Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

Continuous Variable Quantum Cryptography Towards High Speed Quantum Cryptography

Frédéric Grosshans

Palacký University, Olomouc, 2011

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

Introduction

- Prefect Secrecy and Quantum Cryptography
- Various Secure Systems
- Continuous variables
 - Field quadratures
 - Homodyne Detection : Theory
- Information Theory
 - XXth century CVQKD
 - Where are the bits ?
- Continuous Variable Quantum Key Distribution
 - Spying
 - Protocols
- 5 Experimental systems
 - 1st and 2nd generation demonstrators
 - Key-Rates
 - Integration with classical cryptography
- Open problems

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
0	0	0	0	00	
00	0	00	00	0	
				0	

Alice sends a secret message to Bob

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
0	0	0	0	00	
00	0	00	00	0	
				0	

Alice sends a secret message to Bob through a channel observed by Eve.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
0	0	0	0	00	
00	0	00	00	0	
				0	

Alice sends a secret message to **Bob** through a channel observed by **Eve**.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

She encrypts the message with a secret key

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
0	0	0	0	00	
00	0	00	00	0	
				0	

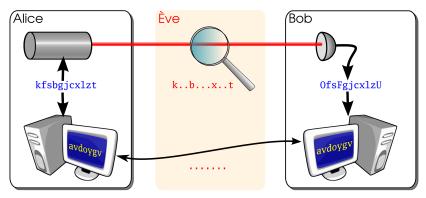
Alice sends a secret message to **Bob** through a channel observed by **Eve**.

She encrypts the message with a secret key as long as the message.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
0.	0	0	0	00	
00	0	00	00	0	
				0	

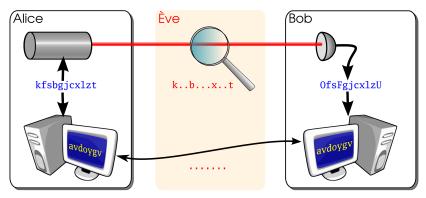
Quantum Key Distribution


Alice sends quantum objects to Bob

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

Quantum Key Distribution

Alice sends quantum objects to Bob


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Eve's Measurenents

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

Quantum Key Distribution

Alice sends quantum objects to Bob

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
0	0	00	00	0	
				0	

Unconditionnally Secure Systems ...

Single Photon QKD

- Long Range (~ 100 km)
- Low rate (kbit/s)

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
0	0	00	00	0	
				0	

Single Photon QKD

- Long Range (~ 100 km)
- Low rate (kbit/s) maybe a few Mbit/s in the long run

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
0	0	00	00	0	
				0	

Single Photon QKD

- Long Range (~ 100 km)
- Low rate (kbit/s) maybe a few Mbit/s in the long run

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Very Long Range (Paris–Olomouc)
- Not so small rate :

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
0	0	00	00	0	
				0	

Single Photon QKD

- Long Range (~ 100 km)
- Low rate (kbit/s) maybe a few Mbit/s in the long run

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Very Long Range (Paris–Olomouc)
- Not so small rate :
 - 1 CD / year = 180 bits/s

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
0	0	00	00	0	
				0	

Single Photon QKD

- Long Range (~ 100 km)
- Low rate (kbit/s) maybe a few Mbit/s in the long run

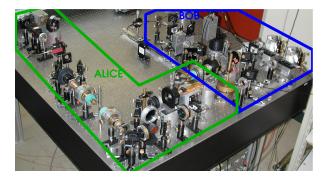
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Very Long Range (Paris–Olomouc)
- Not so small rate :
 - 1 CD / year = 180 bits/s
 - 1 iPod (160 GB)/ year = 40 kbit/s

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
0	0	00	00	0	
				0	

Single Photon QKD

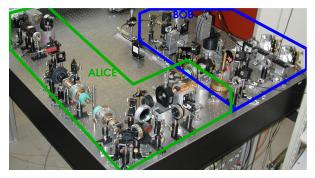
- Long Range (~ 100 km)
- Low rate (kbit/s) maybe a few Mbit/s in the long run


◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Very Long Range (Paris–Olomouc)
- Not so small rate :
 - 1 CD / year = 180 bits/s
 - 1 iPod (160 GB)/ year = 40 kbit/s
- But the data has to stay here

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

... and Continuous Variable


- Medium Range :~ 25 km
- Medium Rate :~ a few kbit/s

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

... and Continuous Variable

- Medium Range :~ 25 km
- Medium Rate :~ a few kbit/s
- Much less mature

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

... and Continuous Variable

- ► Medium Range :~ 25 km ; 80 km soon ?
- ► Medium Rate :~ a few kbit/s ; Mbits/s soon ?
- Much less mature \Rightarrow Much room for improvements

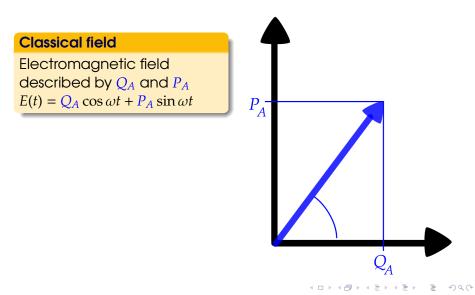
Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

Introduction

Prefect Secrecy and Quantum Cryptography

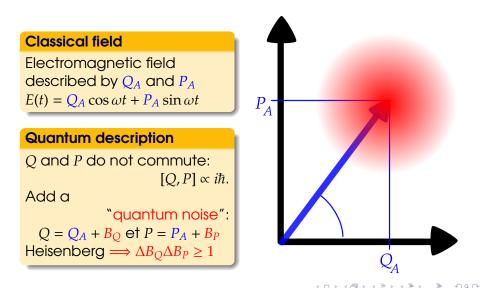
Various Secure Systems

Continuous variables


- Field quadratures
- Homodyne Detection : Theory
- Information Theory
 - XXth century CVQKD
 - Where are the bits ?
- 4 Continuous Variable Quantum Key Distribution
 - Spying
 - Protocols
- 5 Experimental systems
 - 1st and 2nd generation demonstrators
 - Key-Rates
 - Integration with classical cryptography

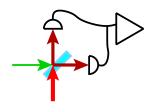
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open problems


Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	•	0	0	00	
00	0	00	00	0	
				0	

Field quadratures

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	•	0	0	00	
00	0	00	00	0	
				0	


Field quadratures

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	•	00	00	0	
				0	

Homodyne Detection : Theory

Photocurrents:

 $i_{\pm} \propto \overline{(E_{\text{osc.}}(t) \pm E_{\text{signal}}(t))^2}$

$$\propto E_{\text{osc.}}(t)^2 \pm 2E_{\text{osc.}}(t)E_{\text{signal}}(t)$$

after substraction:

$$\delta i \propto \overline{E_{\text{osc.}}(t)E_{\text{signal}}(t)}$$

$$\propto |E_{\text{osc.}}(Q_{\text{signal}}\cos\varphi + P_{\text{signal}}\sin\varphi)|$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0 00	0 00	00 0 0	

Introduction

- Prefect Secrecy and Quantum Cryptography
- Various Secure Systems
- 2) Continuous variables
 - Field quadratures
 - Homodyne Detection : Theory
- 3 Information Theory
 - XXth century CVQKD
 - Where are the bits ?
- 4 Continuous Variable Quantum Key Distribution
 - Spying
 - Protocols
- 5 Experimental systems
 - 1st and 2nd generation demonstrators
 - Key-Rates
 - Integration with classical cryptography

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Open problems

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	00	0 00	00 0 0	

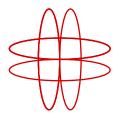
XXth century CVQKD

At the end of XXth century it was obvious that a generalization of QKD to continuous variables could be interesting.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Problem : discrete bits ≠ continuous variable

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00 00	0	00	0 00	00 0 0	


XXth century CVQKD

At the end of XXth century it was obvious that a generalization of QKD to continuous variables could be interesting.

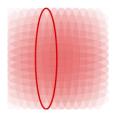
Problem : discrete bits ≠ continuous variable

Adapting BB84?

Mark Hillery, "Quantum Cryptography with Squeezed States", arXiv:guant-ph/9909006/PRA **61** 022309

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	00	0 00	00 0 0	


XXth century CVQKD

At the end of XXth century it was obvious that a generalization of QKD to continuous variables could be interesting.

Problem : discrete bits ≠ continuous variable

Natural modulation + information theory!

Nicolas J. Cerf, Marc Lévy, Gilles Van Assche : "Quantum distribution of Gaussian keys using squeezed states", arXiv:quant-ph/0008058/PRL **63** 052311

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	○ ●○	0 00	00 0 0	

Where are the bits?

Quite frequent discussion with discrete quantum cryptographers :

DQC : How do you encode a 0 or a 1 in CVQKD? **Me** : I don't care, C. E. Shannon tells me " $\forall \varepsilon > 0, \exists$ code of rate $I - \varepsilon$."

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	•O	00	0	
				0	

Where are the bits?

Quite frequent discussion with discrete quantum cryptographers :

DQC : How do you encode a 0 or a 1 in CVQKD?

Me : Gilles/Jérôme/Anthony/Sébastien developed a really efficient code, using sliced reconciliation/LDPC matrices/R⁸ rotations and octonions. Only he knows how it works.

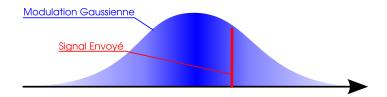
◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	● ○	00	0	
				0	

Where are the bits?

Quite frequent discussion with discrete quantum cryptographers :

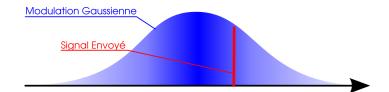
DQC : How do you encode a 0 or a 1 in CVQKD?


Me : Gilles/Jérôme/Anthony/Sébastien developed a really efficient code, using sliced reconciliation/LDPC matrices/R⁸ rotations and octonions. Only he knows how it works.

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

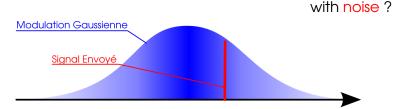
Computation of the ideal code performance is easy !

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	0.	00	0	
				0	


Availaible informationin a continuous signal

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	0.	00	0	
				0	

Availaible informationin a continuous signal


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

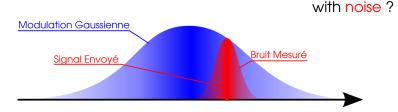
Differential entropy

$$H(X) = -\sum \mathcal{P}(x) dx \log \mathcal{P}(x) dx$$
$$\simeq \int dx \mathcal{P}(x) \log \mathcal{P}(x) - \underbrace{\log dx}_{\mathcal{H}(X)} \operatorname{constante}$$

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	0.	00	0	
				0	

Availaible informationin a continuous signal

Differential entropy


$$H(X) = -\sum \mathcal{P}(x) dx \log \mathcal{P}(x) dx$$
$$\simeq \int dx \mathcal{P}(x) \log \mathcal{P}(x) - \underbrace{\log dx}_{\mathcal{H}(X)} \operatorname{constante}$$

 $\mathcal{H}(X) = \log \Delta X + \text{constante}$

・ロト・国・・ヨト・ヨー・ つくぐ

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	0.	00	0	
				0	

Availaible informationin a continuous signal

Differential entropy

$$H(X) = -\sum \mathcal{P}(x) dx \log \mathcal{P}(x) dx$$
$$\simeq \int dx \mathcal{P}(x) \log \mathcal{P}(x) - \underbrace{\log dx}_{\mathcal{H}(X)} \operatorname{constante}$$

Mutual information

$$I(X : Y) = H(Y) - H(Y|X)$$

$$= \mathcal{H}(Y) - \mathcal{H}(Y|X)$$

$$= \frac{1}{2} \log \frac{\Delta Y^2}{\Delta Y^2 |X}$$

Intro. 00 00	Cont. Var. o o	Information Theory o oo	CVQKD ° °	XP 00 0	Next
	Introduction				
	Prefect Sec	recy and Quantu	um Cryptogr	aphy	
	 Various Sec 	ure Systems			
2	Continuous vo	riables			
	• Field quadr	atures			
	Homodyne	Detection : Theo	ory		
3	Information Th	eory			
	• XX th centur				

• Where are the bits ?

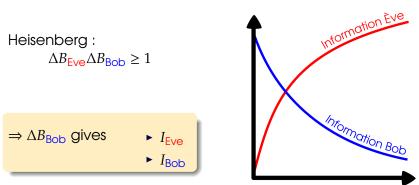
4 Continuous Variable Quantum Key Distribution

- Spying
- Protocols
- 5 Experimental systems
 - Ist and 2nd generation demonstrators
 - Key-Rates
 - Integration with classical cryptography

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Open problems

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	•	00	
00	0	00	00	0	
				0	


The spy's power

Heisenberg : $\Delta B_{\rm Eve} \Delta B_{\rm Bob} \geq 1$

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	•	00	
00	0	00	00	0	
				0	

The spy's power

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	•0	0	
				0	

Quantum Key Distribution Protocols

Channel Evauation

(noise measure)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Alice&Bob evaluate I_{Eve}

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	•0	0	
				0	

Quantum Key Distribution Protocols

Channel Evauation	(noise measure)
Alice&Bob evaluate I _{Eve}	
Reconciliation	(error correction)
Reconciliation Alice&Bob share I _{Bob} identical bits.	(error correction)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	•0	0	
				0	

Quantum Key Distribution Protocols

Channel Evauation	(noise measure)
Alice&Bob evaluate I _{Eve}	
Reconciliation	(error correction)
Reconciliation Alice&Bob share I _{Bob} identical bits.	(error correction)

Privacy Amplification

Alice&Bob share $I_{\text{Bob}} - I_{\text{Eve}}$ identical bits. **Ève** knows ~ 0.

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	0.	0	
				0	

We went from a protocol

- using squeezed states,
- insecure beyond 50% losses (15 km),
- proved secure against Gaussian individual attack

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	0.	0	
				0	

We went from a protocol

- using squeezed states,
- insecure beyond 50% losses (15 km),
- proved secure against Gaussian individual attack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

to a protocol

using coherent states

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	0.	0	
				<u> </u>	

We went from a protocol

- using squeezed states,
- insecure beyond 50% losses (15 km),
- proved secure against Gaussian individual attack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

to a protocol

- using coherent states
- with no fundamental range limit
- proved secure against collective attacks

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	0.	0	
				<u> </u>	

We went from a protocol

- using squeezed states,
- insecure beyond 50% losses (15 km),
- proved secure against Gaussian individual attack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

to a protocol

- using coherent states
- with no fundamental range limit
- proved secure against collective attacks
- likely secure against coherent attacks

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	0.	0	
				<u> </u>	

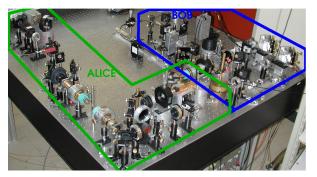
We went from a protocol

- using squeezed states,
- insecure beyond 50% losses (15 km),
- proved secure against Gaussian individual attack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

to a protocol

- using coherent states
- with no fundamental range limit
- proved secure against collective attacks
- likely secure against coherent attacks
- and experimentally working


Intro. 00 00	Cont. Var. 0 0	Information Theory 0 00	CVQKD 0 00	XP 00 0	Next
1		crecy and Quantu cure Systems	um Cryptogr	aphy	
2	 Continuous v Field quad Homodyne 		bry		
3	 Information T XXth centure Where are 	iry CVQKD			
4	Continuous \SpyingProtocols	/ariable Quantum	Key Distribut	ion	
5	Key-Rates	l systems d generation dem n with classical cry			

Open problems

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	•0	
00	0	00	00	0	
				0	

1st generation demonstrator

F. Grosshans et. al., Nature (2003) & Brevet US

m

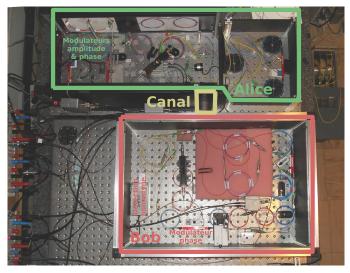
Key rate

- 75 kbit/s 3.1 dB (51%) losses
- 1.7 Mbit/s without losses

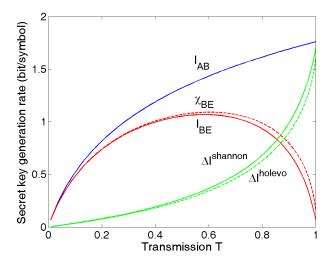
Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	


Integrated system

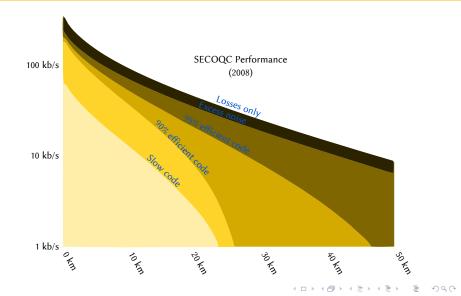
▲ロト▲園ト▲園ト▲園ト 通 めんの


Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

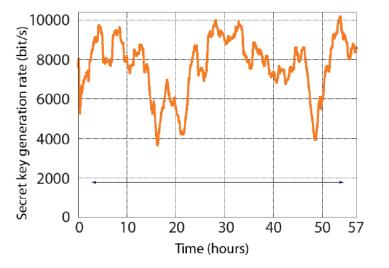
Integrated system


Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	
				0	

Integrated system

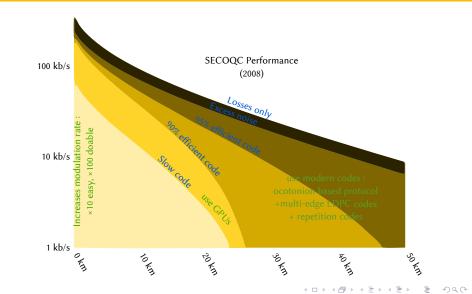

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	

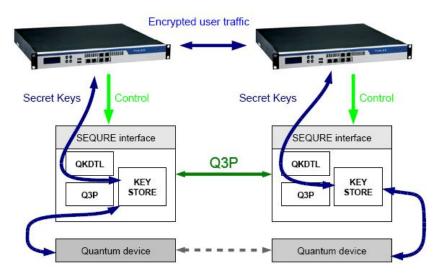


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト æ 590

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	•	
				0	



Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	•	
				0	


・ロト・西ト・西ト・西ト・日・ シック

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	•	
				0	

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00	0	

Integration with classical cryptography

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ 釣�?

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00	0	0	0	00	
00	0	00	00		

Integration with classical cryptography

Intro. 00 00	Cont. Var. 0 0	Information Theory 0 00	CVQKD 0 00	XP 00 0	Next
1	Introduction			eve les s	
	 Prefect Sec Various Sec 	crecy and Quantu cure Systems	um Crypiogr	apny	
2	Continuous v				
	Field quadHomodyne	e Detection : Theo	Dry		
3	Information T				
	 XXth centu Where are 	/			
4		ariable Quantum	Key Distribut	ion	
	SpyingProtocols				
5	Experimental	*			
	 1st and 2nd Key-Rates 	d generation den	nonstrators		
-	/	n with classical cry	ptography		
6	Open proble	ms			- A C A

・ロト・西ト・ヨト・ヨー うへぐ

Intro.	Cont. Var.	Information Theory	CVQKD	ХР	Next
00 00	0	0 00	000	00 0 0	

Open Problems

- Finite size effects
- Link with post-selection based protocols (.de, .au)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Side-channels and quantum hacking
- Other cryptographic applications