Calculation of switching rates of phase bistability in strongly coupled dissipative Jaynes-Cummings model

T. Chlouba, M. Žonda, T. Ostatnický, and T. Novotný

Faculty of Mathematics and Physics Charles University, Prague

Olomouc 2018

T. Chlouba et al., Opt. Lett. 41, 5821 (2016)

Outline

- Introduction
 - Model definition, numerical methods and results.
- Semiclassical approach
 - Neoclassical equations of motion. Comparison with numerical results.
 Limitations of semiclassics.
- Full quantum approach
 - Structure of metastable states. Analytical rate formula.

Introduction - Motivation

• E. Andrianov, N. Chtchelkatchev et al.: *Noisy metamolecule: strong narrowing of fluorescence line*, Optics Letters 40, 3536 (2015).

3

Introduction - Model

• Resonantly driven Jaynes-Cummings system with Markovian dissipation

$$H_{\rm spin} = \omega \sigma^{\dagger} \sigma + \Omega_{a} \cos(\omega t)(\sigma + \sigma^{\dagger})$$

$$H_{\rm boson} = \omega a^{\dagger} a + \Omega_{b} \cos(\omega t)(a + a^{\dagger})$$

$$H_{\rm int} = g(\sigma + \sigma^{\dagger})(a + a^{\dagger})$$

$$\sigma^{\dagger} = \frac{1}{2}(\sigma_{x} + \sigma_{y})$$

$$\sigma = \frac{1}{2}(\sigma_{x} - \sigma_{y})$$

$$\frac{d\rho}{dt} = -i[H, \rho] + \frac{\gamma_{a}}{2}(2\sigma\rho\sigma^{\dagger} - \rho\sigma^{\dagger}\sigma - \sigma^{\dagger}\sigma\rho) + \frac{\gamma_{b}}{2}(2a\rho a^{\dagger} - a^{\dagger}a\rho - \rho a^{\dagger}a)$$

Introduction – Approximation

• RWA approximation + (canonical transformation)

$$\begin{aligned}
H_{spin} &= \omega \sigma^{\dagger} \sigma + \Omega_{a} (\sigma + \sigma^{\dagger}) \\
H_{boson} &= \omega a^{\dagger} a + \Omega_{b} (a + a^{\dagger}) \\
H_{int} &= g(\sigma^{\dagger} a + \sigma a^{\dagger}) + g(\sigma^{\dagger} a^{\dagger} + \sigma a) \\
\end{aligned}$$

$$\begin{aligned}
H_{RWA} &= g(\sigma^{\dagger} a + \sigma a^{\dagger}) + \Omega_{b} (a + a^{\dagger}) + \Omega_{a} (\sigma + \sigma^{\dagger}) \\
H_{RWA} &= g(\sigma^{\dagger} a + \sigma a^{\dagger}) + \Omega_{b} (a + a^{\dagger}) + \Omega_{a} (\sigma + \sigma^{\dagger}) \\
\end{aligned}$$

$$\begin{aligned}
\frac{d\rho}{dt} &= -i[H_{RWA}, \rho] + \frac{\gamma_{a}}{2} (2\sigma\rho\sigma^{\dagger} - \rho\sigma^{\dagger}\sigma - \sigma^{\dagger}\sigma\rho) + \frac{\gamma_{b}}{2} (2a\rho a^{\dagger} - a^{\dagger} a\rho - \rho a^{\dagger} a)
\end{aligned}$$

E. Andrianov et al., Opt. Lett. 40, 3536 (2015)

Introduction - Numerical methods, Results

- System easily solvable by sparse numerical methods or quantum trajectories in QuTip
- Wigner functions: Two-peak structure above certain drive threshold

Semiclassical approach – Neoclassical equations of motion

7

$$\alpha_{\pm} = -2i\frac{\Omega_b}{\gamma_b} \pm i\frac{g}{\gamma_b}e^{i\phi_{\pm}} \qquad \qquad \Delta = \frac{g^2}{\gamma_b}\sqrt{\left(\frac{\Omega_b}{\Omega_{b,c}}\right)^2 - 1} \qquad e^{i\phi_{\pm}} = \frac{\Omega_a - i\frac{2\Omega_b g}{\gamma_b}}{\Delta \mp i\frac{g^2}{\gamma_b}}$$

Semiclassical approach – Neoclassical equations of motion

$$e^{i\phi_{\pm}} = \frac{\Omega_a - i\frac{2\Omega_b g}{\gamma_b}}{\Delta \mp i\frac{g^2}{\gamma_b}} \qquad \Delta = \frac{g^2}{\gamma_b}\sqrt{\left(\frac{\Omega_b}{\Omega_{b,c}}\right)^2 - 1}$$

$$\Omega_{b,c} = \frac{g^2}{\sqrt{4g^2 + \gamma_b^2 \Omega_b^2 / \Omega_a^2}}$$

Onset of luminescence threshold

Semiclassical approach - Results

$$\alpha_{\pm} = -2i\frac{\Omega_b}{\gamma_b} \pm i\frac{g}{\gamma_b}e^{i\phi_{\pm}}$$

 $\Omega_{b,c} = g^2 / \sqrt{4g^2 + \gamma_b^2 \Omega_b^2 / \Omega_a^2} \approx 0.175$

Onset of luminescence threshold

For large drives coexistence of 2 metastable states

Semiclassical approach - Luminescence spectrum

- Numerical calculation by Quantum regression theorem C. W. Gardiner, P. Zoller, Quantum Noise (Springer 2000).
- Dichotomous noise formula, fits.

Towards a theory of metastability in open quantum dynamics: K. Macieszczak et al., PRL 116, 1 (2016).

Semiclassical approach – Bistability identification

Towards a theory of metastability in open quantum dynamics: K. Macieszczak et al., PRL 116, 1 (2016).

- Spectral decomposition of Liouvillean
- Wigners of stat. state and "excited density matrix"

0.35

11

Towards a theory of metastability in open quantum dynamics: K. Macieszczak et al., PRL 116, 1 (2016).

• Restriction to subspace given by two (nonorthogonal) metastable states

$$\frac{d}{dt} \begin{pmatrix} 1 & S \\ S & 1 \end{pmatrix} \begin{pmatrix} p_+ \\ p_- \end{pmatrix} = \begin{pmatrix} -\Gamma & \Gamma \\ \Gamma & -\Gamma \end{pmatrix} \begin{pmatrix} p_+ \\ p_- \end{pmatrix}$$

$$\rho = \begin{pmatrix} \rho_{++} & \rho_{+-} \\ \rho_{-+} & \rho_{--} \end{pmatrix} \qquad p_{+} = Tr\rho_{++}$$

• Gives a set of coupled equations. Can be solved in P representation.

Towards a theory of metastability in open quantum dynamics: K. Macieszczak et al., PRL 116, 1 (2016).

• Restriction to subspace given by two (nonorthogonal) metastable states

$$\frac{d}{dt} \begin{pmatrix} 1 & S \\ S & 1 \end{pmatrix} \begin{pmatrix} p_+ \\ p_- \end{pmatrix} = \begin{pmatrix} -\Gamma & \Gamma \\ \Gamma & -\Gamma \end{pmatrix} \begin{pmatrix} p_+ \\ p_- \end{pmatrix}$$

- Gives a set of coupled equations. Can be solved in P representation
- Does not give correct solution. Why?

Towards a theory of metastability in open quantum dynamics: K. Macieszczak et al., PRL 116, 1 (2016).

- Spectral decomposition of stationary solution:
 - Eigenvalues {0.469, 0.457, 0.03, 0.02, 0.01...}
 - Wigners of two dominant contributions
 - Some linear combination of coherent peaks

Towards a theory of metastability in open quantum dynamics: K. Macieszczak et al., PRL 116, 1 (2016).

- Spectral decomposition of stationary solution:
 - Eigenvalues {0.469, 0.457, 0.03, 0.02, 0.01...}
 - Wigners of following "eigenvectors"...
 - Their eigenvalue is not small enough for calculation of small switching rates

Full quantum approach - Solution

• Fermi Golden Rule-like approach

1.

$$\rho(0) = |\psi_+\rangle \langle \psi_+|$$

$$\rho_{++}(t) = \langle \psi_+ | \rho(t) | \psi_+ \rangle = \mathrm{Tr}^+ \rho(t)$$

2. Plug into Liouville-Lindblad equation

$$\dot{\rho}_{++}(t) = \mathrm{Tr}^+ \dot{\rho}(t) = \langle \psi_+ | \mathcal{L} \rho(t) | \psi_+ \rangle$$

3. Assume exponential decay and do the algebra

$$\Gamma = -\frac{\dot{\rho}_{++}(0)}{\rho_{++}(0)} = -\frac{\gamma_b}{4} [e^{|\alpha|^2} - 1/2]^{-1} [(e^{|\alpha|^2} - 2|\alpha|^2 e^{|\alpha|^2} - 1) + 2|\alpha|^2} \sum_{k=0}^{\infty} \frac{|\alpha|^{2k}}{k!} \sqrt{\frac{k}{k+1}}] + \frac{\gamma_a}{2} \frac{1}{1 - \frac{1}{2e^{|\alpha|^2}}} \approx \frac{\gamma_b}{16\langle n \rangle} + \frac{\gamma_a}{2}$$

Full quantum approach

- Fine structure of states |n,+(-)> (correlations between spin and photon) is key for calculations!
- Semiclassical approach is not sufficient for rates!

Thank you for your attention!

References

- 1. E. Andrianov, N. Chtchelkatchev, Optics Letters 40, 3536 (2015).
- 2. S. Hughes et al., Phys. Rev. Lett. 107, 193601 (2011).
- 3. H. J. Carmichael, Phys. Rev. X 5, 031028 (2015).
- 4. K. Macieszczak, M. Guta, I. Lesanovsky, and J. P. Garrahan, PRL 116, 1 (2016).
- 5. T. Chlouba, M. Žonda, and T. Novotný, Opt. Lett. 41, 5821 (2016).
- 6. C. W. Gardiner and P. Zoller, *Quantum Noise*, Springer (2000).