagger} = W_{\circ}(B)W_{\circ}(A)$$

 So even if the operators do not commute, in general their trace may tr{ρW_o(B)W_o(A)} = tr{U[†]ρUW_o(A)W_o(B)}

since for mixed states, $ho\equiv U^{\dagger}
ho U$

A way to measure the full Wilson matrix

Creating the Closed Paths

- Keep detuning δ constant
- Vary the couplings and the phase in Gaussian pulses

 $h(t) = h_0 e^{-(t-\tau_h)^2/\sigma_h^2}$ $h \in \{p, q, \alpha\}$

Confirm Adiabatic Evolution

• Compare evolution by the full Hamiltonian $H = \frac{\hbar}{2}$ with evolution within the two state subspace by the Wilson Matrix $d_t W = iAW$

 $e^{i\alpha}p \ 0 \ e^{i\alpha}p$

 $\mp \delta$

Gauge invariance of Wilson Loops

• Compare two Wilson loops that differ by a gauge transformation

$$U^{\dagger} = ((1,0), (0, e^{i\zeta(t)}))$$
 and $\zeta(t) = \frac{1}{2}\alpha(t)$

• They have the same final magnitude and phase

Two loops versus Three loops

Measuring Wilson Loop

• The Wilson Matrix can be factorized as

$$W_{\circ} = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix}$$

- The Wilson loop is the trace $w_{11} + w_{22} = 2\cos\theta\cos(\vartheta_1)e^{i\vartheta}$
- Note the phase comes from the U(1) part, so it always commutes
- Starting with Φ_1^N gives $w_{11} = e^{i(\vartheta + \vartheta_1)} \cos \theta$ and $w_{21} = e^{i(\vartheta \vartheta_2)} \cos \theta$
- That only gives us $2\vartheta + \vartheta_1 \vartheta_2$ and $\vartheta_1 + \vartheta_2$
- We will also need $\vartheta_1 \vartheta_2$

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Measuring the Matrix Elements

• Start with all the population in bare state |1>, then like in STIRAP vary the couplings counter-intuitively, **q** precedes **p**

$$p = \frac{1}{\sqrt{2}}\Omega\sin(\theta)\cos(\phi) \quad q = \frac{1}{\sqrt{2}}\Omega\cos(\theta)\cos(\phi)$$

• At the start the wavefunction matches the first dark state $\Phi_1^N = (e^{i\alpha} \cos(\theta), 0, -\sin(\theta), 0)$ at the end, the population is in bare state |3>

 $(1,0,0,0) \rightarrow (0,0,-1,0)$

• But the coupling due to constant detuning

 $\delta = \Omega \sin(\phi) \text{ transfers population to the other dark state as well}$ $\Phi_2^N = \left(e^{i\alpha} \sin(\phi) \overline{\sin(\theta)}, -\frac{1}{\sqrt{2}} \cos(\phi), \cos(\theta) \sin(\phi), \frac{1}{\sqrt{2}} \cos(\phi) \right)$

leading to population in bare state $|1\rangle$ at the end $(0,0,0,0) \rightarrow (1,0,0,0)$

The state evolution matches first column of Wilson matrix

$$\Psi^{F}(T) = (0.626 + 0.510i, 0, -0.570 - 0.152i, 0)$$
$$W_{\circ}^{F}(T) = \begin{pmatrix} 0.570 + 0.155i & -0.806 + 0.025i \\ 0.622 + 0.513i & 0.546 + 0.227i \end{pmatrix}$$

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Still Not Enough

- That only gives us $2\vartheta + \vartheta_1 \vartheta_2$ and $\vartheta_1 + \vartheta_2$
- We **Still** need $\vartheta_1 \vartheta_2$

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Run it Backwards

• Again start with all the population in bare state $|1\rangle$

$$p = \frac{1}{\sqrt{2}}\Omega \sin(\theta)\cos(\phi) \quad q = \frac{1}{\sqrt{2}}\Omega\cos(\theta)\cos(\phi)$$

- But, now do intuitive evolution, p precedes q so now the initial state matches the second dark state
 Φ₂^N = (e^{iα} sin(φ)sin(θ), -1/√2 cos(φ), cos(θ) sin(φ), 1/√2 cos(φ))
 which evolves as (1000) → (0010)
 - which evolves as $(1,0,0,0) \rightarrow (0,0,1,0)$
- Due to the coupling there is population in the first dark state

$$\Phi_1^N = \left(e^{i\alpha}\cos(\theta), 0, -\sin(\theta), 0\right)$$

which evolves as $(0,0,0,0) \rightarrow (1,0,0,0)$

The state evolution matches second column of Wilson matrix

$$\Psi^{R}(T) = (0.626 - 0.510i, 0, 0.544 - 0.226i, 0)$$
$$W^{R}_{\circ}(T) = \begin{pmatrix} 0.570 - 0.155i & 0.622 - 0.513i \\ -0.806 - 0.025i & 0.546 - 0.227i \end{pmatrix}$$

Synthetic Gauge Structures & Wilson Loops with Internal & External States

Forward and Backward

Magnitude and Phase of the Wilson loop, for both cases

Thank You!

Miroslav Gajdacz, University of Aarhus, Denmark currently Development Engineer at OFS Denmark Simulations for external states implementation

• Support from National Science Foundation (NSF) under Grants No. PHY-1313871 and PHY-1707878

• Kavli Institute of Theoretical Physics at the University of California, Santa Barbara where this work was initiated under a Kavli Scholarship.