Preparing genuine multipartite entanglement verifiable from separable marginals

Palacký University
Olomouc

Ladislav Mišta

Collaboration

Theory:

Olga Leskovjanová

Experiment:

Michal Mičuda

Rober Stárek

Introduction

Inference of global properties of a composite system from its parts.

Theory

- Representability (marginal) problem: when a $\mathrm{p}^{\text {th }}$-order density matrix is a reduction of some $\mathrm{N}^{\text {th }}$-order density matrix ($\mathrm{N}>\mathrm{p}$)? (A. J. Coleman, Rev. Mod. Phys. 5, 668 (1963)).
- Extensibility of $\rho_{A B}: \exists \rho_{A B E}, \quad \operatorname{Tr}_{E}\left(\rho_{A B E}\right)=\rho_{A B}$.

Separability and security criteria, calculation of entanglement measures.

Experiment

- Analysis of composite systems involving many subsystems.

Examples:

1. Almost all $|\psi\rangle_{A B C}$ are uniquely determined by $\rho_{A B}$ and $\rho_{B C}$.
2. Many different $|\psi\rangle_{A B}$ are compatible with given ρ_{A} and ρ_{B}.

$$
\text { Mixed } \rho_{A} \text { and } \rho_{B} \rightarrow|\psi\rangle_{A B} \neq|\chi\rangle_{A}|\phi\rangle_{B} \quad \text { (entanglement). }
$$

Mixed states: $\rho_{A}=\rho_{B}=\frac{1}{2} \mathbb{1}$ compatible with

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \text { and } \frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}|11\rangle\langle 11|
$$

$\mathcal{E}=\left\{\rho_{A}, \rho_{B}\right\}:$ compatibility set $\mathcal{C}(\mathcal{E})=\left\{\sigma_{A B} \mid \sigma_{A}=\rho_{A}, \quad \sigma_{B}=\rho_{B}\right\}$

If $\mathcal{C}(\mathcal{E})$ contains only $\sigma_{A B}$ with a certain property the property can be inferred from σ_{A} and σ_{B}.

Can a property be inferred from marginals that do not possess the property?
Entanglement from separable marginals in multiqubit systems ($\operatorname{dim} \mathcal{H}=2$) (G. Tóth et. al., Phys. Rev. Lett. 99, 250405 (2007)).

Three qubits A, B, C
Genuine multipartite entanglement (GME):

$$
\begin{gathered}
\rho \neq p_{1} \rho_{A \mid B C}^{\mathrm{sep}}+p_{2} \rho_{\mathrm{B} \mid \mathrm{AC}}^{\mathrm{sep}}+p_{3} \rho_{C \mid A B}^{\mathrm{sep}} \quad(\text { biseparable state }), \\
\rho_{X \mid Y}^{\mathrm{sep}}=\sum_{i} p_{i} \rho_{X}^{(i)} \otimes \rho_{Y}^{(i)} \quad(\text { separable state })
\end{gathered}
$$

GHZ, W, cluster states etc.
Can we infer GME from separable marginals?
\exists separable $\left\{\rho_{A B}, \rho_{B C}, \rho_{A C}\right\}$ compatible only with GME $\rho_{A B C}$.
(L. Chen et al., PRA 90, 042314 (2014))

Theory

State:

$$
\begin{gathered}
\rho=\frac{2}{3}|\xi\rangle\langle\xi|+\frac{1}{3}|\bar{W}\rangle\langle\bar{W}|, \\
|\xi\rangle=\frac{1}{3}\left(e^{i \frac{\pi}{3}}|001\rangle+e^{-i \frac{\pi}{3}}|010\rangle-|100\rangle\right)+\sqrt{\frac{2}{3}}|111\rangle, \\
|\bar{W}\rangle=\frac{1}{\sqrt{3}}(|011\rangle+|101\rangle+|110\rangle) .
\end{gathered}
$$

(N. Miklin et al., PRA 93, 020104 (2016))

Separable marginals:

$$
\min \left[\operatorname{eig}\left(\rho_{j k}^{T_{j}}\right)\right]=0.0037
$$

GME witness:

$$
W=W^{\dagger}
$$

$\operatorname{Tr}(\rho W) \geq 0$ for all biseparable ρ,
$\operatorname{Tr}(\rho W)<0$ for some ρ.

SDP: $\quad \underset{W, P_{M}, Q_{M}}{\operatorname{minimize}} \operatorname{Tr}(\rho W)$
subject to $\operatorname{Tr}(W)=1$,
$W=\sum_{i, j=0}^{3} w_{i j}^{(A B)} \sigma_{i}^{(A)} \otimes \sigma_{j}^{(B)} \otimes \mathbb{1}^{(C)}+$ permutations, and for all bipartitions $M \mid \bar{M}$,

$$
\begin{gathered}
W=P_{M}+Q_{M}^{T_{M}}, \quad P_{M} \geq 0, \quad Q_{M} \geq 0 \\
\operatorname{Tr}(\rho W)=-0.0502
\end{gathered}
$$

Robustness:

$$
p \rho+\frac{(1-p)}{8} \mathbb{1}
$$

exhibits the effect for up to 13.7% of white noise.

Logical circuit

|ร)

$|\bar{W}\rangle$
photons qubits encoded qubits
into
molarization $\begin{gathered}\text { mode } \\ \text { molarization } \\ \text { mode }\end{gathered}$

CNOT gate:

Bit flip on the $2^{\text {nd }}$ qubit when the $1^{\text {st }}$ qubit is $|1\rangle$.

Toffoli gate:
Bit flip on the $3^{\text {rd }}$ qubit when the $1^{\text {st }}$ and $2^{\text {nd }}$ qubit is $|1\rangle$.

Experiment

Results

$$
\mathrm{p}=0.868
$$

Separable marginals

$j k$	AB	BC	AC
$\min \left[\operatorname{eig}\left(\rho_{\text {exp }, j k}^{T_{j}}\right)\right] \cdot 10^{2}$	2.4 ± 0.7	0.9 ± 0.6	2.1 ± 0.6

Genuine ME

$$
\operatorname{Tr}\left(\rho_{\exp } W\right)=(-3 \pm 2) \cdot 10^{-3}
$$

Fidelity $\quad \mathcal{F}\left(\rho_{\exp }, \rho\right) \equiv\left\{\operatorname{Tr}\left[\left(\rho_{\exp }^{1 / 2} \rho \rho_{\text {exp }}^{1 / 2}\right)^{1 / 2}\right]\right\}^{2}=0.939 \pm 0.008$.

Conclusion

- Experimental verification of genuine multipartite entanglement of a global state from its separable marginals.
- Is there a Gaussian version of this phenomenon?

