

Superresolution Using Simple Microscopes

Renata Štysová-Rychtáriková et al.

Laboratory of Experimental Complex Systems Institute of Complex Systems Faculty of Fisheries and Protection of Waters University of South Bohemia in České Budejovice

Palacký University in Olomouc, 23 May 2018

www.frov.jcu.cz

Fluorescence

+2,

SR methods Interpretation Object localization

staining

Phase contrast

+: Cell in physiological state visibility

Artificial internsity interferences

Bright field

+0

Cell in physiological state Natural Intensity interferences -: Visibility

1. Theoretical assumptions

- Extended Nijboer-Zernike Theory
- Videoenhanced Microscopy

- Calibration of optical path and camera chip
- Small camera pixel
- Primary vice-bit camera signal
- Short z-step
- Strong illumination
- Reading z-position

Extended Nijboer-Zernike Theory

+ Theory of Electromagnetic Centroid

Electromagnetic centroid:

- intensity extreme
- the same intensity in two consecutive images

VIDEO-ENHANCED MICROSCOPY

SOURCE: Irene Lichtscheidel Uni. Vienna

Calibration of Optical Path and Camera Chip

Why?

To remove image inhomogenities (spots on microscope optics and camera, optics vignetting, ...)

Requirements:

- 1. Primary camera signal
- 2. Calibration of the whole optical path

Result:

image pixel intensity \rightarrow total number of photons

Calibration of Optical Path and Camera Chip

1. Experimental Part

- Scan gray filters in their focus.
- Measure **transparency spectra** of the filters in their focus.

Calibration of Optical Path and Camera Chip

2. Computing Part

- For each pixel of image of filter and each relevant filter, multiply the camera filter transparency spectrum by the gray filter transparency spectrum
 - Integral under the curve is a Total Number of Photons reaching the camera pixel
- Plot a calibration curve (image pixel intensity vs. TNP)
- For each pixel of a biological image, recalculate pixel intensity to TNP

Resulted image correction

Uncalibrated

Calibrated

Uncalibrated

Resulted image correction Calibrated

Final 3D image of Electromagnetic Centroids

B-channel with increasing intensity threshold

Diffraction Extraction

Fakulta rybářství a ochrany vod Faculty of Fisheries and Protection of Waters

Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice Czech Republic

Final 3D image of Electromagnetic Centroids

L929 mouse fibroblast

ECs – RGB 2D projection

ECs – RGB

ECs for each colour channel

Fakulta rybářství a ochrany vod Faculty of Fisheries and Protection of Waters

Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice Czech Republic

Nanoroofs

Thanks to:

- prof. Dalibor Štys
- Ing. Pavel Souček
- Vladimír Kotal
- Ing. Petr Macháček
- Ing. Petr Tax
- Anna Platonova
- and others

Thank you for your attention!

Fakulta rybářství Jihočeská univerzita a ochrany vod Faculty of Fisheries and Protection of Waters

v Českých Budějovicích University of South Bohemia in České Budějovice Czech Republic

Thank you for your attention!

