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Unconditionnally Secure Systems . . .

Single Photon QKD

I Long Range (∼ 100 km)
I Low rate (kbit/s)

maybe a few Mbit/s in the long run

Classical One-Time-Pad
I Very Long Range (Paris–Olomouc)
I Not so small rate :

1 CD / year = 180 bits/s
1 iPod (160 GB)/ year = 40 kbit/s

I But the data has to stay here
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I Much less mature

⇒ Much room for improvements
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Field quadratures

Classical field
Electromagnetic field
described by QA and PA
E(t) = QA cosωt + PA sinωt

Quantum description
Q and P do not commute:

[Q,P] ∝ i~.
Add a

“quantum noise”:
Q = QA + BQ et P = PA + BP

Heisenberg =⇒ ∆BQ∆BP ≥ 1
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Homodyne Detection : Theory

Photocurrents:

i± ∝ (Eosc.(t) ± Esignal(t))2

∝ Eosc.(t)2
± 2Eosc.(t)Esignal(t)

after substraction:

δi ∝ Eosc.(t)Esignal(t)

∝ Eosc.(Qsignal cosϕ + Psignal sinϕ)
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XXth century CVQKD

At the end of XXth century it was obvious that a
generalization of QKD to continuous variables could be
interesting.
Problem : discrete bits , continuous variable

Natural modulation + information theory!
Nicolas J. Cerf, Marc Lévy, Gilles Van
Assche : “Quantum distribution of Gaussian
keys using squeezed states”,
arXiv:quant-ph/0008058/PRL 63 052311
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Where are the bits ?

Quite frequent discussion with discrete quantum
cryptographers :

DQC : How do you encode a 0 or a 1 in CVQKD?
Me : I don’t care, C. E. Shannon tells me

“∀ε > 0,∃ code of rate I − ε.”

Computation of the ideal code performance is easy !
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with noise ?

Differential entropy

H(X) = −
∑
P(x) dx logP(x) dx

'
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H(X)

− log dx︸︷︷︸
constante
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They’re hidden

Availaible informationin a continuous signal
with noise ?

Differential entropy

H(X) = −
∑
P(x) dx logP(x) dx

'

∫
dxP(x) logP(x)︸                   ︷︷                   ︸

H(X)

− log dx︸︷︷︸
constante

Mutual information

I(X : Y) = H(Y) −H(Y|X)
= H(Y) −H(Y|X)

= 1
2 log

∆Y2

∆Y2|X
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Quantum Key Distribution Protocols

Channel Evauation (noise measure)

Alice&Bob evaluate IEve

Reconciliation (error correction)

Alice&Bob share IBob identical bits.
Ève knows IEve.

Privacy Amplification
Alice&Bob share IBob − IEve identical bits.

Ève knows ∼ 0.
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Theoretical Progresses in the last 10 years

We went from a protocol
I using squeezed states,
I insecure beyond 50% losses (15 km),
I proved secure against Gaussian individual attack

to a protocol

I using coherent states
I with no fundamental range limit
I proved secure against collective attacks
I likely secure against coherent attacks
I and experimentally working
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1st generation demonstrator
F. Grosshans et. al., Nature (2003) & Brevet US

m

Key rate I 75 kbit/s 3.1 dB (51%) losses
I 1.7 Mbit/s without losses
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Losses only
Excess noise95% efficient code

90% efficient code
Slow code
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1 kb/s 0 km
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50 km

SECOQC Performance
(2008)
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Open Problems

I Finite size effects
I Link with post-selection based protocols (.de, .au)
I Side-channels and quantum hacking
I Other cryptographic applications
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