From tennis racket instability to spin squeezing and quantum phase transitions: quantum-classical analogies

Tomáš Opatrný, Lukáš Richterek, and Martin Opatrný
[Sci. Rep. 8, 1984 (2018)]

Faculty of Science, Palacky University Olomouc
Weizmann Institute of Science, February 2018

Outline

- Motivation
- Equations of motion: classical and quantum
- Symmetric and asymmetric top, tennis racket instability and spin squeezing
■ Euler top with a rotor, Lipkin-Meshkov-Glick model and excited state quantum phase transitions
- LMG Floquet time crystal
- Summary

- "The same equations have the same solutions" [The Feynman Lectures on Physics, Vol. II, Chap. 12-1.]
- Similarity of equations governing spin squeezing and free Euler top. Any deeper relationship?
- Do classical analogues of the Lipkin-Meshkov-Glick exist?

Motion of classical rigid body

Euler dynamic equations

Angular momentum changes by torque

$$
\frac{d \vec{L}}{d t}=\vec{M}
$$

in a rotating system

$$
\frac{d^{\prime} \vec{A}}{d t}=\frac{d \vec{A}}{d t}-\vec{\omega} \times \vec{A}
$$

Applied for \vec{L}

$$
\frac{d^{\prime} \vec{L}}{d t}=\vec{M}-\vec{\omega} \times \vec{L}
$$

L. Euler, "Theoria Motus Corporum Solidorum seu Rigidorum" (1765)

Euler dynamic equations
For coordinate system fixed with respect to the rotating body, principal axes of inertia:

$$
L_{k}=I_{k} \omega_{k}, \quad k=1,2,3
$$

For a free top, $\vec{M}=0$:

$$
\begin{aligned}
& \dot{L}_{1}=\left(\frac{1}{I_{3}}-\frac{1}{I_{2}}\right) L_{2} L_{3}, \\
& \dot{L}_{2}=\left(\frac{1}{I_{1}}-\frac{1}{I_{3}}\right) L_{3} L_{1}, \\
& \dot{L}_{3}=\left(\frac{1}{I_{2}}-\frac{1}{I_{1}}\right) L_{1} L_{2} .
\end{aligned}
$$

Classical motion of a top with a rotor

Classical motion of a top with a rotor

Euler dynamic equations

Torque stemming from a rotor with axis is fixed with body:

$$
\begin{aligned}
\vec{M}= & -\vec{M}_{\text {rotor }}=-\frac{d \vec{K}}{d t} \\
\vec{M} & =-\frac{d^{\prime} \vec{K}}{d t}-\vec{\omega} \times \vec{K} \\
& =-\vec{\omega} \times \vec{K}
\end{aligned}
$$

since $d^{\prime} \vec{K} / d t=0$ (the rotor changes neither the magnitude of rotation nor the axis orientation with respect to the rigid body).
This leads to

$$
\frac{d^{\prime} \vec{L}}{d t}=-\vec{\omega} \times(\vec{L}+\vec{K}) .
$$

Classical motion of a top with a rotor

Euler dynamic equations
Components of \vec{L} :

$$
\begin{aligned}
& \dot{L}_{1}=\left(\frac{1}{I_{3}}-\frac{1}{I_{2}}\right) L_{2} L_{3}+\frac{K_{2}}{I_{3}} L_{3}-\frac{K_{3}}{I_{2}} L_{2}, \\
& \dot{L}_{2}=\left(\frac{1}{I_{1}}-\frac{1}{I_{3}}\right) L_{3} L_{1}+\frac{K_{3}}{I_{1}} L_{1}-\frac{K_{1}}{I_{3}} L_{3}, \\
& \dot{L}_{3}=\left(\frac{1}{I_{2}}-\frac{1}{I_{1}}\right) L_{1} L_{2}+\frac{K_{1}}{I_{2}} L_{2}-\frac{K_{2}}{I_{1}} L_{1} .
\end{aligned}
$$

Classical motion of a top with a rotor

Euler dynamic equations
Suitable to work with the total angular momentum $\vec{J} \equiv \vec{L}+\vec{K}$,

$$
\begin{aligned}
& j_{1}=\left(\frac{1}{I_{3}}-\frac{1}{I_{2}}\right) J_{2} J_{3}+\frac{K_{2}}{I_{2}} J_{3}-\frac{K_{3}}{I_{3}} J_{2}, \\
& j_{2}=\left(\frac{1}{I_{1}}-\frac{1}{I_{3}}\right) J_{3} J_{1}+\frac{K_{3}}{I_{3}} J_{1}-\frac{K_{1}}{I_{1}} J_{3}, \\
& j_{3}=\left(\frac{1}{I_{2}}-\frac{1}{I_{1}}\right) J_{1} J_{2}+\frac{K_{1}}{I_{1}} J_{2}-\frac{K_{2}}{I_{2}} J_{1} .
\end{aligned}
$$

Classical motion of a top with a rotor

Euler dynamic equations

These equations conserve kinetic energy and magnitude of the total angular momentum,

$$
\dot{E}_{\text {body }}=0, \quad j^{2}=0,
$$

where

$$
\begin{aligned}
E_{\text {body }} & =\frac{L_{1}^{2}}{2 I_{1}}+\frac{L_{2}^{2}}{2 I_{2}}+\frac{L_{3}^{2}}{2 I_{3}}, \\
J^{2} & =J_{1}^{2}+J_{2}^{2}+J_{3}^{2} .
\end{aligned}
$$

Evolution bound to intersections of energy ellipsoid and a displaced angular momentum sphere $(\vec{J}=\vec{L}+\vec{K})$.

Quantum motion and spin squeezing

Two bosonic modes \hat{a} and \hat{b} with total number of particles N.
Commutators $\left[\hat{a}, \hat{a}^{\dagger}\right]=\left[\hat{b}, \hat{b}^{\dagger}\right]=1$.
Introduce operator $\hat{\vec{J}}$:

$$
\begin{aligned}
& \hat{J}_{x}=\frac{1}{2}\left(\hat{a}^{\dagger} \hat{b}+\hat{a}^{\dagger}\right) \\
& \hat{\jmath}_{y}=\frac{1}{2 i}\left(\hat{a}^{\dagger} \hat{b}-\hat{a} \hat{a}^{\dagger}\right) \\
& \hat{J}_{z}=\frac{1}{2}\left(\hat{a}^{\dagger} \hat{a}-\hat{b}^{\dagger} \hat{b}\right)
\end{aligned}
$$

with $N=\hat{a}^{\dagger} \hat{a}+\hat{b}^{\dagger} \hat{b}$.
Commutation relations:
$\left[\hat{\jmath}_{x}, \hat{\jmath}_{y}\right]=i \hat{\jmath}_{z},\left[\hat{\jmath}_{y}, \hat{\jmath}_{z}\right]=i \hat{\jmath}_{x}$, and $\left[\hat{\jmath}_{z}, \hat{J}_{x}\right]=i \hat{\jmath}_{y}$.

Quantum motion and spin squeezing

Assume a general quadratic Hamiltonian in the form

$$
\hat{H}=\sum_{k, l} \chi_{k l} \hat{\jmath}_{k} \hat{\jmath}_{l}+\sum_{k} \Omega_{k} \hat{\jmath}_{k} .
$$

By a suitable rotation of the coordinate system:

$$
\hat{H}=\sum_{k=1}^{3}\left(\chi_{k} \hat{\jmath}_{k}^{2}+\Omega_{k} \hat{\jmath}_{k}\right)
$$

Components $\chi_{k l}$ form the twisting tensor
[T.O., PRA 91, 053826 (2015)].
Coefficients χ_{k} : eigenvalues of the twisting tensor.

Quantum motion and spin squeezing

The Heisenberg equations of motion for $\hat{H}=\sum_{k=1}^{3}\left(\chi_{k} \hat{J}_{k}^{2}+\Omega_{k} \hat{J}_{k}\right)$:

$$
\begin{aligned}
& \frac{d \hat{\jmath}_{1}}{d t}=\left(\chi_{2}-\chi_{3}\right)\left(\hat{\jmath}_{2} \hat{\jmath}_{3}+\hat{\jmath}_{3} \hat{\jmath}_{2}\right)+\Omega_{2} \hat{\jmath}_{3}-\Omega_{3} \hat{\jmath}_{2} \\
& \frac{d \hat{\jmath}_{2}}{d t}=\left(\chi_{3}-\chi_{1}\right)\left(\hat{\jmath}_{3} \hat{\jmath}_{1}+\hat{\jmath}_{1} \hat{\jmath}_{3}\right)+\Omega_{3} \hat{\jmath}_{1}-\Omega_{1} \hat{\jmath}_{3} \\
& \frac{d \hat{\jmath}_{3}}{d t}=\left(\chi_{1}-\chi_{2}\right)\left(\hat{\jmath}_{1} \hat{\jmath}_{2}+\hat{\jmath}_{2} \hat{\jmath}_{1}\right)+\Omega_{1} \hat{\jmath}_{2}-\Omega_{2} \hat{\jmath}_{1}
\end{aligned}
$$

Correspondence of the models

Equations of the Euler top and of the bosonic modes correspond for

$$
\chi_{k} \leftrightarrow-\frac{1}{2 I_{k}}, \quad \Omega_{k} \leftrightarrow \frac{K_{k}}{I_{k}},
$$

or

$$
I_{k} \leftrightarrow-\frac{1}{2 \chi_{k}}, \quad K_{k} \leftrightarrow-\frac{\Omega_{k}}{2 \chi_{k}} .
$$

For angular momenta $\hat{\vec{J}} \leftrightarrow \vec{J}$, and for energy

$$
\hat{H} \leftrightarrow-E_{\text {body }}+\sum_{k=1}^{3} \frac{K_{k}^{2}}{2 I_{k}} .
$$

Invariance with respect to transformation of χ_{k} and I_{k}

Dynamics unchanged if a constant is added to all eigenvalues of χ, i.e.,

$$
\chi_{k} \rightarrow \chi_{k}+\chi_{0} .
$$

Similarly for the moments of inertia:

$$
\frac{1}{I_{k}} \rightarrow \frac{1}{I_{k}}+\frac{1}{I_{0}}
$$

and the angular momentum of the rotor:

$$
K_{k} \rightarrow \frac{K_{k}}{1+\frac{I_{k}}{I_{0}}}
$$

Invariance with respect to transformation of χ_{k} and I_{k}

Consequence:

- For each Euler top with a rotor one finds corresponding quadratic collective spin Hamiltonian

$$
\hat{H}=\sum_{k=1}^{3}\left(\chi_{k} \hat{\jmath}_{k}^{2}+\Omega_{k} \hat{\jmath}_{k}\right)
$$

■ For each quadratic collective spin Hamiltonian
$\hat{H}=\sum_{k=1}^{3}\left(\chi_{k} \hat{\jmath}_{k}^{2}+\Omega_{k} \hat{\jmath}_{k}\right)$ one finds
corresponding Euler top with a rotor.

Invariance with respect to transformation of χ_{k} and I_{k}

Proof: mass can be assembled such as to have arbitrary principal moments of inertia I_{k}, provided they are positive and satisfy the triangle inequality $I_{j} \leq I_{k}+I_{l}$.
First condition: by a suitable choice of the additive constant χ_{0} making all values χ_{k} negative.
If the resulting values I_{k} violate the triangle inequality (say, $I_{1}>I_{2}+I_{3}$), choose I_{0} satisfying

$$
0<I_{0}<\frac{I_{2} I_{3}+\sqrt{I_{2}^{2} I_{3}^{2}+I_{1} I_{2} I_{3}\left(I_{1}-I_{2}-I_{3}\right)}}{I_{1}-I_{2}-I_{3}}
$$

Lipkin-Meshkov-Glick model

H. J. Lipkin, N. Meshkov, A.J. Glick, "Validity of many-body approximation methods for a solvable model. . ." Nuclear Physics 62, 188 (1965).

- Hamiltonian
$\hat{H}=\epsilon \hat{J}_{3}+V\left(\hat{J}_{1}^{2}-\hat{J}_{2}^{2}\right)+W\left(\hat{J}_{1}^{2}+\hat{J}_{2}^{2}\right)$
- N fermions in two degenerate levels whose energies differ by ϵ.
- Exactly solvable (under some conditions).
- Toy model for quantum phase

Harry (Zvi) Lipkin
(1921-2015) transitions.

Lipkin-Meshkov-Glick model

LMG corresponds to a diagonal twisting tensor χ,

$$
\chi=\left(\begin{array}{ccc}
W+V & 0 & 0 \\
0 & W-V & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and a rotational vector $\vec{\Omega}=(0,0, \epsilon)$.
■ Any diagonal χ can be expressed in a form equivalent to the quadratic term of LMG.

- The LMG parameters are $W=\left(\chi_{1}+\chi_{2}\right) / 2-\chi_{3}$ and $V=\left(\chi_{1}-\chi_{2}\right) / 2$.
- Any quadratic Hamiltonian is equivalent to LMG, provided the linear term is along a principal axis.
- Any free top with a rotor along a principal axis corresponds to a LMG.

Lipkin-Meshkov-Glick model

(a), (b) and (c) correspond to a LMG.
(d) corresponds to a generalized LMG.

Free symmetric top and spin squeezing by one-axis

twisting

Symmetric top with $I_{1}=I_{2} \neq I_{3}$ with no rotor, i.e., $K_{k}=0$.

$$
\begin{aligned}
& \dot{\omega}_{1}=-\tilde{\Omega} \omega_{2} \\
& \dot{\omega}_{2}=\tilde{\Omega} \omega_{1} \\
& \dot{\omega}_{3}=0
\end{aligned}
$$

where

$$
\tilde{\Omega} \equiv \frac{I_{3}-I_{1}}{I_{1}} \omega_{3}=\left(\frac{1}{I_{1}}-\frac{1}{I_{3}}\right) J_{3} .
$$

In quantum domain:

$$
\hat{H}_{\mathrm{OAT}}=\chi \hat{\jmath}_{3}^{2}
$$

with

$$
\chi=\frac{1}{2 I_{1}}-\frac{1}{2 I_{3}} .
$$

Free symmetric top and spin squeezing by one-axis

twisting

M. Kitagawa and M. Ueda, One-axis-twisting (OAT) scenario of spin squeezing, PRA 47, 5138 (1993).

Free symmetric top and spin squeezing by one-axis

twisting

Pioneering experiments of OAT
Nonlinear atom interferometer surpasses classical precision limit Gross et al., Nature 464, 1165 (2010)

~ 400 atoms squeezed by $\sim-8 \mathrm{~dB}$ in $\sim 20 \mathrm{~ms}$

Free symmetric top and spin squeezing by one-axis

twisting

Pioneering experiments of OAT
Atom-chip-based generation of entanglement for quantum metrology, Riedel et al., Nature 464, 1170 (2010)

~ 1250 atoms squeezed by $\sim-3.7 \mathrm{~dB}$ in $\sim 10 \mathrm{~ms}$

Free symmetric top and spin squeezing by one-axis twisting

"Surely, You Are Joking, Mr. Feynman!" (1985):

". . . I was in the [Cornell] cafeteria and some guy, fooling around, throws a plate in the air. As the plate went up in the air I saw it wobble, and I noticed the red medallion of Cornell on the plate going around. It was pretty obvious to me that the medallion went around faster than the wobbling. I had nothing to do, so I start to figure out the motion of the rotating plate. I discover that when the angle is very slight, the medallion
 rotates twice as fast as the wobble rate-two to one. It came out of a complicated equation!"

Free symmetric top and spin squeezing by one-axis

 twistingBUT: For a plate $I_{1}=I_{2}=I_{3} / 2$, therefore

$$
\tilde{\Omega} \equiv \frac{I_{3}-I_{1}}{I_{1}} \omega_{3}=\omega_{3}
$$

with $\tilde{\Omega}$ being the wobble frequency with respect to the (rotating) plate.
The wobble frequency with respect to external observer is

$$
\tilde{\Omega}+\omega_{3}=2 \omega_{3} .
$$

Wobbling is twice as fast as the rotation.
Opposite as in Feynman's story!
[See, e.g. B. F. Chao, Physics Today 42(2), 15 (1989).]

Free asymmetric top, tennis-racket instability, and two-axis countertwisting

Assume moments of inertia $I_{1}<I_{3}<I_{2}$, and $K_{k}=0$. Angular velocities evolve as

$$
\begin{aligned}
& \dot{\omega}_{1}=\frac{I_{2}-I_{3}}{I_{1}} \omega_{2} \omega_{3}, \\
& \dot{\omega}_{2}=\frac{I_{3}-I_{1}}{I_{2}} \omega_{3} \omega_{1}, \\
& \dot{\omega}_{3}=\frac{I_{1}-I_{2}}{I_{3}} \omega_{1} \omega_{2} .
\end{aligned}
$$

In quantum domain:

$$
\hat{H}=\chi_{+} \hat{J}_{2}^{2}-\chi_{-} \hat{J}_{1}^{2}
$$

with

$$
\begin{aligned}
& \chi_{+}=\frac{1}{2 l_{3}}-\frac{1}{2 I_{2}} \\
& \chi_{-}=\frac{1}{2 l_{1}}-\frac{1}{2 l_{3}} .
\end{aligned}
$$

Free asymmetric top, tennis-racket instability, and two-axis countertwisting

In the special case of

$$
I_{3}=\frac{2 I_{1} I_{2}}{I_{1}+I_{2}}
$$

the Hamiltonian takes the form

$$
\hat{H}_{\mathrm{TACT}}=\chi\left(\hat{J}_{2}^{2}-\hat{J}_{1}^{2}\right)
$$

with

$$
\chi=\frac{I_{2}-I_{1}}{4 I_{1} I_{2}} .
$$

Two-axis countertwisting (TACT) scenario of spin squeezing.

Free asymmetric top, tennis-racket instability, and two-axis countertwisting

M. Kitagawa and M. Ueda, Two-axis-countertwisting (TACT) scenario of spin squeezing, PRA 47, 5138 (1993).

Free asymmetric top, tennis-racket instability, and two-axis countertwisting

In classical physics

- Stable rotation around the highest and lowest moment of inertia principal axes.
- Unstable rotation around the intermediate exis.
- Spectacular under zero-gravity conditions: Dzhanibekov effect (Vladimir Dzhanibekov, on 1985 Soyuz T-13 mission).

Symmetric top with a coaxial rotor, spin twisting with coaxial rotation

Quantum motion:

$$
\hat{H}=\chi \hat{\jmath}_{3}^{2}+\Omega \hat{\jmath}_{3},
$$

LMG with $V=0$.

Classical motion, wobble frequency:

$$
\tilde{\Omega}=\frac{\left(I_{3}-I_{1}\right) \omega_{3}+K}{I_{1}}=\left(\frac{1}{I_{1}}-\frac{1}{I_{3}}\right) J_{3}+\frac{K}{I_{3}} .
$$

Symmetric top with a coaxial rotor, spin twisting with coaxial rotation

- Wobbling frequency can be tuned by angular momentum of the rotor.
- Example: by choosing $K=-\frac{3}{4} / 3 \omega_{3}$ one gets the wobbling exactly as in Feynman's story.
- Two different quantum regimes:
- dominant rotation, $|\chi| N<|\Omega|$, nondegenerate spectrum
- dominant nonlinearity, $|\chi| N>|\Omega|$, degeneracies occur
- Corresponding classical regimes:
- dominant rotation, $|K| / J>\left|1-I_{3} / I_{1}\right|$, only stable fixed points
- dominant nonlinearity, $|K| / J<\left|1-I_{3} / I_{1}\right|$, unstable fixed points for the rotational axis occur

Symmetric top with a coaxial rotor, spin twisting with coaxial rotation

Angular momentum geometry:
(a) dominant rotation,
(b) dominant nonlinearity.

Symmetric top with a perpendicular axis rotor, twist-and-turn Hamiltonian

- Hamiltonian:

$$
\hat{H}=\chi \hat{J}_{1}^{2}+\Omega \hat{J}_{3},
$$

- LMG with $V=W$.

■ Twist-and-turn spin squeezing [T.O. PRA 91, 053826 (2015); Muessel et al, PRA 92, 023603 (2015).]

Symmetric top with a perpendicular axis rotor, twist-and-turn Hamiltonian

Two-trap BEC regimes with quantum phase transition at $|\Omega|=N|\chi|$ (Leggett, 2001):

- Rabi regime, $|\Omega / \chi| \gg N$ (population oscillations),

■ Josephson regime, $1 / N \ll|\Omega / \chi| \ll N$ (oscillations with self-trapping),
■ Fock regime, $|\Omega / \chi| \ll 1 / N$.
(note $N=2 J$)

Symmetric top with a perpendicular axis rotor, twist-and-turn Hamiltonian

$\Omega /(\chi \mathrm{J})=0.2(\mathrm{a}), 1(\mathrm{~b}), 1.7(\mathrm{c})$, and $2(\mathrm{~d})$.

Asymmetric top with a principal axis rotor, LMG

Hamiltonian:

$$
\hat{H}=\Omega_{3} \hat{\jmath}_{3}+\sum_{k=1}^{3} \chi_{k} \hat{\jmath}_{k}^{2},
$$

or equivalently

$$
\hat{H}_{\mathrm{LMG}}=\epsilon \hat{J}_{3}+V\left(\hat{J}_{1}^{2}-\hat{J}_{2}^{2}\right)+W\left(\hat{J}_{1}^{2}+\hat{J}_{2}^{2}\right)
$$

Asymmetric top with a principal axis rotor, LMG

Classical questions:

- How does the rotational axis move with respect to the body?
- What are the fixed points of the rotational axis?
- What is their stability?

Quantum questions:

■ What is the spectrum of the Hamiltonian?
■ What are the singularities in the spectrum?

- What are the quantum phase transitions due to parameter variations?

Asymmetric top with a principal axis rotor, LMG

$\chi_{3}=0, \chi_{1}=-10 \chi_{2}$,
(a) $\Omega_{3}=0$, (b) $\left|\Omega_{3}\right|=1.7 \mathrm{~J}\left|\chi_{2}\right|$,
(c) $\left|\Omega_{3}\right|=2 J\left|\chi_{2}\right|$,
(d) $\left|\Omega_{3}\right|=2 J\left|\chi_{1}\right|$.

Asymmetric top with a principal axis rotor, LMG

Stationary values of the angular momentum:

$$
\operatorname{grad} E_{\mathrm{body}}=\lambda \operatorname{grad} J^{2}
$$

leads to

$$
\begin{aligned}
& J_{1}=\frac{I_{3} K_{1} J_{3}}{\left(I_{3}-I_{1}\right) J_{3}+I_{1} K_{3}}, \\
& J_{2}=\frac{I_{3} K_{2} J_{3}}{\left(I_{3}-I_{2}\right) J_{3}+I_{2} K_{3}},
\end{aligned}
$$

and to the polynomial equation for J_{3},

$$
\sum_{n=0}^{6} a_{n} J_{3}^{n}=0
$$

with an explicit expression for coefficients a_{n}.

Asymmetric top with a principal axis rotor, LMG

Energies of the stationary angular momenta and spectra of the Hamiltonian with $N=40$. (a), (d): $\chi_{1}=4, \chi_{2}=3, \chi_{3}=2$, (b), (e): $\chi_{1}=0.25, \chi_{2}=1, \chi_{3}=2$, (c), (f) $\chi_{1}=1, \chi_{2}=4, \chi_{3}=2$.

Excited state quantum phase transitions

Asymmetric top with a general axis rotor, generalized LMG

Stationary values of the angular momentum:

$$
\operatorname{grad} E_{\text {body }}=\lambda \operatorname{grad} J^{2}
$$

Points of touch of the energy ellipsoid and the angular momentum sphere.

Asymmetric top with a general axis rotor, generalized LMG

The twisting tensor eigenvalues $\chi_{1}=4, \chi_{2}=3, \chi_{3}=2$, the ratio of components of vector $\vec{\Omega}$ are $\Omega_{1}: \Omega_{2}: \Omega_{3}$ as follows, (a,d) 2:1:1, (b,e) 1:2:0, (c, f) 2:0:1.

Asymmetric top with a general axis rotor, generalized LMG

Contours of the equal energy (left) and density of states (right) with $\left(\chi_{1}, \chi_{2}, \chi_{3}\right)=(2,0,-2)$ and $\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right)=(0.5,0.5,0.5)$.

Time crystals:

■ Concept introduced by F. Wilczek (2012), processes in which spontaneous breaking of time symmetry occurs

- Floquet time crystal: Hamiltonian periodic with τ but dynamics repeats with period $n \tau$; robust, long lasting
- Experiments 2017, Nature: trapped ions (Monroe group), diamond NV centers (Lukin group). Disorder-induced many-body localization.

■ Floquet time crystal in "clean system" (no disorder induced MBL): Russomanno et al, PRB 95, 214307 (2017). Switching parameters of the LMG.

LMG Floquet time crystals

Classical realization:
(a)

LMG Floquet time crystals

Classical realization:

(a)

(b)

Conclusion

Problems of classical physics

- gyroscope motion,
- satellite stabilization,
- Earth wobble, etc.
closely related to quantum problems
■ spin squeezing,
- BEC self trapping,
- excited state quantum phase transitions, etc.

Conclusion

"I went on to work out equations of wobbles. Then I thought about how electron orbits start to move in relativity. Then there's the Dirac Equation in electrodynamics. And then quantum electrodynamics. [...] It was effortless. It was easy to play with these things. It was like uncorking a bottle: Everything flowed out effortlessly. I almost tried to resist it! There was no importance to what I was doing, but ultimately there was. The diagrams and the whole business that I got the Nobel Prize for came from that piddling around with the wobbling plate."

[^0]
Conclusion

Thanks for your attention

GPS stabilized by momentum wheels

Riedel et al, Nature 2010

Bharadwaj et al, The diver with a rotor, Ind. Math. 2016

[^0]: "Surely, You Are Joking, Mr. Feynman!" (Norton, New York, 1985).

