Preparing genuine multipartite entanglement verifiable from separable marginals

Palacký University Olomouc

Ladislav Mišta

Collaboration

Jan Provazník

Theory:

Olga Leskovjanová

Experiment:

Michal Mičuda

Rober Stárek

Introduction

Inference of global properties of a composite system from its parts.

Theory

- Representability (marginal) problem: when a pth-order density matrix is a reduction of some Nth -order density matrix (N>p)?
 (A. J. Coleman, Rev. Mod. Phys. 5, 668 (1963)).
- Extensibility of ρ_{AB} : $\exists \rho_{ABE}, \operatorname{Tr}_E(\rho_{ABE}) = \rho_{AB}.$

Separability and security criteria, calculation of entanglement measures.

Experiment

• Analysis of composite systems involving many subsystems.

Examples:

- 1. Almost all $|\psi\rangle_{ABC}$ are uniquely determined by ρ_{AB} and ρ_{BC} .
- 2. Many different $|\psi\rangle_{AB}$ are compatible with given ρ_A and ρ_B .

Mixed ρ_A and $\rho_B \rightarrow |\psi\rangle_{AB} \neq |\chi\rangle_A |\phi\rangle_B$ (entanglement).

Mixed states: $\rho_A = \rho_B = \frac{1}{2} \mathbb{1}$ compatible with $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ and $\frac{1}{2}|00\rangle\langle 00| + \frac{1}{2}|11\rangle\langle 11|$

 $\mathcal{E} = \{\rho_A, \rho_B\}: \text{ compatibility set } \mathcal{C}(\mathcal{E}) = \{\sigma_{AB} | \sigma_A = \rho_A, \quad \sigma_B = \rho_B\}$

If $C(\mathcal{E})$ contains only σ_{AB} with a certain property the property can be inferred from σ_A and σ_B .

Can a property be inferred from marginals that do not possess the property?

Entanglement from separable marginals in multiqubit systems ($dim \mathcal{H}=2$) (G. Tóth et. al., Phys. Rev. Lett. **99**, 250405 (2007)).

Three qubits A, B, C Genuine multipartite entanglement (GME):

$$\label{eq:rescaled_eq_sep} \begin{split} \rho \neq p_1 \rho_{A|BC}^{\rm sep} + p_2 \rho_{B|AC}^{\rm sep} + p_3 \rho_{C|AB}^{\rm sep} \quad (\text{biseparable state}), \\ \rho_{X|Y}^{\rm sep} = \sum_i p_i \rho_X^{(i)} \otimes \rho_Y^{(i)} \quad (\text{separable state}). \end{split}$$

GHZ, W, cluster states etc.

Can we infer GME from separable marginals?

Theory

State:

$$\rho = \frac{2}{3} |\xi\rangle \langle \xi| + \frac{1}{3} |\bar{W}\rangle \langle \bar{W}|,$$

$$|\xi\rangle = \frac{1}{3} (e^{i\frac{\pi}{3}} |001\rangle + e^{-i\frac{\pi}{3}} |010\rangle - |100\rangle) + \sqrt{\frac{2}{3}} |111\rangle,$$

$$|\bar{W}\rangle = \frac{1}{\sqrt{3}} (|011\rangle + |101\rangle + |110\rangle).$$

(N. Miklin et al., PRA 93, 020104 (2016))

Separable marginals:

$$\min[\operatorname{eig}(\rho_{jk}^{T_j})] = 0.0037.$$

GME witness:

$$W = W^{\dagger},$$

Tr(ρW) ≥ 0 for all biseparable ρ ,
Tr(ρW) < 0 for some ρ .

SDP: minimize

$$W, P_M, Q_M$$
 Tr(ρW)
subject to Tr(W) = 1,
 $W = \sum_{i,j=0}^{3} w_{ij}^{(AB)} \sigma_i^{(A)} \otimes \sigma_j^{(B)} \otimes \mathbb{1}^{(C)}$ + permutations,
and for all bipartitions $M | \overline{M},$
 $W = P_M + Q_M^{T_M}, \quad P_M \ge 0, \quad Q_M \ge 0.$
Tr(ρW) = -0.0502

Robustness:

$$p\rho + \tfrac{(1-p)}{8} 1 \!\! 1$$

exhibits the effect for up to 13.7% of white noise.

Logical circuit

Experiment

Results

Genuine ME $\operatorname{Tr}(\rho_{\exp}W) = (-3 \pm 2) \cdot 10^{-3}$

Fidelity $\mathcal{F}(\rho_{\exp}, \rho) \equiv \{ \operatorname{Tr}[(\rho_{\exp}^{1/2} \rho \rho_{\exp}^{1/2})^{1/2}] \}^2 = 0.939 \pm 0.008.$

Conclusion

- Experimental verification of genuine multipartite entanglement of a global state from its separable marginals.
- Is there a Gaussian version of this phenomenon?