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•  quantum bits (qubits)                  photons           polarization 

        path/way/spatial 

•  manage their interaction 

  single-photon or two-photon interference 

  detection (projective measurement), post-selection 

    

 

    

•  Experimental implementation 

  linear-optical quantum protocols for quantum information processing 
   

  linear-optical quantum gates 

 

    

    •  linear optics – bulk and fiber 
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• quantum gate [1]  
 

• quantum state transfer, its limitations  given by particles properties [2] and interaction [5]
  

• discrimination of  devices [3] and quantum measurements [4] 
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Experiments 
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Programmable quantum phase gate 

Z 

[1]   M. Miková, H. Fikerová, I. Straka, M. Mičuda, J. Fiurášek, M. Ježek, and M. Dušek, 
Increasing efficiency of a linear-optical quantum gate using electronic feed-forward,  
Physical Review A 85, 012305 (2012). 
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Measure of effective indistinguishability of particles 

particle – qubit carrier 

environment -  noninformational internal degree of freedom 

qubit   - internal degree of freedom used for information encoding  
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 S                  T                                              

Measure of indistinguishability  –  overlap  of quantum states of particles S and T 

[iii] M. Hendrych, M. Dušek, R. Filip, J. Fiurášek, Phys. Lett. A 310, 95 (2003) 

[2]   M. Miková, H. Fikerová, I. Straka, M. Mičuda, M. Ježek, M. Dušek, and R. Filip, Carrying 
qubits with particles whose noninformational degrees of freedom are nonfactorable, 
Physical Review A 87, 042327 (2013). 
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Measure of effective indistinguishability of particles 

particle – qubit carrier 

environment -  noninformational internal degree of freedom 

qubit   - internal degree of freedom used for information encoding  

Are the environments of 
particles really factorable?! 

X  S                  T                                              S            T 

Measure of indistinguishability  –  overlap  of quantum states of particles S and T 

Directly measurable parameter, D, ( 0 ≤ |D| ≤ 1).   
   ● quantifies the effective indistinguishability of inaccessible degrees of freedom  

of particles carrying qubits (which can be even entangled with an external environment) 
   ●  determines an upper bound of  quantum state transfer quality 

only for  factorable states 

[2]   M. Miková, H. Fikerová, I. Straka, M. Mičuda, M. Ježek, M. Dušek, and R. Filip, Carrying 
qubits with particles whose noninformational degrees of freedom are nonfactorable, 
Physical Review A 87, 042327 (2013). 9 
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Projective measument 

Real case|D|≠1 
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U1  and  U2 Discrimination between two general unitary operations 

Perfect quantum reading 

It is unitary-equivalent to discrimination between 
 

 U   and    I 

U1 = WUW,   U2 = W  IW,       W  - unitary matrix ,  I - identity operation 

 

Special case of U    →    action of a BS    →     RV of BS     →    optical memory record 

Discrimination between devices U and I corresponds to reading of the memory record.  

Devices  are called according to the performed operations. 

+π 
 

 U                                    I 

[3] M. Dall'Arno, A. Bisio, G. M. D'Ariano, M. Miková, M. Ježek, and M. Dušek,  
Experimental implementation of unambiguous quantum reading,  
Physical Review A 87, 012308 (2012). 13 

What is the lowest energy necessary for the reading? 



Applications    programmable phase gate 

B ID
EA

 
Perfect quantum reading 

B 

U,I 
U 

 U’ 

 I 

 

 – photo-counter 

U,I  – discriminated device 

B – beam splitter  

       TB=1/(1+√RV),   TB+RB=1 

14 



ID
EA

 
Perfect quantum reading 

EX
P

ET
IM

EN
T 

B B 

U,I 
U 

 U’ 

 I 

 

 – photo-counter 

U,I  – discriminated device 

B – beam splitter  

       TB=1/(1+√RV),   TB+RB=1 

14 



Applications    programmable phase gate 
ID

EA
 

Perfect quantum reading 
EX

P
ET

IM
EN

T 

device 
U  → RV 1 + π 

   I   → RV=1 

B B 

U,I 
U 

 U’ 

 I 

 

 – photo-counter 

U,I  – discriminated device 

B – beam splitter  

       TB=1/(1+√RV),   TB+RB=1 

14 



Applications    programmable phase gate 
ID

EA
 

Perfect quantum reading 
R

ES
U

LT
S 

pX|Y – theoretical conditional probability of photon detection  (by the detector X given that the unknown device is Y)  

fX|Y – relative frequency measured                                            where   X = U,U’, I   and   Y = U, I.  

 

device U                                                         device I 
 

B B 

U,I 
U 

 U’ 

 I 

 

 – photo-counter 

U,I  – discriminated device 

B – beam splitter  

       TB=1/(1+√RV),   TB+RB=1 

15 

For the reading - used just a fraction of photon energy 



Discrimination of quantum measurements 

[4] M. Miková, M. Sedlák, I. Straka, M. Mičuda, M. Ziman, M. Ježek, M. Dušek, and J. Fiurášek,  
 Optimal entanglement-assisted discrimination of quantum measurements,  

Physical Review A 90, 022317 (2014). 
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Optimal discrimination of two known single-qubit quantum measurements M,N  
in scenario where the measurement can be performed only once 
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[5]  M. Miková, I. Straka, M. Mičuda, V. Krčmarský, M. Dušek, M.Ježek, J. Fiurášek, and R. Filip, 
 Faithful conditional quantum state transfer between weakly coupled qubits, 
 Scientic Reports 6, 32125 (2016). 
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quantum filtering: 
① outcome of the suitable measurement on the source qubit  

 

② interaction of qubis 
 

③ initial target qubit state, parametrized by angle ω 
        |g⟩T =cos (ω) |H⟩ + sin (ω)|V⟩ 
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Quantum state transfer between weakly coupled qubits 
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Conclusion 

•  We double the success probability of the programmable linear-optical quantum phase 
gate via feed-forward. 

 

•  We experimentally verify usefulness of directly measurable parameter |D| which 
quantifies how the quantum information processing is influenced by particles in non-
facrorizable state. 

 

•  We experimentally implement perfect quantum reading and prove its feasibility. 
 

•  We experimentally realize the optimal strategies for discrimination between two 
projective single-qubit quantum measurements on polarization states of single photons 
and demonstrate the advantage of entanglement-based discrimination strategy 
(compared to unentangled single-qubit probes). 

 

•  We experimentally verified feasibility and robustness of quantum state transfer protocol 
between weakly coupled qubits in the experiment using two photonics qubits. 
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